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Abstract

Due to recent developments in modeling software and advances in acquisition techniques

for 3D geometry, large numbers of shapes have been digitized. Existing datasets include

millions of real-world objects, cultural heritage artifacts, scientific and engineering models,

all of which capture the world around us at nano- to planetary scales. As large repositories

of 3D shape collections continue to grow, understanding the data, especially encoding the

inter-model similarity and their variations, is of the utmost importance.

In this dissertation we address the challenge of deriving structure from a large, unorga-

nized, and diverse collection of 3D polygonal models. By structure we refer to how objects

correspond to each other, how they are segmented into semantic parts, and how the parts

deform and change across the models. While previous work has generally dealt with small

and relatively homogeneous datasets, in this dissertation we concentrate on diverse and

large collections.

Our contribution is three-fold. First, we present an algorithm for establishing correspon-

dences between pairs of shapes related by a non-uniform deformation. Second, we develop

a robust and efficient algorithm for computing per-point similarities between all shapes in

a collection of 3D models using only a small subset of all pairwise alignments. And third,

we describe an algorithm for finding structure in an unorganized, unlabeled collection of

diverse 3D shapes, which is achieved by jointly optimizing for point-to-point correspon-

dences, part segmentations and an explicit model of part deformations.

These algorithms enable finding correspondences in large diverse datasets where models

are related by non-uniform deformations and model parts have different multiplicity and

geometry. These methods also make it possible to segment large collections into consistent

sets of parts and to represent most prominent geometric variations in the entire collection.
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Chapter 1

Introduction

With the increasing number and diversity of 3D polygonal models in online repositories,

there is a growing need for automated algorithms that can derive structural and semantic re-

lationships from large model collections. For example, the SketchUp Warehouse contains

millions of 3D models in many different classes and, thus, should be a valuable resource

for data-driven solutions to common geometry processing problems, including surface re-

construction [73], model completion [112], model-based object recognition [111, 93], and

shape synthesis [61]. In addition, analyzing the diversity of shapes in this database could

yield insights into the geometric variations of real-world objects. Unfortunately, most Web-

based repositories, including the SktechUp Warehouse, do not contain the necessary struc-

tural and semantic information required to support such applications. They have little se-

mantic tagging, no consistent part decompositions, and no information about how surfaces

on different objects relate to one another. As a result, it is difficult to get an overarching

view of what types of models are in the repository, how models correspond to and differ

from each other, and whether they contain the necessary information for a given applica-

tion.
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We describe several analysis tools developed for deriving structure from large, unorganized,

diverse collections of 3D polygonal models (e.g., shapes within the same general object

class, like chairs). More specifically, we provide automatic tools to compute how objects

correspond to each other, how they can be segmented into semantic parts, and how parts

or arbitrary regions vary across models. Our analysis results can then be directly used for

many data-driven geometric acquisition, analysis, processing, and modeling tasks.

In this work we push the limits of existing efforts on analysis of 3D collections in two

directions: we provide tools that handle a higher diversity of models, and that are suitable

to large collections.

First, we describe a method for finding correspondences between pairs of shapes related

by a non-uniform deformation, which is common in diverse collections [71]. We pro-

pose a fully automatic pipeline for creating an intrinsic map between two non-isometric,

genus zero surfaces. Our approach is based on the observation that efficient methods ex-

ist to search for nearly isometric maps, but no single solution found with these methods

provides universal low-distortion for pairs of surfaces differing by large deformations. To

address this problem, we suggest using a weighted combination of these maps to produce a

blended map. This approach allows for algorithms that can leverage efficient search proce-

dures while still providing the flexibility to handle large deformations. During experiments

with these methods, we find that our algorithm produces blended maps that align semantic

features better than alternative approaches across a variety of data sets.

Second, leveraging our (or any other) pairwise mapping technique, we propose an auto-

matic analysis method for computing similarity relationships between points on 3D shapes

across a collection [73]. Our method can accommodate substantial geometric variations,

including non-uniform deformations, and partial similarity (e.g. due to different part mul-

tiplicities or styles). We encode the inherent ambiguity in similarity relationships using

fuzzy point correspondences and propose an efficient computational framework that esti-
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mates fuzzy correspondences using only a few pairwise model alignments. We evaluate

our analysis method on a range of correspondence benchmarks and report substantial im-

provements in both speed and accuracy over existing alternatives.

Finally, we tackle the problem of deriving structure from an unorganized, unlabeled col-

lection of diverse 3D shapes [69]. We propose an automatic algorithm that starts with an

initial template model and then jointly optimizes for point-to-point surface correspondence,

part segmentation, and a compact deformation model to best explain the input collection of

shapes. As output, the algorithm produces a set of probabilistic part-based templates that

groups the original models into clusters according to their styles and variations. We evalu-

ate our algorithm on several standard datasets and demonstrate its scalability by analyzing

large collections, some of which contain thousands of shapes.

Contributions: This dissertation makes the following contributions:

• an idea of combining multiple low-dimensional intrinsic maps to produce a blended

map between two non-isometric surfaces,

• an optimization pipeline that produces a globally optimal blending weights for a set

of intrinsic maps,

• an idea of using fuzzy correspondences to understand similarity relations across 3D

model collections

• an algorithm to compute fuzzy correspondences from sparse and noisy pairwise

alignments or intrinsic maps,

• an idea of using joint structural analysis to simultaneously recover segmentation,

point-level correspondence, and a probabilistic part-based deformable model for

shape collections; and,

• an efficient out-of-core framework to establish structure in diverse collections span-

ning thousands of models at a scale never demonstrated before.
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Chapter 2

Related Work

A significant amount of research has focused on finding structure in data collections such

as text documents [12], audio files [107], and natural images [31]. Common analysis tools

for these datasets provide high-level abstractions by measuring similarities [54], by clas-

sifying the entities [13], by decomposing the entities into parts [21], or by exploring and

summarizing interesting similarity relationships [51]. In our work we develop analogous

tools for analysis of collections of 3D shapes.

2.1 Analysis of individual shapes

Most of the previous work on structural analysis of 3D geometry concentrates on analyzing

individual models.

Feature Point Detection: Many methods have been developed to address the problem of

detecting salient feature points in 3D shapes. Existing approaches commonly use extrema

of various surface functions, such as average geodesic distances [134, 132, 131], curva-

ture [80], and the difference of Gaussians at multiple scales [22]. Other methods rely on

analysis of heat kernel signature [117], scale-space analysis of mean curvature flow [130],
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or taking leaf nodes of skeleton extraction [52]. These methods generally identify features

that are stable under different geometric perturbations, but do not necessarily correspond

to human perception of structurally important regions.

Saliency Estimation: In a related research, Hoffman et al. [53] defined perceptual criteria

for part saliency. This work further inspired several automatic methods for the identification

of perceptually important regions on 3D shapes. For example, Lee et al. [77] used curvature

at different scales to compute the saliency of different regions, and demonstrate applications

in mesh simplification and viewpoint selection. Gal and Cohen-Or [39] combined relative

region size, curvature, the variance of curvature and the number of curvature changes within

the region to find salient regions. Finally, Chen et al. [26] performed a perceptual study to

identify the geometric features that are most useful in predicting saliency, and proposed

an automatic classifier to extract salient feature points and estimate saliency values on a

surface.

Segmentation: Many methods address the problem of decomposing a model into parts

using low-level geometric cues, such as convexity of parts, or concavity of boundaries be-

tween parts. They optimize for these criteria by using techniques, such as graph cuts [64,

47], spectral clustering [82], hierarchical clustering [40], primitive fitting [8], and the dis-

covery of intrinsic primitives [116]. A thorough survey of these methods can be found in

Shamir [109], while Chen et al. [25] examined relative performance of these techniques.

Symmetry Detection: The problem of finding symmetric structures has also received a

fair amount of attention in previous years. Existing methods are able to find affine trans-

formations that align symmetric points [88, 89], compute structural regularity [102], and

detect hierarchical symmetric relationships [122]. In an intrinsic setting, existing tech-

niques search for global [100, 70] and partial [129] symmetries at multiple scales [128].

A detailed overview of these methods can be found in Mitra et al. [90]. Discovering these

symmetric structures enables a variety of interesting editing tools [89][133][72].
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Although analysis tools for individual models can extract useful semantic structures, these

structures do not represent relationships between different shapes in a large collection,

which is the main topic of our work.

2.2 Analysis of 3D collections

Finding relationships across an entire collection of models provides the opportunity to de-

vise high-level understanding of classes of shapes. Previous work has explored applications

of this general idea to various problems in computer graphics and vision.

Shape similarity: Defining a geometric similarity for a pair of shapes is a long-standing

problem in geometry analysis. Much work has been done on developing concise and dis-

criminative shape descriptors for comparing geometries. They commonly rely on low-level

features such as distribution of surface normals [55, 63], histograms of surface distribution

with respect to its center of mass [7], histograms of distances between pairs of points [96],

2D projections from different points of view [24], spherical harmonics [67], Zernlike mo-

ments [20, 95], symmetry descriptors [66], and others (e.g. see [65, 17], and references

therein). Commonly these similarity metrics are employed for classification and retrieval

problems.

Classification: Automatically grouping shapes into similar classes is a key problem in or-

ganizing collections of 3D models, or analyzing geometries obtained with an acquisition

device. A common solution to this problem is to classify a shape based on its nearest neigh-

bors in a descriptor space [114], which requires a small collection of pre-labeled exemplars

as an input. In a related effort, Shilane et al. [113] proposed identifying distinctive local

features of a shape by employing joint analysis of a 3D collection, and then using these fea-

tures to improve discrimination between different classes of shapes and to identify salient

regions.
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Several methods address the problem of classifying shapes in indoor and outdoor envi-

ronments. These approaches commonly use local shape features to identify and segment

objects from the scene, and then use a classifier learned from a training set [45, 74]. More-

over, Nan et al. [93] developed a semi-interactive approach for object recognition in depth

scans.

Retrieval: Shape retrieval, which is aimed at finding a particular shape in a collection, has

also received substantial research attention in recent years. Many existing search systems

(e.g. [119]) rely on user-provided text tags to facilitate navigation in the shape space. In

practice, these tags are often unreliable and, more importantly, are not sufficiently descrip-

tive when the search parameters are more subtle than just a shape class. Although it is

possible to use an example shape to define a query [114], creating the 3D geometry for

each query might be too complicated for typical search operations. Several approaches ad-

dress this limitation by allowing 2D contours as part of the input [87, 86]. Eitz et al. [28]

also demonstrated results with rough sketches, however, their method requires having a

collection of annotated sketches of classes of interest.

Exploration: In cases when the exact characteristics of a retrieved object or variety of

shapes in a collection are not known there is a need for tools that allow open-ended ex-

ploration. Common exploration objectives are to identify what kind of objects are there

in the database, how they relate to one another, and how they vary. For example, Giorgi

et al. [44] offered a system that allows for the interactive refinement of search results via

relevance feedback. More recent approaches focus on helping users to explore and under-

stand the variations within a class, which are often more subtle. Many of these methods are

specific to a particular class of shapes, such as human bodies [2, 6]. Ovsjanikov et al. [98]

presented a general method that uses a coupled spatial-descriptor space analysis to extract

a template-based deformation model that the user can directly manipulate to explore the

collection.
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Data-driven reconstruction: Reconstructing poorly sampled geometry (e.g. due to limi-

tations of an acquisition device) is one of fundamental problems in geometry processing.

Several solutions stemmed from the observation that a collection of shapes can provide

strong geometric priors, which in turn can improve reconstruction. For example, Pauly

et al. [101] demonstrated a system for completing geometries using similar shapes from

a collection. Likewise, Shen et al. [112] used example object parts to reconstruct a 3D

model from sparse point samples, and Shao et al. [110] provided an interactive data-driven

system to reconstruct 3D scenes from depth scans. For some classes of shapes, such as hu-

man faces, specialized methods encode the geometric priors in a class-specific deformable

template, which can be further used in reconstruction [10].

Data-driven synthesis: Early efforts concentrated on using a collection to build a gener-

ative model for specific classes of shapes, such as human faces [11, 46] or human bod-

ies [6, 2]. Funkhouser et al. [37] introduced the idea that similarities in structure between

shapes from the same class can be exploited to synthesize new shapes by reshuffling similar

parts or regions. This idea was further developed in a probabilistic generative model for the

interactive assembly-based shape synthesis [23], or the automatic synthesis of new collec-

tions [61]. Similar analysis tools were developed for collections of scenes. For example,

analyzing manually-labeled 3D scene graphs allowed for encoding placement relationships

across a variety of objects, such as pieces of furniture in indoor scenes [36, 35].

The shape structure recovered by algorithms described in this thesis can be directly used in

all aforementioned applications.
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Chapter 3

Correspondence for pairs of 3D shapes

with Blended Intrinsic Maps

3.1 Introduction

Finding a map between two surfaces is a fundamental problem in understanding the struc-

tural relationship between models. The objective is to find an intrinsic map f : M1 !M2,

for a pair of non-isometric meshes M1 and M2, such that f is smooth and “low-distortion”

everywhere (as isometric as possible). With such a map, it is possible to reason about func-

tional similarities [14], study surface variations [2], and find consistent part decomposi-

tions [48].

The general approach to this problem is to search a discrete space of possible maps, select-

ing the one that minimizes the prescribed distortion measure. With this discrete formula-

tion, the key challenge is to select a space of maps that is both small enough to search ef-

ficiently and large enough to contain useful maps between non-isometric surfaces found in

real-world problems. One approach is to search an exponentially large space of maps (e.g.,

all N ! sets of correspondences between N sparse feature points), which can include a wide
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Figure 3.1: Automatically-extracted map f between cow and giraffe (same map is rendered
from two viewpoints). We color each vertex on giraffe’s body by it’s {x, y, z} position. Then
every vertex v on the cow’s body is mapped to the giraffe by f , and colored the same as
f(v)

variety of useful deformations, but requires an NP-Hard search algorithm. An alternative

approach is to search a low-dimensional space of intrinsic maps (e.g. using geodesic feature

vectors [18], Heat-Kernel maps [99], conformal maps [103], quasi-conformal maps [81]

etc.), where polynomial-time search algorithms are available, but where there is hardly any

variety of deformations. The problem is that no known space of maps is both polynomial

in size and contains the deformations commonly found in real-world surface correspon-

dence problems (e.g., even articulations of people and animals can deviate significantly

from conformality or isometry). As such there is no obvious solution to this problem.

Our approach is to search for a continuous blend of multiple low-dimensional maps. By

combining maps with weights varying smoothly over the surface, we define a space of maps

that includes a large range of deformations, yet can still be searched with polynomial-time

algorithms. We consider blends of conformal maps with weights that: 1) are proportional

to the area-preservation of the map at every point, and 2) incorporate global similarity

relations between different conformal maps. In this way, we favor maps that locally aim to

preserve both angles and areas (i.e., near-isometries), but globally are consistent and can

achieve extreme deformations.
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This method finds a smooth map in polynomial time that empirically aligns semantic fea-

tures of non-isometric meshes effectively. During experiments with a test set of 334 sur-

face pairs, our blended map is able to align benchmark correspondence points on different

meshes within the same object type better than several state-of-the-art methods. For exam-

ple, a blended map between a cow and a giraffe is shown in Figure 3.1 (a failure case in

[80]) – note that the map is nearly-isometric locally, even though it provides a smooth map

between significantly different shapes.

Contributions: Blended intrinsic maps make four main research contributions:

• the idea of combining multiple low-dimensional intrinsic maps to produce a blended

map,

• an objective function for a weighted collection of maps that favors both the confi-

dence of maps and consistency between pairs of maps,

• a method for estimating the consistency of two maps at a point, and

• an optimization pipeline that produces a globally optimal weight assignment for a set

of maps.

3.2 Related Work

Finding correspondences between surfaces is a long standing problem addressed a wide

variety of previous methods [121, 16].

3.2.1 Inter-surface mapping

Given a set of correct sparse correspondences (defined by a user or an algorithm), one can

use a variety of methods to find a smooth map to interpolate them. A common approach

is to map both surfaces to a canonical domain where sparse feature points align and then

interpolate the map in that domain [1]. For example, [105] used a base coarse mesh (pro-
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vided by a user) as such a domain. In their approach, the surface is cut into triangular

patches defined by three geodesic curves, such that each geodesic curve is mapped to a

triangle on a coarse base mesh. Further, [108, 76] developed an automatic approach for

creating the base domain. These methods, however, were only evaluated with manually la-

beled sparse correspondences as their input, which are too expensive to be used for finding

sparse correspondences in a fully automatic algorithm.

3.2.2 Finding sparse correspondences

Several methods have been proposed for automatically finding a small (sparse) set of fea-

ture correspondences, which could then be used to produce an inter-surface map. The most

common approach is to first extract a set of feature points and then to explore permutations

of them to find the correspondences implying an alignment with minimal deformation er-

ror [57, 132]. This approach is effective when local shape descriptors at the feature points

are very distinctive, but quickly becomes too expensive when local shapes are different

and the measurement of global deformations implied by many points is required for dis-

criminating the optimal solution. Even with pruning based on branch-and-bound [41] or

priority-driven search [38], the search space is simply too large to explore efficiently, and

so heuristics are employed and/or few feature correspondences are found, which makes it

difficult to find a good inter-surface map.

3.2.3 Iterative closest points

Certain approaches find surface correspondences through an iterative procedure that starts

with an initial correspondence, and then repeatedly improve it by computing an aligning

transformation from the correspondences and then updating the correspondences based on

the transformation (e.g., based on mutually closest points). This method is most commonly
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used for aligning surfaces related by a rigid transformation [9], but has also been used for

moderate non-rigid deformations [2, 19, 78, 101, 118, 42]. Unfortunately, it does guarantee

that the final map is smooth or bijective (two points on one surface may map to the same

point on another), and it requires a good initial guess to succeed in most cases.

3.2.4 Finding dense correspondences

Other methods directly find correspondences for all points on a surface. For example, the

Gromov-Hausdorff distance motivated a purely intrinsic approach by Memoli et al. [85]

to measure deviation from isometry between two surfaces. Furthermore, Bronstein et

al. [18, 16] developed a Generalized Multidimensional Scaling (GMDS) framework to find

the least distortion embedding of one surface onto another, which can be computed more

efficiently in a coarse-to-fine manner [106]. These methods use an approximate search pro-

cedure to make an initial guess of point correspondences and, thus, may converge to a local

minimum.

3.2.5 Surface embedding

Some methods find dense correspondences by embedding surfaces in feature space where

similar points have similar coordinates and then produce a dense map based on nearest

neighbors in that space. For example, Ovsjanikov et al. [99] showed that a single cor-

respondence can define a Heat Kernel Map (HKM), a high dimensional embedding of a

surface invariant under isometry. The disadvantage of these methods is that they are effec-

tive only for deformations that are nearly isometric – otherwise features do not align in the

embedded space. Ovsjanikov et al. [99] suggested a simple extension of their approach

to non-isometric cases: they concatenate features from two heat kernel maps generated by

two correspondences into a single feature vector and search for nearest neighbors in that
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space. However, it is still not obvious how to best select multiple correspondences, and the

resulting map is still not guaranteed to be smooth, or even continuous, when surfaces are

not isometric.

3.2.6 Functional Maps

An alternative to searching for point-to-point correspondences is to search for a functional

map: a map that puts real-valued functions on two surfaces in correspondence. Ovsjanikov

et al. [97] introduced this idea, and proposed eigenfunctions of the Laplace-Beltrami oper-

ator as a multi-scale basis for the function space on each shape. Pokrass et al. [104] further

demonstrated that a sparse modeling method can generate better results if part-wise decom-

position of each shape is provided as an input. However, choosing this as the basis of the

function space is only justified for near-isometric shapes, and, thus, these methods perform

poorly in non-isometric cases (see Figure 6 in [104]). Recently, Kovnatsky et al. [75] ap-

plied coupled quasi-harmonic bases to find functional maps between non-isometric shapes.

Note that these methods were published after the work described in this thesis [71].

3.2.7 Exploring Möbius Transformations

The methods most similar to ours are the ones of [80] and [70]. They both leverage the fact

that isometries are a subspace of the conformal maps, which are low-dimensional and can

be explored efficiently with Möbius Transformations. They differ in the way they search

and combine the maps: [70] uses a RANSAC algorithm to discover the single “best” con-

formal map that maps a surface onto its reflection, while [80] combines multiple maps

with an algorithm that votes for correspondences. The former approach works only for

nearly-isometric surfaces (e.g., intrinsic symmetries), while the latter approach may pro-

14



duce globally inconsistent correspondences (when votes for inconsistent maps combine in

the correspondence matrix).

In this thesis we propose a fully automated method that finds a smooth, low-distortion map

between significantly non-isometric surfaces in polynomial time.

3.3 Method

3.3.1 Key Idea

Our approach is to search for a map that smoothly blends multiple low-dimensional maps.

This approach allows a search procedure to explore a polynomial size space of maps, while

providing the flexibility to find smooth maps between surfaces differing by significant de-

formations.

A motivation for this approach is provided in Figure 3.2. Our goal in this example is to

produce a smooth map between the surfaces of a person in two different poses, such that

the map is “as isometric as possible.” Although the surfaces are nearly isometric, there is

no known low-dimensional map that takes one surface onto the other with small distortion

everywhere. For example, the top row shows three conformal maps, each of which provides

low distortion (blue) for most of the body, but has large distortions (red) on different parts

of the arms and head. While none of these conformal maps provide a good solution for the

entire body, they can be combined with weights (bottom left) to form a blended map with

small distortion almost everywhere (bottom right).

We investigate ways to define blended maps and compute them automatically for pairs of

genus zero surfaces. Specifically, given a pair of surface meshes M1 and M2, our goal is

to find a set of K candidate maps {m
i

}

K

i=1 : M1 !M2 associated with smooth blending

weights b
i

(p) for every point p, such that the blended map f : M1 ! M2 defined as
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Distortion of m1 Distortion of m2 Distortion of m3

Blending Weights for m1, m2, and m3 Distortion of the Blended Map

M1

M2

Figure 3.2: Motivation for our approach. In the top row, three low-dimensional conformal
maps m1,m2, and m3 are defined by three correspondences rendered as red lines. Map
confidence is rendered in color on a surface, where blue corresponds to 0 area distortion,
and red is high distortion. The three low dimensional maps are blended according to
weights encoded as RGB colors in the bottom-left image. The resulting blended map in the
bottom-right corner has lower local distortion than any of the three maps above.

follows has low distortion across the entire surface:

f(p) = argmin
p

02M2

KX

i=1

b
i

(p)dM2 (p
0,m

i

(p))
2
, (3.1)

where dM2(·, ·) denotes the geodesic distance on surface M2.

Intuitively, this definition maps every point p to the weighted geodesic centroid of its im-

ages {m
i

(p)} for all maps {m
i

}

K

i=1. We use this definition because it guarantees smooth-

ness of the blended map if the candidate maps {m
i

(p)} and blending weights {b
i

(p)} are
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both smooth, and because we believe that it contains most deformations commonly found

in real-world surface correspondence problems. For instance, in the example shown in Fig-

ure 3.2, weights are chosen such that only one of the three candidate maps influences each

of the arms and the head strongly, but they blend together smoothly to form a map with no

discontinuities and low overall distortion on the body.

Given this definition, the key research challenge is to provide automatic methods to gener-

ate a set of candidate maps with associated blending weights. Intuitively, the ideal solution

should guarantee smoothness of the blending weights b
i

(p), assign large weights at p only

to maps m
i

that induce small distortions at m
i

(p), and assign non-zero weights at p only

for sets of maps that are consistent with one another (i.e., if b
i

(p) > 0 and b
j

(p) > 0, then

dM2 (mi

(p),m
j

(p)) should be small). If these constraints are satisfied, then the resulting

map will be smooth and have low distortion everywhere.

In this paper, we focus on algorithms to address these challenges for blending conformal

maps. Conformal maps are low-dimensional and thus efficient to search; they preserve

angles and thus avoid distortions with shear; they contain isometries as a special case and

thus they are a common type of map for non-rigid deformations; and, finally, they simplify

the problem of finding blending weights in our formulation, because it is possible to esti-

mate analytically the distortion of a conformal map at given point (e.g., how well area is

preserved in the point’s neighborhood). Thus, we can partition the computation of blending

weights into two factors:

b
i

(p) = c
i

(p) · w
i

(p),

where c
i

(p) measures the “confidence” of the conformal map m
i

at point p based on an

estimate of its area-preservation at p, and w
i

(p) are the “consistency” weights that indicate

to what extent a map should be used for blending. The key observation is that the first

factor, c
i

(p), already provides a smoothly varying estimate for the distortion of each map

m
i

at p (as shown in the top row of Figure 3.2), and thus captures the spatially varying
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aspects of b
i

(p). The second factor, w
i

(p), can then be treated as a constant across the

surface, which greatly simplifies computation of optimal blending weights.

The following four sections describe our algorithm to compute blended maps between two

surfaces automatically. Given two input surfaces, we first generate a set of candidate con-

formal maps (Section 3.3.2). Then, we estimate the confidence c
i

(p) for each map at every

point p (Section 3.3.3). We next compute consistency weights w
i

for every conformal map

m
i

by optimizing an objective function that favors non-zero weights only for sets of maps

that are both high confidence and consistent with one another (Section 3.3.4). Finally, we

produce a final blend with these weights using Equation (3.1) (Section 3.3.5). The methods

employed in Sections 3.3.2, 3.3.3, and 3.3.5 are straight-forward – detailed descriptions are

included mainly for the sake of completeness and reproducibility. Figure 3.3 provides an

illustrative example for our pipeline. Our main algorithmic contribution is in Section 3.3.4,

which describes a method for finding optimal consistency weights to be used for blending

in our formulation.

3.3.2 Generating Maps: {mi}
K
i=1

Our first step is to generate conformal maps that will form a candidate set for blending. Our

goal is to provide a small set of maps such that at least one map achieves small distortion at

every important feature point, and such that areas mapped with low distortion by different

maps overlap significantly so that they can be blended without distortion.

To generate such a candidate set, we follow the procedure used in [80, 70]. We first com-

pute a small collection of feature points, P1 ⇢M1 and P2 ⇢M2, on both surfaces. Then,

we generate candidate conformal maps by enumerating triplets of three feature point cor-

respondences, where each pair of triplets uniquely defines a Möbius transformation that

maps one surface onto the other conformally while interpolating the feature point corre-

spondences.
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Conformal Maps: Top Eigenvectors:Blending Matrix:{mi}
K
i=1 S̃ {wi}

K
i=1

.80

Correct Map

Symmetric flip

.87

Final Maps and Confidences

Figure 3.3: This figure depicts the blending matrix S̃
i,j

rearranged by consistent blocks of
decreasing size. Each row (and column) corresponds to a conformal map. Several confor-
mal maps are illustrated on the left. Note that S̃

i,j

is sparse and contains approximately
two large blocks that correspond to the correct near-isometric map and its symmetric flip.
We also show the spectrum of this matrix. Note the spectral gap separating the two eigen-
vectors corresponding to the near-isometries from the rest of the spectrum. On the right
we show the two blended maps corresponding to these top two eigenvectors, together with
their confidence functions and its integral (single number printed in blue). Note the red
arrows that indicate small regions that allow us to distinguish between the correct map
and the symmetric flip. For instance, mapping front of a human to the back results in more
area distortion at feet (due to heels), at knees, and at buttocks.

Generating feature points: our first task is to generate sets of feature points P1 and

P2 on M1 and M1. Our goal is to produce a small number of feature points with a

large fraction of semantic correspondences. Although many methods are possible, we cur-

rently extract points at maxima of the Average Geodesic Distance function AGDM`
(p) =

R
M`

d
g

(p, p0)dA(p0), where dA denotes the area element on the surface M

`

, ` = 1, 2. This

method provides corresponding feature sets particularly well for articulated figures (e.g.,

tips of extremities and top of head), and thus a small number of features is usually required

to achieve multiple semantic correspondences spread throughout the surfaces. For most

examples presented in this paper |P

`

|  10.

Generating conformal maps: our next task is to generate a candidate set of conformal

maps {m
i

}

K

i=1. Following [80], we first conformally map the two surfaces to the extended

19



complex plane using mid-edge uniformization [103]. We then generate a set of conformal

maps by enumerating all possible combinations of three correspondences between feature

points in P1 and P2 (generating correspondences) and construct a conformal map m
i

for

each one by computing the Möbius transformation that interpolates all three corresponding

points. This procedure produces K =

�|P1|
3

�
·

�|P2|
3

�
· 6 distinct conformal maps that form

the set {m
i

}

K

i=1 that will be candidates for blending in the following steps. Please refer to

[80, 70] for details.

3.3.3 Defining Confidence Weights: {ci(p)}
K
i=1

Our second step is to compute a confidence value c
i

(p) that estimates how much distortion

is induced by each map m
i

at every point p. Though many formulations are possible to

measure distortion at a point, in this work we aim to estimate deviations from isometry.

Since conformal maps preserve angles, we can estimate deviation from isometry simply by

measuring the scale factor induced by the map at every point p (isometries are conformal

maps that preserve scales). To do so, we define

c
i

(p) = 2

. area(N
p

)

area(m
i

(N
p

))

+

area(m
i

(N
p

))

area(N
p

)

�
, (3.2)

where area(N
p

) is the area of a neighborhood, N
p

, around point p on M1 and

area(m
i

(N
p

)) is the area of its image, m
i

(N
p

), on M2.

For computational efficiency, we calculate c
i

(p) only at a set Peven of 256 approximately

evenly distributed points. The set is produced by starting with a random vertex and then

iteratively adding vertices that are farthest from the set Peven until |Peven| = 256 [29].

Confidence weights c
i

(p) for all other vertices are calculated using smooth interpolation

with Gaussian weights.
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These estimates of c
i

(p) based on area preservation are quick to compute, vary smoothly

across the surface, and correlate well with low-distortion in a map, and thus they provide

the desired properties of the spatially varying factor in our blending weights.

3.3.4 Finding Consistency Weights: {wi}
K
i=1

The next step is to compute a set of consistency weights {w
i

}

K

i=1 for all conformal maps

{m
i

}

K

i=1. Ideally, this set will have weights with zero values for conformal maps that in-

duce high distortion (e.g., the generating triplet of feature correspondences contains incor-

rect matches) and non-zero weights only for conformal maps that are consistent with one

another.

Objective Function: Following this intuition, we define the consistency weights ~w :=

{w
i

}

K

i=1 as the minimizer of an objective function, E(~w):

EM1(~w) =

P
K

i=1

P
K

j=1 wi

w
j

R
p2M1

S
i,j

(p)c
i

(p)c
j

(p)dA(p)

subject to
P

K

i=1 w
2
i

= 1, (3.3)

where confidence values c
i

(p) are defined as in the previous section, and pairwise map

consistency values S
i,j

(p) : M1 ! R provide an estimate of how consistent two maps are

at a point p. We constrain the L2 norm of weights to be 1 since we want to favor global

maps that include multiple similar maps.

Roughly speaking, for every choice of weights ~w giving non zero weights to some subset

of maps, the functional measures how pairwise consistent is this set and how well each

individual in this set preserves area. The weights achieving the minimum of this objective

function will signal out the correct set of maps to be used in the blending.

Map Consistency: The most important term in the objective function is the similarity

measure S
i,j

(p) for a pair of maps m
i

,m
j

. Intuitively, S
i,j

(p) should be high if maps m
i
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and m
j

are similar at point p. To model this intuition, we define the consistency for a pair

of maps m
i

and m
j

at a point p to be inversely related to the geodesic distance between

images of the point p under the two maps, m
i

(p) and m
j

(p):

S
i,j

(p) = exp
✓
�

dM2 (mi

(p),m
j

(p))

�2

◆
(3.4)

Note that 0  S
i,j

(p)  1 at any point p, S
i,j

(p) = 1 iff m
i

(p) = m
j

(p), and � is

a controllable parameter that controls how close images of a mapped point should be in

order for a pair of maps to be considered similar (we use � = 0.5 for all results in this

paper).

Figure 3.4: These images show the similarity function S
i,j

(p) for a pair of conformal
maps m

i

,m
j

(values range from 0 (red) to 1 (blue)). The generating correspondences are
depicted by red lines for map m

i

and by blue lines for map m
j

.

Since calculating S
i,j

is at the core of our objective function we need to make this compu-

tation as efficient as possible. However, for high-resolution meshes, calculating geodesic

distances between any arbitrary pair of vertices can be expensive. Instead of calculating

Equation (3.4) directly, we replace it with:

S
i,j

(p) = exp

 
�

dM1

�
p,m�1

j

(m
i

(p))
�

�2

!
(3.5)
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The reason is that we can then evaluate the consistency function S
i,j

only for a subset of

points Peven and therefore geodesic distances from point p to every other vertex on M1 can

be precomputed and stored. For example, Figure 3.4 shows similarity values for two pairs

of maps.

Optimizing for map consistency weights: In this step, we optimize Equation (3.3) for the

consistency weights: {w
i

}. To do this, we define a blending matrix

S̃
i,j

=

Z

M1

c
i

(p)c
j

(p)S
i,j

(p)dA(p).

with which Equation (3.3) can be written as

EM1(~w) = ~wT S̃~w , k~wk2 = 1. (3.6)

Since S̃ is symmetric, the top eigenvector is the optimal maximal solution (maximizing

the Rayleigh quotient EM1). The Perron-Frobenius theorem assures us that all the entries

of this optimal ~w are of constant sign and therefore can be chosen to be positive. Thus, a

simple optimization to achieve the consistency weights is to find the top eigenvector ~w of §,

define the blending weights b
i

(p) = c
i

(p)w
i

, and construct the blended map f as described

in Equation (3.1).

However, there are two issues: 1) the matrix § for many feature points is large (remember

we have
�|P1|

3

�
·

�|P2|
3

�
· 6 distinct conformal maps), and 2) in a presence of intrinsic sym-

metries (or near-intrinsic-symmetries) there is more than one “correct” (i.e., near-isometry)

map between the surfaces. We address these issues as follows.

Computing the Blending Matrix: Filling in the matrix is the most computationally in-

volved step of our approach. For example, given N feature points on both surfaces, one

can construct
�
N

3

�
·

�
N

3

�
· 6 = O(N6

) distinct conformal maps, thus filling the matrix S̃ re-

quires O(N12
) · |Peven| operations. Fortunately, this matrix is extremely sparse (see Figure
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4.2), and the sparsity can be exploited with a few simple observations. Practically, highly

consistent values between conformal maps are possible mainly when they share consistent

subsets of generating correspondences. Thus, we only calculate S
i,j

for pairs of maps that

share two (out of a possible three) generating correspondences and do not have any “con-

flicting correspondences” (i.e., when a feature point on one surface is in correspondence

with two different feature points on the other surface), and set S
i,j

for others to zero. Fur-

thermore, we restrict the maximal number of conformal maps to 10, 000. If more maps

generated we randomly remove maps until we are left with 10, 000.

To further speed the computation, we approximate S
i,j

using a uniform point sampling.

Specifically, for each pair of maps, we compute S̃
i,j

by summing over a discrete set of 256

evenly distributed points (Peven):

S̃
i,j

⇡

X

p2Peven

c
i

(p)c
j

(p)S
i,j

(p)A
i

,

where A
i

are the constant units of area area(M1)
256 =

1
256 .

Processing Eigenvectors: If either of the two surfaces has an intrinsic near-symmetry,

there may be more than one near-isometry between the surfaces. Hence, there will be more

than one group of Möbius transformations such that the corresponding consistency weights

{w
i

} yield a high energy value in Equation (3.3). In case one of the groups of Möbius

transformations is (even slightly) better than the rest (in the sense that its consistency vector

produce higher energy), the eigenspaces of S̃ will naturally separate this better map from

the other candidate maps. For example, Figure 4.2 shows two humans where there are two

possible near isometric solutions corresponding to the two top eigenvectors. In this case

the better map was characterized by higher energy level (eigenvalue).

Nevertheless, sometimes the different near isometries have very close energy level and

the corresponding eigenvectors are blended. In this case any top eigenvector can contain
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a linear combination of good weight vectors ~w that are originated from different near-

isometries of the two surfaces. To avoid blending inconsistent maps we follow the next

steps to extract sets of candidate consistent weight vectors ~w1, ~w2, ..., ~wn and analyze them

to select the best one.

First we recognize the top eigenvectors by taking all eigenvectors with eigenvalues sepa-

rated by the spectral gap to the rest of the spectrum of S̃, see Figure 4.2. Practically, we

take eigenvectors ~w that correspond to eigenvalues within 75% of the top eigenvalue.

Second, we construct the weights ~w1, ~w2, ..., ~wn by separating the different conformal maps

with high values in these eigenvectors to different groups G1, G2, ..., Gn (clusters) as fol-

lows. We start by seeding the first group G1 to contain the conformal map that corresponds

to the top entry (measured in absolute value of the top eigenvector). Then, we traverse the

rest of the conformal maps corresponding to high entries (top 25% of that eigenvector).

For each conformal map, we check whether its generating correspondences are consistent

with the maps chosen already in G1 (i.e., has no conflicting correspondences). If so, it

is not conflicting, and we add it to G1. Otherwise, we start a new group G2 seeded with

this map. We continue in this fashion until all the eigenvectors belonging to top eigenval-

ues are processed. We then threshold the weights to {0, 1} to enforce the expected block

structure of the group in the matrix and to eliminate maps with nearly zero weight from

further processing, yielding a set of groups G1, .., Gn

with corresponding binary weights

~w1, .., ~wn.

The last step is to choose among the different candidate weights ~w1, ..., ~wn the best one.

The above procedure generates weights corresponding to clusters of consistent maps, all

of which provide an approximately optimal solution to the objective function defined in

Equation (3.3). To select the best among them, we construct from each candidate vector

the final blended map ~wj

! f j , and pick the blended map that is most confident overall –
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i.e., globally preserves area best over the whole surface:

f = argmin
{fj}nj=1

Z

M1

c
fj(p)dA(p).

For example, the mapping between two human body surfaces would usually generate two

weight vectors ~w1, ~w2: one corresponds to the correct map, and one to an intrinsic rotation

by 180

� under which the front of a human goes to the back, left side maps to right side, etc...

Note that both these assignments are globally consistent, and each of the maps have similar

confidence to their symmetric counterparts. However, the blended map corresponding to

the intrinsic rotation (flip) usually introduces more area distortion for some parts of a body

like feet or knees, see Figure 4.2. This allows us to distinguish between good and flipped

solution.

3.3.5 The Blended Map

Now we can use low-dimensional maps m
i

defined in Section 3.3.2 with the importance

weights w
i

obtained in Section 3.3.4 to construct the blending map defined in Equation

(3.1). Note that as long as our confidence c
i

(p) changes smoothly over the surface the

resulting blending map will also be smooth.

Figure 3.5 shows how f(p) is found at a point p by blending m
i

(p) with the calculated

weights. For efficiency sake, we find it useful to approximate the geodesic centroid by pro-

jecting the weighted Euclidean centroid ˜f(p) =
P

i

b
i

(p)m
i

(p)
.P

i

b
i

(p) onto the closest

point on the surface M2, an alternative that trades efficiency for accuracy. This is a fa-

vorable trade-off because weights used for blending tend to be non-negligible only for a

small number of points concentrated very close to one another, in practice, in which case

centroids based on Euclidean distances provide a good approximation.
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Weighted CentroidBlending Weights

Figure 3.5: Correspondences due to conformal maps with non-zero blending weight are
depicted on the left image, where the color is set according to confidence c

i

(p) ranging
from red = 0 to green = 1. The resulting approximate geodesic centroid is on the right
image.

3.4 Results

We test our approach on a benchmark constructed from TOSCA, SCAPE and Watertight

data sets. We quantitatively analyze performance of our algorithm in various settings and

compare results to several state of art methods for finding inter-surface maps and corre-

spondences.

3.4.1 Data Sets

We selected three data sets that have a large variety of objects with ground-truth correspon-

dences:

SCAPE: 71 meshes representing a human body in different poses [5]. All the meshes were

fit to scanner data with a common template, and thus they share the same mesh topology,

providing a ground truth map for every vertex for any pair of surfaces (corresponding colors

in Figure 3.6a).

TOSCA: 80 meshes representing people and animals in a variety of poses [16]. The meshes

appear in 8 groups with common topology, providing a per vertex ground truth map for any

pair within a class (corresponding colors in Figure 3.6b).
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Watertight: 400 meshes arranged evenly in 20 object categories, many of which are artic-

ulated figures (humans, octopus, four-legged animals, ants, etc.). The meshes were origi-

nally created for the SHREC 2007 Watertight Shape Retrieval Contest [43]. We selected

11 classes for our experiments that have well defined correspondences and genus zero (Hu-

man, Glasses, Airplane, Ant, Teddy, Hand, Plier, Fish, Bird, Armadillo, Four-legged Ani-

mal). In addition, we excluded two human models with non-zero genus.

In cases where no ground truth map was provided with a data set (e.g., Watertight), we

established a sparse set of “ground truth” correspondences manually. Specifically, we re-

cruited a volunteer to use an interactive program to select 10-35 semantically meaningful

feature points in a manner that is consistent across all meshes within the same object class.

For example, our volunteer selected 35 feature points for each human and 20 feature points

for each four-legged animal (Figure 3.6c). These feature points form the basis for estab-

lishing symmetric correspondences and for evaluating maps between surfaces in the same

object class.

a. SCAPE b. TOSCA c. Watertight

Figure 3.6: Ground truth examples. SCAPE and TOSCA models are colored according to
ground truth per-vertex correspondences.

3.4.2 Evaluation Methods

To evaluate the accuracy of a predicted map, f : M1 ! M2 with respect to a “ground

truth” map, ftrue : M1 ! M2, we compute for every point, p, on M1 in the ground
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truth correspondence the geodesic distance, dM2(f(p), ftrue(p)), between its image in the

predicted map, f(p), and its true correspondence, ftrue(p) .

We aggregate these geodesic distances into an error measure:

Err(f, ftrue) =
X

p2M1

dM2(f(p), ftrue(p))

where dM2(f(p), ftrue(p)) is normalized by
p
Area(M2), as all distances are throughout

this paper.

We also generate plots to examine the distributions of errors, where the x-axis represents

a varying geodesic distance threshold, D, and the y-axis shows the average percentage of

points for which dM2(f(p), ftrue(p)) < D (Figure 3.7 provides a scale bar for D).

0 ≤ d < 0.05

0.05 ≤ d < 0.1

0.1 ≤ d < 0.15

0.15 ≤ d < 0.2

0.2 ≤ d < ∞

Figure 3.7: Reference for normalized geodesic distances on surfaces (measured to the
nearest seed point). Colors are labeled by distances as shown in the legend on the right
hand side.

To separate errors due to poor alignments from ones due to symmetric flips, we produce

two such plots. The first is as already described. The second is similar, but factors out

the effects of confusion in the predicted map due to global intrinsic reflective symmetries

(e.g., bilateral symmetries that map the left side of a human to the right side). It plots

the fraction of predicted correspondence points that either are closer than the geodesic

distance threshold D to the correct correspondence point OR are closer than the threshold

to the symmetric image of the correct correspondence point – i.e., it provides no penalty
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for predicting a map that is a symmetric flip with respect to the correct one. These plots

favor methods that do not preserve orientations in predicted maps (other methods, not ours,

as conformal maps are orientation-preserving).

3.4.3 Comparison to Other Methods

We compare our work to several state of the art methods for finding inter-surface corre-

spondences 1:

• Blended Map - the method proposed in this paper

• Best Conformal - the least-distortive conformal map roughly describes what is the

best performance achieved by a single conformal map without blending.

• Möbius Voting* - the method proposed by [80] explores millions of conformal maps

generated by random triplets on a surface, and votes for correspondences generated

by area-preserving maps. The output of this method is 50-100 coarse correspon-

dences.

• Heat Kernel Matching (HKM) with 1 correspondence - This method is based on

matching features in a space of a heat kernel for a given source point as described

in [99]. A full map is constructed from a single correspondence, which is obtained

by searching a correspondence that gives the most similar heat kernel maps. We use

code provided by authors for this experiment.

• HKM with 2 correspondences - in a non-isometric case the previous method might

obtain better results by using a second correspondence. The matching is then per-

formed in the augmented feature space of two heat kernel maps. With minimal

changes to the original author’s code we follow a procedure outlined in [99] ex-
1comparison to Functional Maps on near-isometric benchmarks can be found in [97] and [104], and

comparison to a method that leverages bilateral reflective symmetry of surfaces can be found in [83]

30



haustively searching for the second correspondence that minimizes the geodesic dis-

tortion.

• GMDS* - we use the method of [18] for surface matching. Authors hierarchically

find correspondences between points by searching for assignment that best preserve

geodesic features. We use authors implementation of this method with default pa-

rameter settings to find 50 coarse correspondences.

• Deformation Driven* - the method of [132] is based on searching for correspon-

dences while minimizing the induced deformation error. It usually produces 5-10

correspondences for a pair of meshes. Unfortunately, it was not possible to execute

this method for a large set of examples so we asked authors to run it on a small set of

representative examples from our benchmark.

Note that some of these methods (marked with a ”*” in the list above) only produce a sparse

set of point correspondences, rather than a full surface map as required for comparison

with our evaluation metrics. In those cases, we produce a full map from surface M1 to

M2 by interpolating the sparse correspondence to using a method based on GMDS – we

compute for each vertex on M1 the geodesic distances to all sparse correspondence points

on M1, and then establish a correspondence to the vertex on M2 with the most similar

distances to sparse correspondence points on M2 [16]. This method was chosen because

it is simple to implement and because the accuracy is sufficient when a large number of

sparse correspondences is provided, as is the case for all methods considered in this study.

Note also that the code available for some of these other methods crashed on meshes in our

test data sets (8 in all). To keep comparisons fair, we eliminated those meshes from our

evaluation in all experiments.

Near isometric pairs in TOSCA: In our first experiment, we studied how methods per-

form for nearly isometric pairs of surfaces from the TOSCA data set. Specifically, for each

model, we picked a random model within the same class, and then computed a map from
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one to the other use each algorithm. Results of this experiment are shown in Figure 3.8,

where each curve depicts the percentage of correspondences with error below some nor-

malized geodesic distance for a different method. Please note that our method (blue curve)

detects over 75% correct correspondences for a small threshold of 0.05 and converges to

finding almost all correct correspondences within geodesic error 0.2. We visually examine

maps produced with our method and observe several small misalignments in some faces

and limbs of animals mostly due to badly selected feature points.

In the bottom image of Figure 3.8, we show the fraction of correspondences within the

distance threshold, if we also allow maps that invert surface orientation. This plot reveals

that methods based on geodesic distances: GMDS and HKM (green, magenta and black

curves) are commonly confused by bilateral reflective symmetry and intrinsic 180� rotation

present in humans and animals. Note that although methods based on conformal geometry

cannot produce a reflected solution, they still can intrinsically rotate a surface by 180

�

mapping front of a human to the back. In this case, errors also become smaller, since

distances between front and back of a limb are smaller than distances between left and

right limbs. Still the ranking of methods is largely the same.

Near isometric pairs in SCAPE: The next experiment compared maps found between

nearly isometric models in the SCAPE data set. For each SCAPE model, we picked an-

other one at random, totaling to 71 pairs, and computed the mapping. Results are shown

in Figure 3.9. These meshes are less smooth than TOSCA meshes, which explains the

decrease in performance for algorithms based on conformal geometry, since mid-edge uni-

formization suffers from non-delaunay triangles, but does not affect GMDS (green) and

heat kernel methods (magenta and black). The main source of error in this data set is con-

fusion due to intrinsic symmetry in humans. Note that due to the aforementioned problem

with individual conformal maps the resulting blended map in some cases does not have

enough accuracy to distinguish between front and back of a human. Also note that al-
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Figure 3.8: TOSCA: performance of various methods on nearly-isometric human and
animal models. We depict a geodesic distance on the x-axis, and a percentage of corre-
spondences within the prescribed distance of the ground truth on y-axis.

though Möbius Voting (red) always provides better coverage than the best conformal map

it suffers from picking inconsistent correspondences, which explains similar performance

of these two methods in this experiment.

Non-isometric humans: In a realistic settings, it is desirable to obtain correspondences

between surfaces with different resolutions, tessellations, and even semantic variations. In

this experiment, we used all 71 human models from SCAPE data set, 43 from TOSCA (in-

cluding gorilla), and 18 from SHREC (excluding two humans with non-zero genus), total-

ing 132 meshes. We used each method to find a map from each model to another selected at
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Figure 3.9: SCAPE: humans. Most of our errors on this data set are due to confusion by
180

� rotations that map the front of a body to the back.

random from this set (excluding near-isometric examples from previous experiments) and

plotted results in Figure 3.10. As in the experiment with SCAPE models, results mainly

suffer from symmetric flips. Note that while our method performed just as well as in the

isometric case, Möbius Voting is suffering from inconsistent correspondences, because for

large deformations locally accumulated votes have more noise. Observe also that if one is

allowed to invert surface orientation, HKM with 2 correspondences and GMDS (black and

green curves) outperform Möbius Voting because they produce more consistent results.
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Figure 3.10: Humans: performance of various methods on non-isometric pairs of humans.
Our method outperforms other approaches because it extracts two consistent solutions (due
to intrinsic symmetry) and then uses local cues (integrated confidence) to choose the best
map.

Non-isometric animals: In another comparison, we found a map from every animal model

in TOSCA and Watertight data sets to a random animal model (excluding near-isometric

pairs). Thus, we used 31 TOSCA models and 20 Watertight models to produce maps be-

tween 51 pairs using each inter-surface mapping method. Note in Figure 3.11, that Möbius

Voting performed significantly better than for non-isometric humans since there is no in-

trinsic near-symmetry in animals (the left-to-right symmetry requires inverting orientation

of the surface, which is impossible with conformal maps). However, our method still out-
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Figure 3.11: Animals: performance of various methods on non-isometric pairs from
TOSCA and SHREC Watertight’07 data sets.

performs Möbius Voting on average, while providing a consistent map (avoiding outlier

correspondences, which can appear with Möbius Voting). Since limbs and outliers usually

cover only a small part of the surface area, these errors do not contribute largely to the

fraction of correspondences. However the difference becomes more obvious if we look at

maximal per mesh errors, whose average is presented in Table 3.1. Our method performs

more uniformly across different experiments and produces smaller maximal per map errors.

Small Set: We also selected a smaller set of 20 representative examples for those authors

who could not run their method on the whole benchmark. We selected five examples from

36



Figure 3.12: Small Set: performance of various algorithms on a small subset augmented
from isometric and non-isometric experiments.

each experiment (SCAPE, TOSCA, Animals, Humans) and compared all methods on those

examples as illustrated in Figure 3.12. Note that this is the only experiment that includes

Deformation-Driven Correspondence Search method of [132]. This method explores a

large space of permutations of correspondences, and thus find sub-optimal solution in many

cases. Note that it also extracts only a few correspondences (5-10), thus performance of

the method partially suffers from the interpolation technique that we use, and using a more

sophisticated method for interpolation could potentially improve results.
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TOSCA SCAPE Humans Animals
Blended 0.31 0.25 0.32 0.33

Möbius Voting 0.45 0.64 0.97 0.57
Best Conformal 0.54 0.60 0.69 0.56

GMDS 0.97 0.86 1.11 1.02
HKM 1 corr 1.27 1.29 1.39 1.08
HKM 2 corrs 1.21 1.07 1.33 1.06

Table 3.1: Table of averaged maximal per map geodesic errors. Note that our method has
smaller average maximal error compared to all other methods. Even in the experiment with
non-isometric animals, where Möbius Voting gives a comparable performance in terms of
fraction of accepted correspondences, we give substantially smaller maximal per mesh
error: first, because we better map limbs, and second, because we generate consistent map
that does not have outlier correspondences.

Visualization: We also present visualizations of maps produced by each method for two

examples in Figure 3.13. In the top row we see a map between two humans. A common

problem a single conformal map is that it collapses one of extremities to a small area, as

seen in areas (A) and (E). Image area (B) reveals an inconsistent correspondence assigned

by Möbius Voting on a shoulder. Areas (C) and (C’) show that adding a second correspon-

dence improves results for some examples, in this case a left hand was correctly mapped

with two heat kernel maps. Note however, that maps produced by searching for nearest

neighbors in some space usually do not produce continuous maps (HKM and GMDS (D)

methods). For stronger deformations, for example mapping a cat to a dog, it is challeng-

ing to even find a general structure of a map. For example, in cases labeled (F), (G), (H)

coarse correspondences map at least some limbs (or a whole body) incorrectly. Note that

for such strong deformations a single heat kernel map is not sufficient to map the whole

body, augmenting a second correspondence improves the result for tail, but other limbs are

still mapped incorrectly (G), (G’).
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Figure 3.13: This figure shows a comparison of our method (Blended Map) to others.
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3.4.4 Per-class performance

Finally, we investigated performance of our algorithm for a variety of object classes in the

SHREC Watertight 2007 data set, where models vary in semantic content, resolution, and

tessellation. As in other experiments, we mapped every model in each considered class

to a random model within the same class, yielding 218 blended maps. In Figure 3.14,

we observe that our method gives the best performance for articulated figures, but it also

successfully handles many cases from other classes (such as planes, fish or birds). Some

examples, can be found in Figure 3.15. The first three rows of this plot include success

cases for our method, and the bottom row depicts four typical failure cases. Note that our

method successfully handles highly non-isometric pairs. Observe that our method does

not rely on local geometry cues, and thus succeeds in a map even if local geometry of

surfaces is very different, for example, there is no local resemblance of a shape of giraffe

and a shape of a cat, or shape of a dog and a cow. The fact that conformal maps do not

preserve geodesic distances can also serve as an advantage in case of partial scaling. For

example, in the rightmost armadillo example one of the models is missing part of a hand,

but associating a full hand with a stump does not propagate any errors to the rest of the

shape. You can observe the most common failures of our methods in the bottom row. We

believe the most common problem is misalignment in feature points. For example, fish and

dolphin in the first image have different orientation of a tail, thus conformal maps generated

by feature points on a tail twist map on the body. Another common issue is symmetric flip

as depicted for ant and airplane examples. Note that the the only hint for our method on

deciding which is the correct solution is a small asymmetry in location of ant’s limbs and

orientation of plane’s tail. This in many cases is too subtle to be captured by our integrated

confidence value. Note also that for creatures with more than 7 feature points we prune the

blending matrix to bound processing time. This introduces an undesired bias, which can

(as in the example with the ant) result in incorrect eigenvectors; for example, two limbs of

the ant are twisted. Finally, individual conformal maps can also be low quality if objects
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have long, thin parts. Specifically, map for glasses introduces a lot of distortion of tips of a

frame which is not distributed uniformly.

Figure 3.14: Per class performance of our method on models from SHREC Watertight’07
data sets. Our method currently performs best for articulated figures with small numbers
of feature points.

3.4.5 Timing

We assume that our method is used in a non-interactive manner for a large collection of

surfaces that require pairwise maps. Thus, we want our method to find the best maps as

quickly as possible with no user intervention. The running time of our method depends on

two factors: the number of vertices in the mesh |M| and the number of extracted feature

points |P|. In a pre-processing stage, we find feature points and precompute geodesic

distances for them which requires about 30s for a Scape model with 12500 vertices, 60s

for a TOSCA model with 27894 vertices (cat), and 170s for a TOSCA model with 52565

vertices (David) on 2.2GHz Opteron 275 processor. The remaining part of the algorithm

mainly depends on the number of selected feature points |P|. For a pair of SCAPE models
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Figure 3.15: Performance of our method on various classes.

usually |PM1 | = |PM2 | = 5, and our algorithm takes 50s, of which 24s spent on calculating

per map confidences, 22s spent on filling the weight matrix, and 4s is spent on processing
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eigenvectors and finding correspondences for every vertex on a surface. For a pair of cats

from TOSCA data set with |PM1 | = |PM2 | = 6, confidence calculations take 86s, and

the matrix is filled in 212s. In the hardest cases (e.g., ants, centaur), we randomly remove

maps until we are left with 10,000, thus in the slowest case confidences are calculated in

364s, and the matrix is filled in 1411s. A more intelligent pruning of the blending matrix

is required to obtain better results for more complex shapes with larger number of relevant

feature points.
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Chapter 4

Fuzzy Correspondences for analysis of

collections of 3D shapes

4.1 Introduction

Computing per-point correspondences across all shapes in a collection is a fundamental

tool that enables reasoning about functional and structural similarities between regions on

different shapes. Finding these relationships provides the opportunity to study geometric

variations [2] and transfer properties [105] between shapes from the same class. There are

two big challenges faced by traditional pairwise mapping methods. First, aligning each

pair independently is inefficient and does not leverage transitivity of correspondences in

the whole dataset. Second, if a collection includes diverse shapes, the task of establishing

point-to-point map becomes ambiguous. For example, how does the chair leg on the left of

Figure 4.1 correspond to the chair base of the model on the right?

We propose an algorithm that produces correspondences for the whole collection using just

a subset of pairwise maps. We further address the issue of ambiguity with fuzzy correspon-
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Figure 4.1: Fuzzy correspondence values for two points. The blue and green regions of
the chairs on the right have the largest fuzzy correspondence to the two selected points on
the chair on the left.

dences1. Specifically, given a collection of N shapes S := {S1, S2, . . . , SN

}, we use fuzzy

correspondences as a function f(p
i

, p
j

) : S ⇥ S ! R to denote a continuous similarity

measure between points p
i

2 S
m

and p
j

2 S
n

.

To estimate fuzzy correspondences, f(p
i

, p
j

), we utilize geometric matching methods that

align pairs of shapes. Although these methods are computationally expensive and often

produce noisy alignments, we observe that for collections of shapes from the same class, a

correspondence matrix that stores high values for corresponding pairs of points is (i) sparse,

(ii) low-rank, and (iii) its rank does not depend on the number of models. We propose

a method based on diffusion maps [92] to reconstruct f from sparse and noisy samples

(i.e., pairwise alignments) and an iterative procedure to refine f by adaptively sampling

according to the current estimate.

We test the accuracy of our estimate of f using the correspondence benchmark for

intrinsically-similar shapes [71], and a more diverse correspondence benchmark using data
1We use the word “fuzzy” as previously used in non-rigid surface matching [27] rather than fuzzy set

theory.

45



obtained from the 3D Warehouse [49]. Our method successfully utilizes the collection to

improve alignments of shapes in comparison to previous methods.

Finally, we demonstrate that fuzzy correspondences enable an interactive exploration of

the interesting structural relationships in a collection. More specifically, we present a new

exploration interface for 3D model collections that allows users to directly specify regions

of interest (ROI) on example shapes, and visualize geometric similarities and variations in

these regions.

Contributions: In summary, we

• introduce an approach for using fuzzy correspondences to understand similarity re-

lations across 3D model collections,

• propose a robust and efficient algorithm to compute fuzzy correspondences from

sparse and noisy pairwise alignments,

• evaluate our algorithm on correspondence benchmarks and report substantial im-

provement over existing alternatives, and

• present an interactive tool for exploring structural relationships in a collection.

4.2 Related Work

Establishing similarities between 3D shapes in collections has received a large amount of

attention in recent years.

4.2.1 Map optimization

Nguyen et al. [94] proposed an algorithm to improve point-to-point mappings given all

pairwise maps. Their method is based on the assumption that all cycles of consistent maps

must return to identity. They start with O(N2
) pairwise maps between surfaces and then

perform an optimization that iteratively improves the consistency of 3-cycles, thus leverag-
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ing information from the whole model collection. The method, however, has four important

limitations: (i) it requires O(N2
) pairwise alignments, (ii) it computes point-to-point cor-

respondences and thus is not applicable to heterogeneous quality models, (iii) it propagates

information only across 3-cycles and thus converges slowly, and (iv) it only aligns pairs of

models by concatenating full maps, which limits the applicability of this method to hetero-

geneous datasets where most pairs of models might not have a bijective map between them.

We extend their optimization strategy to support fuzzy correspondences, which work with

fewer pairwise alignments and more diverse datasets.

Following our work on fuzzy correspondences described in this thesis [68], Huang et

al. [58] devised a method for optimizing point-to-point correspondences using a sparse

graph of pairwise alignments. Their method assumes that all final optimized maps can

be represented by composing initial maps connected in a hub-and-spoke network. Their

algorithm jointly optimizes for a small set of base shapes (hubs), such that the optimized

maps have consistent cycles (i.e. all cycles approximate the identity map), and map neigh-

boring points to neighboring points. Similar to our approach, they produce the optimized

correspondences by searching in a space of diffused initial pairwise maps.

4.2.2 Diffusion maps

Introduced by Nadler et al. [92], diffusion maps provide a probabilistic interpretation of

spectral clustering and dimension reduction algorithms, and have previously been used

for analyzing image collections [51], establishing symmetric correspondences [79], and

clustering similar segments for consistent segmentation [115]. We use diffusion maps to

compute fuzzy correspondences. Our approach has some similarities to that of Lipman et

al. [79] and Sidi et al. [115], since we use the manifold induced by spectral embedding

to estimate correspondences in shapes. In contrast to Lipman et al., our method works on
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model collections. In contrast to Sidi et al., we focus on point correspondences (rather than

parts).

4.3 Method

We cast the problem of computing fuzzy correspondences as a sampling problem, where the

goal is to reconstruct the fuzzy correspondence function f(p
i

, p
j

). We represent each shape

by K discrete points, and thus a discrete representation of f for a database of N shapes is an

NK⇥NK matrix. To sample entries in f , we use automatic pairwise matching techniques

that predict point correspondences based on geometric alignments. While these matching

algorithms are often effective at finding semantic correspondences between pairs of sim-

ilar shapes, they have two primary limitations: (i) geometric shape matching is slow and

(ii) matching based on geometry alone can result in semantically incorrect alignments for

pairs that differ significantly in geometry or topology, differ by extreme non-homogeneous

deformations, and/or have missing or extraneous parts with non-uniform proportions. Thus,

the challenge is to reconstruct f with the fewest possible and most robust samples.

Our approach is based on diffusion. First, let us denote an approximate correspondence

matrix C 2 RNK⇥NK to store computed samples for matched pairs of points. Note that

in an ideal case, if we assume that a point on a model corresponds to exactly one unique

point on every other model, then the rank of C is independent of the number of models

(and equals to the number of points, K). We use diffusion maps to compute a spectral

embedding of C that maps each point on a shape to a Euclidean space whose coordinates

are the eigenvectors of C scaled by the eigenvalues. We expect the embedded points to

lie on a low-dimensional manifold where corresponding points are close to each other, and

thus we estimate fuzzy correspondence based on distances in the embedded space (also

called diffusion distances). This approach has two main advantages: (i) the embedding
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Figure 4.2: Computational Pipeline. In our optimization procedure, we first construct
an initial alignment graph G0, which is further used to fill the correspondence matrix C
by aligning shapes connected by an edge. The spectral embedding of C defines the fuzzy
correspondence function f , which is used to optimize the alignment graph. We iterate until
the process converges.

(fuzzy correspondences) can be computed without aligning all point pairs, and (ii) it is

robust with respect to noise, and thus it overcomes the problems of methods based solely

on pairwise alignments.

We now describe our computational pipeline (see Figure 4.2).

4.3.1 Step 1: Sample input shapes

We represent any shape S
i

by a discrete set of sample points P
i

. The set is produced by

starting with a random vertex and then iteratively adding vertices that are farthest from the

set until |P
i

| = K = 128 [29]. We only estimate the fuzzy correspondence function for

pairs of points in P
i

across different models, and then interpolate the function to the rest of

the shape using nearest-neighbor interpolation.

4.3.2 Step 2: Construct an initial alignment graph

Next, we construct an initial graph G0(§,A0) that has the following two properties. First,

we want edges in A0 to only connect shapes that are similar enough to be matched automat-

ically. The importance of this property is illustrated in Figure 4.3 where airplane models
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are the nodes of the graph and edges are produced by an affine alignment that minimizes

surface distance. Note that the airplanes with wings closer to the nose are misaligned with

airplanes that have wings closer to the tail. These misalignments add noise to the com-

plete graph G
A

, which results in an erroneous blend of correspondences from one wing

to the other (left column). In contrast, a noise-free alignment graph G
B

where only sim-

ilar models are matched leads to a more accurate embedding (right column). The second

desirable property for G0 is that every pair of shapes should have multiple paths between

them so that the embedding is robust to misalignments. Given these properties, we con-

struct the initial alignment graph as follows. First, we initialize G0 as the complete graph

over all shapes. We then compute the spherical harmonics shape descriptor of the GEDT

function [67] for every shape and use the L2 distance between descriptors as edge weights.

These weights predict whether the connected shapes are similar enough to be matched au-

tomatically (smaller weights suggest higher similarity). Based on these weights, we update

G0 to be the minimal spanning tree. Next, we add edges to improve the graph connectivity.

For each node, we select the 3M lowest weight edges as candidates, and for each candidate,

we compute its edge rank, which is a metric proposed by Heath et al. [51] that estimates

the importance of an edge to the overall connectivity of a graph. We then add the highest

ranking N · M edges (roughly M edges per shape) to G0. Choosing a larger value for M

improves the connectivity of the alignment graph; we use M = 5 in all of our experiments.

4.3.3 Step 3a: Align pairs of shapes extrinsically

Our method can use any pairwise alignment method, and some algorithms may be more

appropriate for certain types of collections. For diverse datasets with varying topology

(e.g., typical data from Google 3D Warehouse), we find affine transformations to be an

effective alignment method. Step 3b describes how to use an intrinsic mapping technique
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for other types of collections. Given two shapes S
k

and S
l

, an alignment score a
Sk,Sl,�

(p
i

2

S
k

, p
j

2 S
l

) : S
k

⇥ S
l

! R is defined over some parameter space � (e.g., all affine

transformations T ). The score a is defined per pair of points and depends on the quality of

the local alignment (L
a

) and the global alignment (B
a

):

a
Sk,Sl,�

(p
i

, p
j

) := L
a

(p
i

, p
j

) · B
a

(S
k

, S
l

). (4.1)
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We define the local term based on Euclidean distance after the transformation � = T , while

the global term represents how well T aligns two shapes globally:

L
a

(p
i

, p
j

) := exp

✓
�

DEucl.(pi, T (pj))
2

�(S
l

)

2

◆
(4.2)

B
a

(S
k

, S
l

) :=

 
1

K

X

p12Pk

exp

✓
�

DEucl.(p1, T (Sl

))

2

(0.5 · �(S
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p22Pl
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✓
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DEucl.(p2, T
�1
(S
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(0.5 · �(S
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))
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◆!
. (4.3)

Note that �(S) depends on the expected ambiguity of pairwise alignments (higher �

captures fuzzier pairwise matching), we use �(S) = Diam(S)/5 for all examples,

where Diam(S) is an average distance between all pairs of points, i.e., Diam(S) :=

P
pj ,pj2S DEucl.(pi, pj)/K

2. The global term roughly estimates what fraction of surfaces

align under a tighter threshold �(S)/2. Finally, we find the aligning transformation T for a

pair of models. In our experience, the models in Google Warehouse have consistent upward

orientation, so we only look for optimal 2D rotation and a scale. To avoid optimizing

over the space of real-valued parameters, we test all 4 alignments of principal components

for a pair of shapes as an initial guess, and locally refine the transformation using ICP

optimization [48]. We choose the transform that maximizes the global alignment score,

i.e., argmax

T

B
a

. Note that we store all the four aligning transforms with the edge and the

transformation can change during the graph optimization (see Step 6).

4.3.4 Step 3b: Align pairs of shapes intrinsically

In cases where the input collection is known to contain smooth, near-isometric mani-

fold surfaces, intrinsic mapping techniques are more suitable. For such datasets, we use
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blended conformal maps [71] as pairwise alignment method. We further define an align-

ment score based on an intrinsic map m : S
k

! S
l

. Similarly to the original work, we

use a map’s area distortion to quantify alignment confidence at a point: c
m

(p 2 S
k

) :=

2

.h
area(Np)

area(f(Np))
+

area(f(Np))
area(Np)

i
, where N

p

is a 1-ring vertex neighborhood around vertex p.

We define local and global terms for the alignment score in Equation 4.1, as:

Lblend
a

(p
i

, p
j

) := c
m

(p
i

) · exp

✓
�

Dgeod.(m(p
i

), p
j

)

2

�intrinsic(Sl

)

2

◆
(4.4)

Bblend
a

(S
k

, S
l

) :=

1

K

X

p12Pk

c
m

(p1) (4.5)

where, �intrinsic(Sl

) = 0.3 ·

p
area(S

l

).

Note that the method of Kim et al. [71] produces several intrinsic maps in a presence of

near-symmetry (5-10 for examples presented in this paper). Although during the initial

alignment we pick a map with the highest score Bblend, we make use of all the candidate

maps in the graph optimization (see Step 6).

4.3.5 Step 4: Fill and embed the correspondence matrix C

We populate a correspondence matrix C using alignment scores for pairs of shapes con-

nected by an edge in the alignment graph G. As each row in C is associated with a mapped

point, we row-normalize C, labeling it ˜C, so that every point is mapped somewhere in the

collection with a constant energy:

8(k, l) 2 G :

˜C(p
i

2 S
k

, p
j

2 S
l

) =

a
Sk,Sl,�

(p
i

, p
j

)P
pj
a
Sk,Sl,�

(p
i

, p
j

)

. (4.6)

53



A"

C"

D"

E1"

B"
E2" B:#

A:#

C:#

D:#

EXCLUDED#

E2#E1#

E3"

E3#

Figure 4.4: Graph optimization. For a small example graph of 6 nodes we show how
the edges change during the graph optimization. Edges that correctly align models (solid
lines) compensate for the noise introduced by edges where pairwise matching fails (A-D).
The graph optimization either re-aligns some models (B-D) or excludes an alignment (A)
if no good re-alignment was found. The main issue with (A) is that all possible alignments
map seat too close to other chair’s base.

We further perform spectral analysis of ˜C. Let  
n

be nth eigenvector and �
n

be nth eigen-

value of the matrix ˜C. The eigenvectors  are normalized as proposed by Nadler et al. [92],

setting  := D�1/2U , where U are the original eigenvectors and D is a diagonal matrix

with the row sums of C as its entries. The diffusion map at time t (t = 10 in our exam-

ples, set to a higher value to reduce the influence of noisy alignments) defines the spectral

embedding:

⇧

t

(p
i

) :=

�
�t1 1(pi),�

t

2 2(pi), . . . ,�
t

NK�1 NK�1(pi)
�

(4.7)
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where,  
n

(p
i

) is the ith component of nth eigenvector corresponding to the point p
i

. We

further define the diffusion distance as Euclidean distance in the embedded space:

D
t
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i

, p
j

)

2
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X
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�2t
n

( 
n

(p
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)�  
n

(p
j
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2. (4.8)

4.3.6 Step 5: Compute fuzzy correspondence.

We define the fuzzy correspondence function as

f(p
i

, p
j

) := exp

�
�D

t

(p
i

, p
j

)

2/⌧(p
i

)
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�

(4.9)
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Figure 4.5: Graph optimization: fuzzy correspondences. Fuzzy correspondences before
and after the graph optimization shown in Figure 4.4 – note that the bottom chair is mis-
aligned, see Figure 4.4C. Note that diffusion improves the result for the bottom chair by
using indirect paths (B1 to B2), however, the results for the top chair get fuzzier due to
incorrect alignments (A1 to A2). Finally, after the pairwise alignments are fixed, the fuzzy
correspondences on the right are more accurate (A3 and B3).

where, ⌧(p
i

) is point-specific normalization set equal to the distance to the farthest of 15%

of the nearest points (to p
i

) in the embedded space. To efficiently find f from the spectral

embedding, we set the fuzzy correspondence of all points that are farther than 2⌧(p
i

) to 0,

and based on the low-rank assumption only consider the top K eigenvectors. We search for

the nearest neighbors in K-dimensional space using approximate nearest neighbor search

(FLANN) [91].

4.3.7 Step 6: Optimize alignment graph

Given the fuzzy correspondence function f0 created by the embedding the graph G0, we

update the graph G0 such that pairwise alignments (i.e., samples) are consistent with the

estimated embedding, i.e., f0. Thus, we want to optimize the graph by (i) detecting and

pruning noisy samples, and (ii) adding new samples to the under-sampled areas.
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To detect noisy samples, we search for pairwise alignments that are inconsistent with the

aggregated contribution of all other paths in the alignment graph. More specifically, given

an alignment graph G
i

and resulting fuzzy correspondences f
i

, we define a consistency

score for each aligning edge a as a simple correlation:

score
fi(aSl,Sk,�

) :=

X

p12Pl

X

p22Pk

a(p1, p2)fi(p1, p2)P
p2Pl

|f(p1, p)|
. (4.10)

Since our choice for the alignment parameter � in the initial graph only depended on the

quality of the pairwise matching, it is possible that another parameter � that would align

models with higher consistency score. We compute score
fi for all precomputed alterna-

tive alignments (e.g., 4 ICP initializations for extrinsic matching, or other low-distortion

blended maps). For each edge, we pick the parameter � that maximizes the consistency

score. If the best score for an edge is below 30% of the node’s best score (for both nodes)

we assume that shapes are too dissimilar and prune the edge.

Finally, we want to include the same number of edges that was pruned (NEadd), preferably

choosing pairs of models that can be matched more robustly, and such that matching them

improves the embedding. Unlike during initialization, at this point we already have an

approximation to the function f which we use to guide the sampling. We expect to get

more information by aligning pairs that are separated by long paths in the alignment graph

G, thus we use a candidate set of all edges such that the shortest path in the pruned graph

between two nodes has more than 3 edges. Additionally, we rank all the edges by the

integrated fuzzy correspondence value IFC(S
k

, S
l

) :=

P
p12Sk,p22Sl

f(p1, p2) and pick

the 3NEadd highest-ranked edges. Finally, we use edge rank to order them and add the top

NEadd that improve the graph connectivity (see Figures 4.4, 4.5). Algorithm 1 summarizes

a single iteration of this optimization.
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4.4 Results

To evaluate the quality and speed of our method for computing fuzzy correspondences,

we ran a set of experiments with benchmark data comprising ground truth one-to-one sur-

face correspondences. While our system is not designed for such data (we allow more

ambiguous correspondence relationships), the experiments provide means to compare with

previous work. Using this benchmark data, we investigate if our algorithms indeed discover

a low-dimensional manifold in shape space and leverage it effectively.

4.4.1 Data Sets

We test our method on two benchmarks. The first involves smooth manifold surfaces that

we used in Section 3.4.1 (also [71]). In addition, we created a second benchmark by down-

loading diverse collections of 111 chairs and 86 commercial airplanes from Google 3D

Warehouse. As ground truth, we manually annotated 10 and 6 feature points respectively

on each model of the chairs and airplanes datasets (see Figures 4.7, 4.14, and 4.15). Note

that these models have large variations in the number of connected components (from 1 to

74,796) and polygons (from 816 to 2,622,379).

4.4.2 Evaluation metric

Semantic correctness of fuzzy correspondence values is hard to quantify since it requires

us to prescribe values for semantic similarity for all pairs of corresponding feature points.

Instead, we assume that annotated feature points are in perfect correspondence and simply

project the fuzzy correspondences to the space of point-to-point maps by choosing the

points with the best correspondence value. More specifically, given a pair of shapes S
k

, S
l

for any point p
i

2 P
k

we assign the closest point in the embedded space: corr(p
i

) :=
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argmin

pj2Pl
D

t

(p
i

, p
j

). We use nearest-neighbor interpolation based on such a map of K

samples to capture large-scale correspondences for the benchmark.

We measure the quality of a map as proposed in Section 3.4.2 (also in [71]): we record dis-

tance from the predicted correspondence to the true correspondence d
Sl
(corr(p

i

), ftrue(pi)),

and plot our results as a curve showing the fraction of correspondences mapped correctly

within a threshold d
Sl

< D, where different thresholds D are mapped to the x-axis. We

use geodesic distances for the benchmark of intrinsically similar shapes and Euclidean dis-

tances for a diverse set of shapes. We now report the findings of our experiments based on

these evaluation methods.

4.4.3 Correspondence space is low-dimensional

First, we investigate if correspondences among diverse models can indeed be effectively

embedded in a low-dimensional space. For this test, we pick a relatively uniform set of

11 chairs (Figure 4.6) and use our method to compute the correspondence matrix C (note

that all pairs are matched with default parameters and all alignments are good). Although

the correspondence matrix is very high-dimensional (11 · 128⇥ 11 · 128), note the spectral

gap in the distribution of the eigenvalues. On the left we further map each of the 11 · 128

points on all shapes to a 2D plane using just the top two non-constant eigenvectors. The

structure of that manifold resembles the shape of a generic chair, and corresponding points

are close to one another in the embedded space, which agrees with our hypothesis that the

correspondence space is low-dimensional O(K).

4.4.4 A small subset of pairwise alignments suffices

Next, we test how sparsity of the alignment graph G affects the fuzzy correspondences.

In Figure 4.6-right we demonstrate embedding due to an alignment graph with 20 pairs of
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Figure 4.6: Top two non-constant eigenvectors of C. This figure demonstrates eigenval-
ues and the embedding of a collection of 11 chairs. A green dot in the embedded space
corresponds to one of 128 ⇥ 11 points in the data. The correspondence matrix is sampled
by aligning all 55 pairs, and arbitrary 20 pairs of shapes.

models. Note that the embedding is robust to a sparser sampling. In another experiment

(see Figure 4.7), we only use correct affine transformations that best align the prescribed

feature correspondences in the least squares sense (note that this is the only experiment

where we use the ground truth to align models). The dashed curve (manual affine) shows

the accuracy obtained just by the ground truth alignment. We further compute fuzzy corre-

spondences from the alignment graph created with 150, 250, 350, and 500 edges. The re-

sults indicate that even with 500 alignments we already reach the accuracy of using ground

truth affine alignment for all 6105 pairs.

4.4.5 Fuzzy correspondences improve intrinsic pairwise maps

We also compare our method to work on optimizing collections of maps by Nguyen et

al. [94] who also optimize blended intrinsic maps for consistency. Our evaluation is based

on four classes in the SHREC dataset: animals, humans, teddy bears, and hands (we only

use the collections of maps produced by the authors). For all datasets we compare our
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Figure 4.7: Chairs with manual alignments. We compare our method to naively aligning
all pairs (dashed line) using ground truth pairwise alignments. Using fuzzy correspon-
dences, even with 500 alignments, we get comparable results to those obtained by matching
all the 6105 pairs.

method (blue curve) to optimized maps [94] (green curve), and blended intrinsic maps [71]

(red curve). We also include results for consistent blended maps (magenta), where we

choose a blended map that is the most consistent with fuzzy correspondence values (this

is equivalent to improving edge’s consistency just for a single pairwise alignment). Note

that unlike fuzzy correspondences a consistent blended map must be one of maps produced

with pairwise alignment algorithms, which results in inferior performance when different

regions have to be mapped via different diffusion paths. These results, however, do not

suffer from discretizing shape into points, as fuzzy correspondences do.

For animals (Figure 4.8) and humans (Figure 4.10) datasets we successfully resolve all

flips caused by symmetry confusion except for two higher genus human models where all

blended maps fail (also Nguyen’s failure case). Similar to Nguyen et al. [94], our method

is confused by the symmetry in teddy bears (Figure 4.9), and we also consistently misalign

some of the models.
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Figure 4.8: SHREC Animals dataset (20 models). Comparison of four methods: taking
the best fuzzy correspondence (blue), taking a blended intrinsic map consistent with fuzzy
correspondences (magenta), method of Nguyen et al.[94] (green) and just using blended
intrinsic map (red).
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Figure 4.9: SHREC Teddies dataset (20 models). Refer to caption of Figure 4.8 for details.

The hand dataset (Figure 4.11) shows the real benefit of our method. Note that this dataset

is different from the other three in the main source of error for the pairwise matching:

instead of globally inconsistent alignments due to symmetry, it usually has local inconsis-

tencies in mapping fingers. Note that in such cases their method is limited to finding a

concatenation of full model-to-model maps that eventually aligns fingers correctly — this

may be impossible if none of the maps are perfect. On the contrary, we optimize per point,

and thus aggregate several maps to produce a consistent alignment. Thus we can correctly
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Figure 4.10: SHREC Humans dataset (20 models). Refer to caption of Figure 4.8 for
details.
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Figure 4.11: SHREC hands dataset. Comparison of four methods: taking the best fuzzy
correspondence (blue), taking a blended intrinsic map consistent with fuzzy correspon-
dences (magenta), method of Nguyen et al.[94] (green) and just using blended intrinsic
map (red). Note that hands 11 and 17 are consistently misaligned by the method of Nguyen
et al. to all the other 18 models in the database.

align all the hands, as opposed to their method (see hands 11 and 17 in Figure 4.11 and

these hands are consistently misaligned to all the other 18 hands in their results).

Note that default implementation of Nguyen et al. [94] requires maps between all pairs of

shapes as an input to their algorithm, and thus their method is too expensive to use for

comparison on larger datasets. We compare our approach to just using blended intrinsic
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Figure 4.12: Animals dataset. Comparison of the three methods: choosing blended map
that is consistent with fuzzy correspondences (magenta), taking the best fuzzy correspon-
dence (blue), and just using blended intrinsic map (red). Three examples show results
obtained with the blended map, and results obtained by choosing a blended map consis-
tent with fuzzy correspondences. The right surface is colored by mapping xyz coordinates
to rgb colors and the left surface is colored by transferring color using a map. Regions
misaligned by the blended map are highlighted by arrows.

maps to map selected pairs of shapes among 71 human models (SCAPE) and 51 animals.

We compute error the same pairs of shapes as in Section 3.4.3 (and [71]), overall test-

ing 71 pairs in the first dataset and 51 pairs in the second. Figures 4.12 and 4.13 show

that for larger tolerable geodesic error (right side of plots), mapping a point to the closest

point in the embedded space (blue) performs better than blended maps (red) and almost

all correspondences are accepted. This suggests that consistency gives leverage to fuzzy

correspondences over blended intrinsic maps, creating maps that are correct at a large scale.

Please refer to Huang et al. [58] (a work that followed our publication) for comparison of

fuzzy correspondences to their map optimization method.
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Figure 4.13: SCAPE dataset. Comparison of three methods similarly to the animals
dataset (Figure 4.12) the main improvement with out method comes due to consistency
optimization. We present a few representative examples where consistent blended map pro-
vides an improvement over the blended map.
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Figure 4.14: Airplanes dataset. We compare taking best fuzzy correspondence to geo-
metric matching of all pairs. Note that fuzzy correspondences also do better than the best
manual pairwise alignment because diffusion expands the allowable aligning deformations
beyond affine transformations by using indirect alignments.

4.4.6 Fuzzy correspondences improve extrinsic pairwise maps

In Figures 4.14 and 4.15 we compare a pairwise matching using just the best affine transfor-

mation (red), affine transformation produced with ground truth correspondences (magenta,
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Figure 4.15: Chairs dataset. In this dataset we are comparing taking best fuzzy correspon-
dence to pairwise alignment of all pairs.

dashed), and taking best fuzzy correspondence (blue). Similarly to intrinsic maps, we im-

prove over pairwise matching due to consistency optimization (avoiding matching the front

of an airplane to the tail). Interestingly, for some error intervals, fuzzy correspondences out-

perform the affine alignment with the ground-truth points. The reason for this is that wings

and the body generally have very different proportions and position along the body of the

airplane, thus even with ground truth alignment, the semantic points might not align (i.e.,

the deformations within the class of airplanes are beyond our pairwise alignment method);

however, diffusion allows these correspondences to propagate closer to semantically cor-

rect values. That is, it extends the allowable deformations beyond the capability of our

simple pairwise matching algorithm. Although our method on average does not perform

much better than the naive ICP in Figure 4.15, it fixes issues with some unusual chairs (see

Figure for an example) that do not contribute much to the global error (since there are fewer

of them).

Refer to Section 5.4.5 for more comparisons of fuzzy correspondences to more recent

techniques including Huang et al. [58], and method described in Chapter 5.
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Figure 4.16: Chairs: 5, 25, 111 models. We analyze the error for 5 selected models present
in all datasets and add more chair models for joint analysis. Note that increasing the size
of the database improves the quality of the correspondences, as shown in the example
correspondences at the bottom right.

4.4.7 More data improves correspondences

In our final experiment, we investigate whether leveraging the “power of the set” aids com-

putation of fuzzy correspondences between individual pairs. Figure 4.16 shows the accu-

racy curves as the number of models in the database changes. We selected a subset of 5

chairs from the full collection aiming at higher variation within the subset, and show the er-

ror only for the selected 5 models; similarly for a dataset with 20 additional random models

from the chair dataset, and all the 111 models. These results demonstrate that increasing

the size of the database improves the correspondences due to a denser sampling of shape

variations within a class.

4.4.8 Timing

We executed all off-line computations of fuzzy correspondences on SunFire X4100 com-

puter with an AMD Opteron 275 Dual-Core 2.2GHz processor. For the largest dataset of

111 chairs the whole analysis (including pairwise matching) requires about 900s, of which
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about 300s are spent on spectral analysis of the correspondence matrix, 500s on graph op-

timization, and the rest on pairwise matching. Our algorithm used only 602 out of 6105

pairs for chairs dataset, and 430 out of 3655 airplane pairs. Although, the optimization

timings are comparable to the SCAPE and animals datasets, the intrinsic pairwise match-

ing takes up to 5 minutes per pair for SCAPE (we match 355 of 2485 pairs), and 10 to 30

minutes per pair for animals (we match 632 of 1275 pairs). We compute these maps in par-

allel on a cluster. In all examples our method converged within 8 iterations. On the hands

dataset (Figure 4.11) fuzzy correspondences were computed with 100 intrinsic maps and

the optimization process converged within 70s. Nguyen et al. [94] used all 380 pairwise

alignments, and the optimization took 140s. Finding the intrinsic maps takes about 5-10

minutes. Our exploration interface runs interactively on a laptop with 2.4GHz Intel Core 2

Duo processor.

4.4.9 Parameters

We use the same parameters for all the datasets. We choose K = 128 samples per model

based on the desired resolution of correspondences: a larger K offers higher precision in

fuzzy correspondences at the cost on increased compute times. We chose t = 10 based on

the desired trade-off between robustness and fuzziness of correspondences: higher diffu-

sion times reduce noise due to misalignment errors and sparse connectivity in the alignment

graph, while lower diffusion times provide higher discriminative power of correspondence

values. In the limit, as t goes to infinity, f approaches a uniform distribution for every

point.
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4.4.10 Limitations

In the off-line step, we found that fuzzy correspondences are vulnerable to the presence

of a strong sampling bias (e.g., due to near-symmetry). This issue usually manifests in

two ways: (i) A model might be aligned incorrectly (but consistently) across the collection

(e.g., a nose of an airplane is mapped to tails of all other airplanes in a collection). Among

all examples datasets, we found that 1 of 86 airplanes were consistently misaligned. (ii) If

a bias is too common for a collection, diffusion might propagate information along in-

correct paths, causing an undesirable blending of correspondences (see Figure 4.3). The

largest collection we analyzed with our current implementation has 111 models. Scaling

our method to thousands of models would require the parallel implementation of some

steps of the algorithm like eigenvalue decomposition and iterative graph optimization. We

are also restricted to collections where for every pair of dissimilar models there is a contin-

uous path of pairwise-similar models. While the datasets we analyzed have various types of

noise, multiple disconnected components, intersecting surfaces, large holes, micro holes,

etc., our method is unlikely to be suitable for processing raw scans.

4.5 Exploring 3D collections

Despite the rapid growth of 3D model repositories, the task of exploring such large 3D

collections remains an important and challenging problem. In particular, while most online

databases make it easy for users to select sets of similar models using text-based filter-

ing, understanding the range of variations within such collections is typically much more

difficult (see also [98]).

For many object classes, one key challenge is that the shape can vary in many different

ways, and users may be interested in exploring different types of variations. For example,

within a collection of chair models, one user may want to see how the backs of chairs at-
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Figure 4.17: Region-based exploration of chairs. The user specifies exploration criteria
by selecting regions of interest (a), and our system sorts models based on their similarity
within those regions (b). Corresponding regions are highlighted in dark-blue.

tach to the seat (smoothly merge, right angle, etc.), while another user may only want to

see chairs whose back legs are at a certain angle (see Figure 4.17). Even within a single ex-

ploration session, a user may want to define the exploration space using multiple attributes

(e.g., chairs with a stem base and curved back). Given the spectrum of possible exploration

criteria, a static predefined organization of the data is clearly not sufficient.

In this section we demonstrate that fuzzy correspondences can assist in the interactive ex-

ploration of shape structure in 3D collections, especially similarities and differences be-

tween shapes. To investigate this idea, we present a new analysis tool and exploration

interface for 3D model collections. As a key feature, we allow users to directly specify

regions of interest (ROI) on example shapes in order to guide subsequent exploration ac-

tions. Thus, we can support the browsing scenarios described above; the user selects the

appropriate ROIs on one or more chairs, and the system automatically organizes the rest of

the chairs based on their similarity to the specified region.
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Specifically, we introduce a browsing interface that allows users to paint regions of interest

on any example shape, which then act as navigation criteria to determine how the other

models in the collection are organized and presented to the user. Our interface consists of

two panes: the ROI pane shows the set of user-selected regions of interest, and the results

pane shows a sorted view of the collection on one or more result pages (see Figure 4.19a).

By selecting various ROIs and examining the results, users can quickly explore many dif-

ferent types of variations within the collection. In order for this type of interface to be

effective, it must satisfy a few key design requirements:

Finding where variations occur: Faced with an unfamiliar collection, users may not know

a priori which regions of a shape to explore. Thus, the browsing interface should convey

where interesting variations occur within a collection to help users decide what ROIs to

specify.

Visual comparison: To help users understand the similarities and differences across a set

of shapes, the interface should facilitate visual comparison of the models. In particular, it

should be easy for users to see shapes from a consistent viewpoint and focus on the ROI of

each model.

Interactive sorting: Finally, to enable guided exploration using the selected ROIs, the

browsing system must be able to interactively sort models based on their similarity to the

example shape(s).

The next three sections describe the main features of our interface with respect to these

requirements.

4.5.1 Finding Variations

To visualize where variations occur across a collection, we measure the amount of variation

within different corresponding regions of the shapes. For each sample point on a shape, we
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(a) Solid backs

(b) Varying backs

Figure 4.18: Variance function for two example collections. The chairs in (a) have more
similar backs than the chairs in (b) (dark blue regions indicate less variance). In both
collections, seats exhibit less variation than the legs, which have a variety of styles.

compute an average distance to 15% of the nearest neighbors in the embedded space. This

average represents an estimate of how much variance there is in a particular region of the

shape with respect to the rest of the collection. We normalize these variance values within

each model and then visualize this function with a colour map (see Figure 4.18), where

brighter colors indicate more variance. By examining this visualization, users can quickly

see what regions of a shape vary the most or the least.

4.5.2 Visual Comparison

To help users understand the similarities and differences between the models presented in

our interface, we provide several features to facilitate visual comparison. First, the system

allows the user to align all the models to a consistent viewpoint, as shown in Figures 4.19a–

c. We compute automatic alignments for either the entire shape (see Figure 4.19b) or

just the selected region (see Figure 4.19c) using fuzzy correspondences as described in

the next subsection. Once the models are aligned, the user can interactively orbit, pan,

and zoom the viewpoints of all the models in conjunction, which makes it easy to inspect

and compare different portions of the shapes. Furthermore, to facilitate orbiting around a
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selected ROI, our system places the orbit centre for each result model at the centroid of

the corresponding ROI points, which we compute as an average of the the point locations

weighted by their correspondence values. Finally, to emphasize the corresponding ROIs in

the result models, we highlight these regions in blue (see Figures 4.19c–f). The intensity

of the highlight is scaled by the correspondence values at each sample point, interpolated

across the surface. To ensure that the highlight is sufficiently visible on each model, we

normalize the correspondence values by the maximum correspondence value within the

model.

4.5.3 Interactive Sorting

To sort the collection based on a user-selected ROI, we need a way to measure the geometric

similarity between the selected region of an example shape and all other target models in

the collection. To this end, we introduce a selection-aware similarity function that uses

fuzzy correspondences to determine how to align and compare target models to example

shapes.

Given a selected region R ⇢ S
i

on example shape S
i

we compute the distance D
R

(S
j

)

to target shape S
j

as follows. First, we determine the best rigid alignment T
R

(S
j

) of the

target shape to the selected region. Specifically, for every selected point on the example

shape, we find all fuzzy correspondences on the target shape and then compute T
R

(S
j

)

by finding the optimal affine transformation that aligns the corresponding points, where

the error is weighted by the correspondence values and minimized in the least-squares

sense. To ensure that the alignment remains stable even for small selected regions, we add

fuzzy correspondences for unselected points to the computation as well, but we multiply

their values with a damping factor ↵ ⌧ 1 set to 1

�
4K, where K is the number of point

samples per model. Next, we find a single correspondence value f
R

for each point on

the target shape by taking the maximum correspondence value to any point in the selected

73



;ĂͿ�KƌŝŐŝŶĂů�ŽƌŝĞŶƚĂƟŽŶ�ŽĨ�ĐŚĂŝƌƐ ;ďͿ��ƵƚŽŵĂƟĐ�ĂůŝŐŶŵĞŶƚ ;ĐͿ�ZK/�ĞǆƉůŽƌĂƟŽŶ

;ĚͿ��ǆƉůŽƌĂƟŽŶ�ŽĨ�ĂŶŝŵĂů�ƉŽƐĞ

+

;ĨͿ�&ĂĐĞƚĞĚ�ĞǆƉůŽƌĂƟŽŶ�ŽĨ�ďŝŬĞƐ

+

;ŐͿ�&ĂĐĞƚĞĚ�ĞǆƉůŽƌĂƟŽŶ�ŽĨ�ŚƵŵĂŶ�ƉŽƐĞƐ

;ĞͿ�&ĂĐĞƚĞĚ�ĞǆƉůŽƌĂƟŽŶ�ŽĨ�ĐŚĂŝƌƐ

ZK/�ƉĂŶĞ

ZĞƐƵůƚƐ�ƉĂŶĞ

+

Figure 4.19: Exploration interface and exploration results. The original collection of
chairs (a) is automatically aligned to a canonical viewpoint (b) and then to a selected
region of interest (c). While exploring a collection of animals (d), the user queries for
a specific arrangement of paws and the system returns all animals in a sitting pose as the
most similar results. If the user does not select the right paw, a cat with one paw up appears
among the top matching results. To combine exploration criteria, the user selects regions
on multiple example shapes. For example, she browses for chairs with high curved backs
and stems (e), bikes with large front wheels and straight handlebars (f), and humans with
an upright posture and arms extended away from the torso (g).

74



region f
R

(p) := max

p

02R(f(p
0, p)f(p, p0)). Finally, we use these correspondence values

as weights to compute the Euclidean distance between the aligned target shape and the

example shape as D
R

(S
j

) :=

P
p2Sj

DEucl.(TR

(p), S
i

)f
R

(p)
�P

f
R

(p).

4.5.4 Discussion

We use our interactive tool to explore and visualize variations within several example col-

lections (see Figure 4.19 and supplementary video): chairs, bikes, commercial airplanes,

animals, and SCAPE humans. The ability to browse the collection based on specific regions

of interest enables us to uncover interesting characteristics within all of these datasets. For

example, by selecting the curved back and arms of a chair (Figure 4.19e) we discover that

several other chairs have a similar arrangement of these features. Selecting the straight

handlebars of a bike (Figure 4.19f) reveals a variety of shapes that share this property, in-

cluding the “bike” with no wheels that is ranked as the most similar result. In addition to

emphasizing similarities in the collection, our system also reveals diversity. For example,

by sorting the tops of chair backs in variations mode, we immediately see a wide range of

results that include boxy, organic, upright and tilted shapes (see Figure 4.19c).

Note that the ability for users to select arbitrary regions rather than just predefined parts

represents a significant advantage for our exploration system. For diverse collections such

as the chairs, selecting portions or combinations of standard “parts” often yields infor-

mative and discriminative navigation criteria, such as the seat/back region in Figure 4.17.

Furthermore, for collections where our analysis considers intrinsic geometry, such as the

animals and humans, selecting regions that span several limbs or joints is an intuitive way

to guide exploration based on pose. For instance, Figure 4.19g shows how selecting the

mid-section of a human can restrict navigation to upright poses, while a selection across

the shoulders and chest returns humans with their arms extended away from their sides. As

another example, selecting all four paws of the dog in Figure 4.19d retrieves other sitting
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animals, but if we do not select one of the front paws, we also discover the sitting cat with

one paw in the air.

Finally, the ability to combine exploration criteria into facets provides additional flexibility

and control during navigation (see Figures 4.19e–g). Faceted browsing not only allows

the user to narrow the exploration space (e.g., only show chairs with both a stem and high

curved back) it also gives the user a sense for what types of variations are independent of

each other within the collection. For example, the sequence of facets in Figure 4.19e shows

that the shape of chair backs and the type of base vary independently, and the queries in

Figure 4.19g reveal a similar independence between the different aspects of human poses

in the SCAPE dataset. These types of insights are especially valuable for understanding

the variations across diverse shape collections.

Limitations: In some cases our exploration tool might return unintuitive results due to

limitations of the interactive sorting algorithm, which does not capture variations in some

interesting geometric features (see Figure 4.20). Developing tunable and more discrimi-

native geometric descriptors that employ fuzzy correspondences is an interesting topic for

future work.

Figure 4.20: Sorting limitation. The similarity metric we use for the interactive sorting is
too simple to capture some aspects of geometry like vertical bars on chair’s back.
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Chapter 5

Learning part-based templates to

establish structure in large collections of

3D shapes

5.1 Introduction

Large repositories of 3D models that have become available in recent years offer an un-

precedented amount and diversity of data, posing a need for automated algorithms to estab-

lish structural relationships between shapes. There are three important goals of structural

analysis: understanding correspondences between shapes, segmentation of shapes into se-

mantic parts, and modeling deformations of individual parts. These analysis results find ap-

plications in shape synthesis [61], surface reconstruction [73], and object recognition [93].

Existing efforts to analyze collections of polygonal models consider correspondence, seg-

mentation, and deformation separately. For example, the surface correspondence estab-

lishes links between related points on different surfaces while ignoring the part struc-

ture of objects [68, 58]; consistent segmentation algorithms decompose polygonal mod-
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els into consistent sets of parts but do not compute point-to-point correspondences [48]

or model shape variation [115]. Finally, prior work on probabilistic modeling of shape

variations requires manually annotated datasets with parts and correspondences already la-

beled [36, 61]. Moreover, such algorithms do not scale to handle the thousands or tens of

thousands of models in many object classes found in large repositories.

We provide an algorithm that simultaneously segments polygonal models into parts, learns

a probabilistic model of part-based template variations, and establishes point-to-point sur-

face correspondences in large collections of shapes. The rationale for this approach is that

these three problems are all inter-connected, i.e., segmentations help predict correspon-

dences and deformations; correspondences help predict segmentations and deformations;

and deformation models help predict segmentations and correspondences. Attacking the

three problems together leads to more efficient, more accurate, and more consistent analy-

sis results.

Our algorithm is based on a probabilistic, part-based, deformable model, which encodes

clusters of shape styles, cardinalities of parts, shapes of parts, correspondences across clus-

ters, and alignments of a template to each model. It starts from a repository of polygonal

models and an initial deformable model, which is represented by a template encoding the

types of parts expected in the repository and an initial guess for the locations and scales

of each part. It proceeds by iteratively evolving the set of deformable templates, fitting

them to the polygonal models (implicitly aligning and co-segmenting the polygonal mod-

els), updating the distributions of shape deformations, and refining part- and point-level

correspondences across the shapes (see Figure 5.1).

The part-based deformable model is similar to the one used in [61], but it is learned from

unstructured and unlabeled data, rather than labeled examples. While the learning algo-

rithm can run in a fully automatic mode, we found that the analysis results for diverse

collections can substantially improve with user-assisted template initialization. For all ex-
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Initial 
Template:
Final templates: 11 11 9 5

Figure 5.1: Analysis results for a collection of 36 chairs. Starting from an initial template
(top left), we capture the main modes of variations within the collection by the final tem-
plates (top row). In this example, the algorithm extracted template clusters for chairs with-
out arms and with arms; a cluster for wide benches; and a cluster for tall chairs. By jointly
solving for model deformations, part segmentation, and inter-model correspondence, our
algorithm achieves higher accuracy for each task.

amples presented in this paper, the user never had to spend more than five minutes per

shape class.

Additionally, our algorithm has a linear complexity regarding the number of models in the

collection that can be executed out-of-core, and is highly parallel. As a result, we can ana-

lyze polygonal model collections an order of magnitude larger than most previous geometry

processing datasets (e.g., 7K+ models in one case). It also provides joint segmentations,

correspondences, and deformation models, all of which attribute to increased accuracy.
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Additionally, our algorithm performs favorably on standard benchmarks in comparison to

specialized algorithms for consistent segmentation and surface correspondence.

Contributions: In summary, we present an algorithm to

• learn structure from any large, unorganized, unlabeled shape collection,

• simultaneously recover segmentation, point-level correspondence, and a probabilistic

part-based deformable model for shape collections in order to reveal key information

for many data-driven geometric modeling and synthesis tasks, and

• efficiently realize an out-of-core framework to handle collections spanning thousands

of models at a scale never demonstrated before.

5.2 Related Work

Many algorithms have been developed to find interesting structural relationships in collec-

tions of shapes. Let us overview the methods that work under the assumption that shapes

can be decomposed into semantically equivalent parts.

5.2.1 Consistent segmentation

Recently, there has been significant work on the consistent segmentation of 3D model col-

lections. Golovinskiy and Funkhouser [48] presented an approach that first aligns models,

then builds correspondences, and finally segments all models into parts. Since their method

relies on rigid alignments of model pairs to establish correspondences, they obtain good re-

sults only for collections with little shape diversity. Moreover, their algorithm computes

alignment, correspondence, and segmentation in sequence, without feedback between the

steps, and thus fails to leverage information learned in later steps to correct earlier mis-

takes. The “deform-to-fit” consistent segmentation technique of Xu et al. [126] suffers
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from a similar limitation. Their algorithm computes initial segmentations independently

for each mesh, those segmentations are clustered without alignment or correspondence, the

co-segmentation for each style cluster is computed independently without accounting for

the statistics of shape variation, and the co-segmentations for different style clusters are not

adapted as inter-style part correspondences are found. In addition, the overall complexity

of the algorithm is quadratic in the number of models in the collection.

Several existing approaches address the problem of consistent segmentation and labeling by

clustering points in an embedded space of local shape features [62, 120, 59, 115, 56, 123].

However, these methods do not learn or leverage the statistics of part cardinalities, shapes,

or geometric arrangements, which are relevant types of structure for many applications.

Furthermore, the algorithms make one or more of the following assumptions: input collec-

tions have low shape variations/deformations; access to clean and manifold models; patch-

based feature signatures are robust across model variations; and access to labeled training

data. Moreover, as output, they produce only labels (e.g., labels indicate leg, but not which

leg) and possibly inconsistent correspondences across the entire data set. In terms of scal-

ability, the supervised methods (e.g., [62, 120]) require 15% to 95% of the collection to

be segmented and labeled as training data, while Wang et al. [123] require users to inter-

actively specify tens to hundreds of constraints. Finally, most of these analysis algorithms

rely on comparing all pairs of shapes, which leads to running times in the tens of hours for

hundreds of shapes [59], making them impractical for much larger collections.

5.2.2 Part-based models

Our approach is motivated by the successful application of deformable templates for object

recognition in computer vision [60]. Felzenszwalb et al. [32] and others have developed

part-based models to encode distributions of appearances and spatial arrangements of parts,

and used them for recognition of objects in images [34, 4, 33]. Similar approaches have
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been used for pose estimation [84], image segmentation [30], and viewpoint classifica-

tion [50]. Yet, in all this work, the part-based model is given or is learned from previously

segmented and labeled training data. In contrast, we learn the part-based model from unla-

beled data, evolving a set of templates to best fit the data (see [124, 125] for applications in

visual recognition).

Many geometry processing tasks require and assume access to part-based model informa-

tion: Shen et al. [112] use a database of segmented models to reconstruct models from

Kinnect scans; Xu et al. [127] use part-based deformation model to spawn an evolutionary

model aimed at creation of novel and interesting model variations; Kim et al.[73] searches

over allowed deformations in part-based template models to fit object labels and pose at-

tributes to sparse noisy point cloud scans. The output of our algorithm can directly be used

as input for such applications.

Kalogerakis et al. [61] learn a probabilistic distribution over a part-based model encoding

multiple object styles, part cardinalities, part shapes, and part placements, and use it for

shape synthesis. However, this method assumes access to manually segmented and labeled

examples. Since we focus on analyzing very large model collections, manually annotat-

ing even a small fraction of such collections is infeasible and, thus, calls for a different

approach.

Ovsjanikov et al. [98] describe a part-based method to explore shape variations within a

collection of polygonal models. Their algorithm forms a template from a single, manually

segmented model and then describes shape variations in terms of how part translations and

scales affect a global D2 shape descriptor. This approach handles deformations that reveal

themselves as low-dimensional structures (e.g., 1D curves) in the global descriptor space

but fails to discover part-level shape variations. Also, their analysis does not explicitly map

template parts to surface regions on models and, thus, is not directly useful for applications

that require segmentations and/or correspondences.
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5.3 Method

5.3.1 Overview

At the core of our algorithm is a probabilistic, part-based model that uses a set of de-

formable templates to describe shape variations within a collection. Each template repre-

sents a distribution (or “style”) of shapes as a set of oriented parts with random variables in-

dicating their positions, sizes, and local geometric features. This part-based model matches

the modes of variation found in many collections of man-made objects, which often contain

a few clusters of shapes with more-or-less the same types of parts arranged in more-or-less

the same locations with specific instances differing only slightly in the positions, sizes, and

shapes of parts [126]. For example, the collection of 36 chairs in Figure 5.1 has four clus-

ters with different sets of parts (arms versus no arms) and/or parts with different relative

sizes and shapes (e.g., benches versus chairs). To model such variations, we introduce an

automatic method for learning part-based deformable templates to an input shape collec-

tion.

Starting from an initial set of templates, we use an iterative algorithm that (i) deforms tem-

plates to fit the shapes, (ii) clusters the shapes based on their fits, and (iii) refines the set of

templates to better describe the shape variations within each cluster, possibly spawning new

templates in the process (see Figure 5.3). We repeat these steps in sequence until the family

of learned templates stops evolving, or a maximum number of iterations is reached. The

resulting clusters of shapes, one for each template, represent the discrete set of shape styles

across the collection. Within each cluster, the random variables of the associated template

describe continuous shape variations, and the template-to-shape fitting information pro-

vides non-rigid alignments, point-to-point correspondences, and consistent part segmenta-

tions. By default, we compute the initial templates based on an automatic segmentation of
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a. Initial
Template e. Fitting Setb. Fitting Set

c. Learning 
Set

d. Updated
Templates

g. Updated Templatesf. Learning Set

Figure 5.2: Overview example. Two main modes of variation are learned in a collection
of 10 models (5 chairs and 5 benches). First, an initial template (a) is matched to all the
models (b), however, only chairs with small fitting error are included in the Learning Set
(c). Variations are learned from the set and the template is updated (d), which is then fit
to the remaining shapes (e). Note that the learned part-wise deformations subsequently
lead to better segmentation and alignment of benches. Variations among benches (f) are
too dissimilar from the chairs, and hence, a second template is spawned to the final set
of templates (g). In the rightmost image and throughout the paper, a higher variance in
part positions is depicted by larger ellipsoids at part centers, while higher variance in
anisotropic scales is depicted with longer dashed lines.

a set of randomly selected shapes. The user can select/refine these templates, or create her

own.

The following section describes in detail our part-based template representation, the indi-

vidual steps of our iterative algorithm, and strategies for template initialization.

This section describes the steps to learn a set of templates for a collection of shapes.

The main input is a collection of shapes, each represented by a discrete set of points. Note

that our algorithm does not require manifold polygonal meshes, or even meshes at all.

Rather, it can take almost any shape representation as input, including polygon soups, voxel

grids, and point set surfaces – it simply samples points on the surfaces of other represen-

tations to form point sets for its analysis. This choice is disadvantageous for most steps of
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Inputs:
Shape collection S
An optional template T

Outputs:
Updated set of templates {T}

Template$shape clusters C
Template!shape global rigid transformations R
Template!shape per-part deformations D
Template$shape point mappings M
Shape!template point labelings L
Template!shape fit errors E

——-
If no T is provided, CreateAutoTemplate(S) (Section 5.3.4)
LearnTemplate(T, S) (Section 5.3.3)

foreach iteration
{R, D, M, L, E} = FitTemplateSet(T, S)
C = ClusterShapes(T, S, E)
T = RefineTemplateSet(T, S, C,R, D, L, E)

return {T, C, R, D,M, L,E}

——-
FitTemplateSet(T, S) (Section 5.3.2)

foreach S[j] 2 S
foreach T [i] 2 T

{R[i, j], D[i, j], M [i, j], L[i, j], E[i, j]} = FitTemplate(T [i], S[j])
return {R, D, M, L, E}

FitTemplate(t, s)
foreach candidate alignment r

d = tmean

repeat until ` converges
` = SegmentShape(t, s, d, r)
{r, d, e} = argmin{r,d} FitError(t, s, `)

return {r, d, `, m, e} with least e

——-
RefineTemplateSet(T, S, C,R, D, L, E)

SF = SelectFittingSet(S, E)
TF = FitSet(T, SF , C, L)
SL = SelectLearningSet(TF , S, E)
T 0 = ClusterLearningSet(T, TL)
return T 0

Figure 5.3: Algorithm pseudocode.

our algorithm (e.g., computing segmentations with good boundaries is simpler with con-

nected surface meshes), but it is necessary to allow processing the wide variety of shape

representations found in repositories on the Web (e.g., polygon soups).
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A second input, which is optional, is one (or more) initial template(s). The user can man-

ually create such templates. If not, the system can create template(s) automatically by

choosing from segmentations of several candidate shapes (see Section 5.3.4).

Subsequently, our main algorithm (LearnTemplate in Figure 5.3) proceeds by interleaving

three steps: fitting, clustering, and refinement. During the fitting step, every template is

deformed to fit to every shape. Then, during the clustering step, shapes are associated with

their best-fitting template. Finally, during the refinement step, the set of templates is up-

dated to reflect the shape deformations observed during the fitting step, possibly spawning

new templates to describe clusters of shapes represented poorly by the deformations of

the initial templates. We terminate when either template cannot be updated from any new

shapes, or after reaching the maximal number of iterations Niter.

Figure 5.2 illustrates two iterations of the template learning procedure. The example col-

lection of 10 models is bi-modal and includes 5 chairs and 5 benches. Starting with the

initial template (a) we first fit it to every model (b), note how the intermediate alignments

and segmentations produced with the initial template are not accurate since it does not

cover the space of all shape deformations. We further learn deformation parameters from

a subset of models (c) and use these parameters to refine the set of templates (d). Iterating

the fitting and learning steps (e, f) allows our method to identify the second mode of shape

variation (g).

Template definition: In our implementation, we treat a template as a collection of k boxes

{B1, . . . , Bk

} with each template part being abstracted as a box. We model each box by

a Gaussian distribution capturing its centroid position (µp

(B
i

), �p

(B
i

)), a Gaussian dis-

tribution capturing its anisotropic scale (µs

(B
i

), �s

(B
i

)), and a Gaussian distribution of

per-point local shape features (µf

(B
i

), �f

(B
i

)). Thus, template deformation amounts to

relative movements of the boxes and their respective anisotropic scaling (we do not con-

sider rotation in our implementation). Finally, as template initialization, a user can mark
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certain parts as must-exist to enforce semantic structure of the learned templates (e.g., a

seat must-exist in a chair template).

We now describe the various stages of our algorithm, focusing on template fitting and

refinement, while deferring template initialization to Section 5.3.4.

5.3.2 Template Fitting

Given a set of templates T , our next task is to “fit” each of them to a set of shapes S. For

each pair of template t 2 T and shape s 2 S, our goal is to find the segmentation of the

shape and the deformation of the template that optimizes an energy function e measuring

the alignment of their parts.

Free variables: The free variables in this optimization are: (i) a rigid transformation align-

ing the template to the shape (r), (ii) a set of deformation parameters for the template

(existences, position, and scales of parts) that best fit the shape (d), (iii) a mapping from

points in the shape to corresponding points on the template (m) and vice-versa, and (iv) a

labeling of points in the shape according to their corresponding part in the template (`).

Energy function: The goal is to minimize an energy function e(t, s, r, d,m, `) measuring

the fit of the template parts to the shape segmentation. The energy function is designed

to favor segmentations that are consistent with both the shape geometry and the template

structure, while penalizing implausible deformations of the template to fit the shape. To

achieve these goals, we define the fitting energy e to be a sum of three terms:

e(t, s, r, d,m, `) = Edata(t, s, r, d,m, `) + ↵Edeform(t, d)

+�Esmooth(s, `) (5.1)

The data term measures distances and dissimilarities in local shape features between points

on the shape and corresponding points on the template. To compute it, we suppose that the
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shape and the template are both uniformly sampled with discrete sets of points, P
s

and P
t

,

respectively, and sum error estimates at those points:

Edata(t, s, r, d,m, `) = E
s!t

+ E
t!s

+ �Efeat (5.2)

E
s!t

(t, s, r, d,m) =

1

|P
s

|

X

ps2Ps

Edist(ps, r(d(m(p
s

))))

2 (5.3)

E
t!s

(t, s, r, d,m) =

1

|P
t

|

X

pt2Pt

Edist(r(d(pt)),m
�1
(p

t

))

2 (5.4)

Efeat(t, s, l) =

1

|P
s

|

X

ps2Ps

Efeat dist(ps, `(ps))
2 (5.5)

where Edist measures the Euclidean distance between points (normalized by the shape ra-

dius R, computed as the furthest distance between any pair of points in a shape), and

Efeat dist measures the squared difference between a local shape feature vector at a point on

the shape with the average local shape feature vector for all points in the corresponding part

of the template divided by the variance of those features. To account for potential noise or

outliers a point can be labeled as null, the distance penalties are 0, and we set high penalty

Efeat dist(ps, null) = 1 in this case.

In our implementation, we compute local shape features f at a point p by analyzing the co-

variance matrix of its local neighborhood Nhd(p) which is defined by all points within the

distance ⌧
Nhd

= 0.15R. Suppose sorted eigenvalues (decreasing order) and eigenvectors

are �1,2,3 and v1,2,3, we produce six features, including ratios of eigenvalues (�2/�1 and

�3/�1), and normalized angles between axes and eigenvectors acos(v1 · aup)/⇡, acos(v1 ·

a2)/⇡, acos(v2 · aup)/⇡, acos(v2 · a2)/⇡.

The data term produces a low error if surfaces are well-aligned, have similar part structures,

and have similar local shape features at corresponding points.
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The deformation term penalizes solutions that have statistically unlikely positions b
p

and

scales b
s

of template parts B:

Edeform(d) =
X

b2t

|b
p

� µp

(B)|

2

�p

(B)

2
+

|b
s

� µs

(B)|

2

�s

(B)

2
(5.6)

where b is a part in template t, b
p

, and b
s

are the position and scale for that part, and

µp

(B) and �p

(B) are the mean and standard deviation of positions for all instances of part

b learned from shapes assigned to t (and similarly for b
s

). This term penalizes extreme

deformations of t to fit s. Note that a user can specify ‘must include’ parts. If no points are

mapped to such a part its deformation penalty is set to Eexist penalty = 1 to avoid learning

from topologically invalid shapes.

Finally, the smoothness term penalizes shape segmentations in which nearby points with

similar surface normals are assigned to different template parts:

Esmooth(l) =
X

p1,p22Ps
s.t.p22Nhd(p1)
`(p2) 6=`(p1)

�log

✓
1�

✓
p1,p2

⇡

◆
· exp

✓
dist(p1, p2)

⌧ 2
Nhd

◆
(5.7)

where ✓(p1, p2) is the angle between surface normals at two points within local neighbor-

hood p1 and p2.

We use ↵ = 0.5, � = 2, and � = 2 to weight these three energy terms for all results

presented in this paper.

Figure 5.4 illustrates how the different energy terms influence the final fitting. These ex-

amples demonstrate that excluding local shape features Efeat fails to discriminate between

some parts, missing deformation priors Edeform results in incorrect and implausible segmen-

tation and alignment of parts; and absence of smoothness Esmooth generates labeling with

noisy boundaries.
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Esmooth

Figure 5.4: Energy function example. Effect of every energy term in the template fitting
procedure. For all 3 examples, we show a result with all the energy terms (left) and with
one energy term excluded (right). (Left-to-right) The stem merges with the base if local
shape features are excluded for goblets; chair legs are extended towards back support if we
exclude statistical plausibility of a template deformation; and the segmentation boundary
between the head and the torso of an animal is noisy in the absence of the smoothness term.

Optimization procedure: Minimizing this fitting energy is difficult, because the optimal

rigid alignment, template deformation, shape segmentation, and point correspondences are

all inter-dependent. If the optimal shape segmentation was given, it would be easier to find

the rigid alignment and template deformation that best aligns parts. Alternatively, if the

optimal rigid alignment and template deformation were known, it would be easier to find

the optimal point correspondences and shape segmentation. However, neither is known in

advance. We address this problem with an iterative approach.

Our algorithm starts by searching for the rigid alignment r that best aligns the mean tem-

plate surface to the shape. In practice, we search a discrete number of rigid alignments,

noting that geometric repositories commonly have a default up direction aup, and that opti-

mal rotations around that axis are usually multiples of ⇡/2. Thus, we simply align centroids

and try all the four ⇡/2 rotations around aup. For each of those four starting transforma-

tions, r is fixed – we return the one that provides the best e after all other free parameters

are estimated.

For each rigid transformation, we optimize e(t, s, r, d,m, `) with an algorithm that alterna-

tively optimizes the discrete shape segmentation `, then the discrete point correspondences

m, and finally the continuous template deformation parameters m. These three steps are
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iterated until the labeling remains unchanged in consecutive iterations (with a maximum

number of iterations set to 100).

During the first step, we treat d as fixed and optimize `, the assignment of shapes points

to template parts. Since our energy function requires correspondences m, for any point

label `(p) we set its correspondence to the nearest point on `(p). We further exclude the

template to points distances E
t!s

since m�1 is only defined when all points are labeled,

and thus cannot be computed without optimizing `. The remaining non-constant terms can

be formulated as conditional random field with the unary terms defined by E
s!t

+Efeat and

the binary terms defined by Esmooth. We approximately solve the problem with the efficient

graph cut algorithm described by Boykov et al. [15].

During the second step, we treat ` and d as fixed and optimize m. This is a classic sur-

face correspondence problem, with the special properties that points are constrained to

correspond only to other points with the same part label. Since surfaces have already

been aligned by the optimal rigid transformation r and template deformation d (after the

first iteration), we simply use closest-point algorithm to estimate point correspondences.

Specifically, for each point in s, we find the closest point sampled from the template part

with the same label, and vice-versa.

During the third step, we treat ` and m as fixed and optimize d. This is a classic regression

problem that requires minimizing a quadratic energy function, Edata+Edeform. We can solve

for critical points @(Edata+Edeform)
@bp

= 0 and @(Edata+Edeform)
@bs

= 0 for all parts b. Note that we can

solve independently for scale and position of every part w.r.t. every dimension, reducing

the problem to finding inverses of 2x2 matrices.

As these three steps are iterated, the shape segmentation is refined and the template is

deformed to align its parts with corresponding segments on the shape. The final fitting

energy provides an estimate for how well the template fits to the shape.
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5.3.3 Template Refinement

Once we fit all the shapes to all the templates, our final step is to evolve the set of templates

to better represent shape variations within the collection. Our specific goals are to re-

estimate the distributions of part positions and scales within the existing templates and to

create new templates to represent salient clusters of shapes not fit well by any existing

template.

Selecting a learning set: The first challenge is to select a subset of shapes from which

the parameters of each template should be re-estimated. This is important for two reasons:

(i) to avoid learning template parameters from shapes that fit poorly, and (ii) to avoid the un-

due computational burden of considering every shape for every refinement of the templates.

To address this challenge, we build a Learning Set S
L

that includes only those shapes that

fit best to their associated templates, and then we re-estimate the template parameters only

using those shapes.

Our method for selecting the Learning Set is quite simple. First we re-estimate the fitting

error for a subset of models, which we call a Fitting Set, S
F

. In the first iteration the Fitting

Set includes all the models in the collection, in the subsequent iterations we sort every

shape s by the most recently computed fitting error ẽ⇤(t
s

, s). Then, we add the KL shapes

with lowest ẽ⇤(t
s

, s) to the Fitting Set, plus another KL shapes chosen at random. We

re-fit the current set of templates to the models in the Fitting Set, and update fitting errors

e⇤(t
s

, s) associated with the best fitted template t
s

. For each of these shapes, we add it to the

Learning Set if its e⇤(t
s

, s) is less than either a global threshold, emin, indicating an almost-

certainly good fit, or less than max(e
t

, emax), where e
t

= ⌧ · argmin
s

0e⇤(t, s0), indicating

that the fit for s is among the best for t. We terminate the learning procedure when the

Learning Set is empty or after reaching the maximal number of iterations Niter. We have

chosen conservative values of K
L

= 50, emin = 75, emax = 150, ⌧ = 4, and Niter = 10

empirically, and keep them the same for all results presented in this paper, noting that K
L
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Figure 5.5: Template refinement. This figure demonstrates a single iteration of template
refinement step. Shapes in the learning set (shaded area) are either used to update existing
templates (blue), spawn new templates (black) or do not participate in learning (red).

and ⌧ could be tuned to encourage more (less) conservative evolution with smaller (larger)

values.

Figure 5.5 illustrates the template refinement step. For an example Learning Set (middle)

the shapes can either contribute to re-estimating template deformation parameters (blue

clusters), spawn new shapes (black clusters), or be disregarded as outliers (red clusters).

Note how chairs that are different from the current set of templates (with elongated seats

and with short stems) form new clusters potentially expanding the space of geometries

represented by the set of templates.

Re-estimating template deformation parameters: Next, we re-estimate the distribution

of part deformations for each template based on its fits to examples in the Learning Set S
L

.

Specifically, for each template t, we want to update it from all matched shapes that are

similar to its mean part arrangement d
µ

(t) = {µp

(B), µs

(B)}. We consider the subset S
t

of the Learning Set associated with t, and with edata(t, s, r, dµ(t),m, `)  emin. For each
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shape s 2 S
t

, we estimate the template part deformations parameters d⇤(t, s) that minimize

Edata(t, s, r, d,m, `). Then, we build a Gaussian distribution over all d⇤(t, s) for all s 2 S
t

(re-estimating the means and variations of the centroids, scales, and shape descriptors for

every part in the template t).

Spawning new templates: Next, we create new templates to represent clusters of de-

formations that are similar to one another, but poorly modeled by the existing templates.

To do so, we perform agglomerative clustering of all shapes that are fitted to templates

with the same part cardinalities. We measure dissimilarity for a pair of shapes s1, s2 as

Edata(s1, s2, r, d,m, `) + Edata(s2, s1, r, d,m, `), where deformations and labeling are fixed

and m is defined by nearest points with the same label.

We iteratively merge nearest clusters as long as maximal dissimilarity between their ele-

ments is below emin. We use clusters with more than 5%·KLS elements to add new templates

to the set with parameters estimated from optimal deformations d⇤(t, s).

Rejecting outliers: Finally, remaining shapes are considered to be outliers (deformation-

wise) and we exclude them from future learning steps. Note that while these shapes are

explained by the current set of templates, we assume that they do not represent sufficient

fraction of the collection to expand the template set.

The final result is a new set of templates with re-estimated deformation parameters, and

possibly with additional templates describing new shapes and arrangements of parts.

Consider, for example the collection of 36 chairs in Figure 5.1: there are four different

clusters, two sets with arms, and two sets without arms. Even among those with arms, the

algorithm groups chairs and benches separately based on their corresponding continuous

deformation parameters. Our algorithm learns the structure of this collection automatically:

starting from an initial template (top left), it learns that the collection has fours different

clusters of shapes, each with relatively tight distributions of part positions and sizes, and
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accordingly produces four representative deformable templates (second row). The resulting

templates can further be used to analyze similar collections.

5.3.4 Template Initialization

We support two main modes for initial template creation: (i) automatic shape segmenta-

tions, and (ii) user assisted refinement.

Automatic shape segmentations: Our system starts by creating an initial template based

on automatic shape segmentations. We start by segmenting every shape using a modifica-

tion of our template fitting procedure. More specifically, we use seed with Nseg clusters

generated by Voronoi diagram of iteratively farthest points. We initialize Nseg bounding

boxes oriented along PCA directions with anisotropic scales set to one standard deviation.

Finally, we use our template fitting optimization to re-label points and find optimal de-

formation parameters optimizing Edata + Esmooth. We observe that in the most cases the

template with the smallest fitting energy produces the best results. The user can further

pick a template from the set of best-fitted examples. In the fully automatic mode, we ex-

ecute our template learning procedure initialized from 10 best-fitted initial templates, and

then we pick the resulting template with the smallest average fitting score (see example in

Section 5.4).

User-refined templates: The user can also refine the initial suggestions made by the auto-

matic shape segmentation. Effectively, using the proposed template(s) as scaffold, the user

refines the arrangement of boxes using a simple interactive tool that allows orienting, po-

sitioning, and scaling boxes. The process, which is fairly intuitive, typically takes about 5

minutes (e.g., user updates/adds boxes to define an airplane template with fuselage, wings

and a tail; or creates a bicycle template with wheels, body, seat and handles). In less obvi-

ous datasets, one can look at a few example shapes from the input collection and just align

bounding boxes to the semantic parts. For initial sets containing multiple templates (only
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chairs in our examples), we started with a single template, investigated outlier shapes in the

results (based on the fitting score), and added new arrangement of parts that would cover

the outliers. We believe, such a workflow is appropriate for analyzing large collections

without relying on any prior knowledge about the dataset.

While our algorithm can run in the automatic mode, we found that the user refinements

can be valuable, especially to provide semantic cues. We expect that the users interested

in analyzing a collection of shapes are able and willing to spend a couple of minutes to

interactively explore proposed initial templates, and/or fixup and select from among a set

of templates produced automatically.

5.4 Results

In this section, we evaluate how well our algorithm recovers the shape structure from an

unlabeled collection. First, we evaluate the quality of segmentations, deformations, and

correspondences, and then visualize variations learned from shape collections containing

thousands of models. We further investigate different aspects of our algorithm such as its

sensitivity to the initial template, generality of the learned variations, and scalability of the

method.

5.4.1 Datasets

We use several datasets in our evaluation: the COSEG dataset [115, 123] containing several

classes of smooth manifold shapes with ground truth per-face labeling, the correspondence

benchmark introduced in Section 4.4.1 (also in [68]), that includes collections of polygon

soups obtained from the 3D Warehouse [119] with consistently selected feature points.

Further, to validate applicability of our method to analysis of very large and diverse datasets

we created a set of large scale collections containing thousands of models. We obtained this
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dataset by crawling the 3D Warehouse for particular keywords1 and grouped the retrieval

results into collections of semantically-similar classes. We further presented all models

rendered as a grid of thumbnails to AMT workers [3], and asked them to select images that

contain only a single object of interest. We finally pruned geometries that did not receive a

majority vote among 5 users. We refer to Table 5.2 for more details on classes of shapes

used in our analysis and sizes of the collections.

5.4.2 Correspondence benchmark for large collections

We build a new correspondence benchmark for the newly acquired datasets. Due to the

scale of the data, we randomly sample 100 models from each of the collections and select

feature points only for those models. Since the collections are very diverse it is hard to

define a consistent set of feature points that are present in all models, thus we allow some

points to be missing on some models (see Figure 5.6).

100 / 452 helicopters 104 / 3114 planes100 / 471 bikes100 / 7442 seats

Figure 5.6: Ground truth. This image illustrates some example models with ground truth
feature points. Note that each model can have only a subset of ground truth points (e.g.,
arm rests points of chairs are absent in some chair shapes).

5.4.3 Segmentation accuracy

We evaluate quality of part-wise labeling ` produced by our method using the COSEG

dataset [115, 123]. Similarly to previous methods we evaluate labeling accuracy, measur-
1“chair”, “bench”, “plane”, “airplane”, “jet”, “bike”, “bicycle”, “motorcycle”, and “helicopter’.’

97



378

Initial Template

Final Templates

Co-aligned points

Randomly sampled template fitting results:
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Final Templates
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Randomly sampled template fitting results:

30.1946 17.0055 Score=28.4434
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Score=67.5399

Score=1033.11
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Score=25.6564
Score=1038.04
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Score=24.5836
Score=60.1787
Score=20.8543
Score=17.842

Figure 5.7: Trimble 3D Warehouse data. Some example templates learned from 3D Ware-
house datasets along with corresponding models. Note how we automatically identify that
the airplane dataset has military planes with wider variation in positions of wings (left col-
umn) and commercial airplanes with relatively uniform part scales. We also automatically
identify the difference between bicycles and motorcycles.

ing the fraction of faces with correct labels (where labels are assigned manually to the cor-

responding segments). Since accuracy is measured at a face level, we project our per-point

segmentations to mesh faces using a variant of fuzzy cuts algorithm [64], where fuzzy cut

boundaries are defined by the labeled points. For non-manifold meshes, we simply assign

face label by voting with the nearest labeled points.

Table 5.1 presents labeling accuracy of our method. We test two versions of template ini-

tialization described in Section 5.3.4: fully automatic (Auto) and manually-refined (Man).

In both cases, we also include labeling results that were obtained prior to template learn-

ing procedure (Init). Note that for simple classes of shapes initial template is sufficient to

understand part-wise decomposition (e.g., small dataset of chairs). However, shapes with
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more geometric diversity (e.g., four-legged creatures) demonstrate significant improvement

after learning deformations.

Class Sidi Hu Auto
init

Auto
result

Man.
init

Man.
result

Lamps 94.3 90.7 95.1 95.2 81.8 97.6
Chairs 84.8 89.6 96.7 97.6 97.9 98.4
Vase 87.4 80.2 80.7 81.3 81.7 83.2

FourLegged 77.3 88.7 81.6 86.9 84.6 87.1
Guitars 87.2 98.0 86.6 88.5 95.9 96.5
Goblets 98.2 99.2 89.4 97.6 98.4 98.1

Candelabra 84.4 93.9 82.9 82.4 85.7 87.9
Chairs (400) XX XX 80.4 91.2 91.3 96.9
Vase (300) XX XX 85.7 85.6 85.9 81.2

Table 5.1: Segmentation accuracy. Each entry records fraction of the area that was
labeled correctly by a segmentation technique, where rows correspond to datasets and
columns correspond to methods. We compare to the consistent segmentation techniques by
Sidi et al. [2011] and Hu et al. [2012]. We also execute our method with two types of ini-
tial templates: fully automatic (Auto) and manually-refined (Man). In both cases, we show
results of using just the initial template for matching (init) and results after we execute our
template learning procedure (result).

We further include results reported by the previous methods of [115] (Sidi) and [56] (Hu).

The quality of our labels is comparable to the previous techniques, and we provide

improvement for classes where spacial arrangement of parts is important (e.g., lamps,

chairs). Our method demonstrates a slightly inferior performance on classes that do not

have well-defined parts (e.g., vases). Another common problem that we encountered with

automatically-generated templates is that the final templates might not have the same

granularity as the ground truth parts (e.g., the neck and head of a guitar are commonly

put into single part, and the body is segmented into two pieces). Despite lower labeling

accuracy in these cases, the co-alignment and learned variations for these classes is still

meaningful. Note that unlike previous techniques, our method does not require manifold

meshes as input and our results are disadvantaged by this generality.

Figure 5.8 demonstrates our segmentation results for a set of lamps, note how we auto-

matically identify three types of deformable templates and successfully label most models
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Initial 
template:

Final templates:

Figure 5.8: Segmentation example. This example illustrates analysis of a collection of
20 lamps. Note how resulting templates capture variations in position and size of lamps’
head.

in the collection. Figure 5.7 demonstrates randomly selected segmentations and template

alignments from much larger datasets containing polygon soups. Note how our method is

effective even for these non-manifold surfaces.

5.4.4 Deformation quality

We visually verify the quality of per-model template alignment and deformation parameters

r, d, by rendering deformed boxes aligned to the matched models (e.g., see bottom of Figure

5.7). We also use the template deformation to co-align all models to a canonical space, thus

relating all the shapes. More specifically, for every shape s associated with template t with

deformation parameters d
t

, we align every point p
s

to corresponding point in the canonical

100



All
400

Stool
72

Deformed Rigid Deformed Rigid

Dining
187

Swivel
141
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Figure 5.9: Co-aligned shapes. We use template deformation parameters (r, d) to align
all shapes from the set of 400 chairs in COSEG dataset to their corresponding mean part
arrangements and scales (left image). And compare it to just using rigid transformations
r to co-align shapes (right image). Note that our deformation model leads much sharper
co-alignments by factoring out the dominant deformation modes.

space m(p
s

) + o
s

, where o
s

is the offset by which point is displaced from a deformed

template: o
s

= d(m(p
s

))� p
s

.

Figure 5.9 demonstrates co-aligned points from all the models side by side with rigidly

aligned points that do not account for part-wise deformations. Note that our result is much

sharper than rigidly aligned models significantly reducing the variance in point distribu-

tions, demonstrating that anisotropic part scales account for a very significant amount of

geometric variations (see also supplementary material).

5.4.5 Correspondence accuracy

We evaluate the quality of the resulting map between models m using standard correspon-

dence benchmarks. To provide pairwise correspondences required for the benchmarks, we

co-align all the shapes to a canonical domain and use nearest neighbors to define shape-to-
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shape correspondences. We evaluate our results on the datasets proposed in Kim et al. [68],

and our newly created benchmark for larger and more diverse collections. Similarly to

previous methods we compute correspondences for selected feature points and measure

Euclidean error between predicted point and ground truth, normalized by mesh diameter

(maximal distance between a pair of points). We further aggregate this information into

plots that show fraction of correspondences predicted correctly (y-axis) for a given Eu-

clidean error threshold (x-axis).

Figure 5.10 demonstrates these results on all benchmarks used in our evaluation. We

demonstrate results for our method trained on all data (red), our method only trained on

models that have ground truth correspondences (magenta). We further compare the method

proposed by Huang et al. [58] trained on ground truth models (black), and on the largest

dataset it could handle (gray): it successfully analyzed all bikes, a subset of 1000 planes, a

subset of 1000 seats, and crashed for larger subsets of helicopter dataset. We also execute

the method of Kim et al. [68] (blue), which is not able to handle collections much larger

than one hundred models.

Note that the performance of our method is comparable on datasets with less part-wise

variations (e.g., chairs, commercial planes), while our method performs significantly better

on datasets with part-wise deformations (e.g., seats have significant deformation between

chairs and benches). Both previous techniques rely on rigid alignment to compute cor-

respondences for pairs of models and use transitivity to recover larger variations. These

approaches are sensitive to multi-modal variations in collections that contain clusters that

are not connected by a smooth path of rigid alignments (e.g., there is a deformation gap

between chairs and benches in the seat dataset). Our method improves pairwise corre-

spondences (w.r.t. to the template) by modeling part-wise deformations, and thus is more

capable of bridging such a gap by extrapolating deformation parameters. We also observe

that modeling deformations allows more accurate correspondences at finer scales (i.e., the
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Figure 5.10: Correspondence benchmark. This figure demonstrates quality of correspon-
dences produced by our method (red,magenta) relative to prior work: Huang et al. [58]
(black,gray), Kim et al. [68] (blue).
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left side of the curve). Note that the most common source of error for bikes and planes

is near-symmetry under 180� rotation, learning local shape features allow distinguishing

between front and back parts. Unfortunately with too little data our method can learn in-

correct variations in the first few iterations, as it happens for bikes (magenta).

While compute times for our method are comparable to previous techniques on small

datasets (e.g., 5-30 minutes for our method on Kim et al. [68] dataset in comparison to

about 10 minutes for Huang et al. [58]), our method offers significant improvements for

larger datasets (e.g., a random subset of 1000 chairs was analyzed by our method in 2.6 hrs

in contrast to Huang et al. [58] which took 6 hrs.). Since the amortized efficiency of our

algorithm improves with increasing data volumes, we expect this gap to widen further as

the shape collections grow in size.

We also show our results obtained using the initial template (red dotted line). Note how

results improve significantly after learning since quality of correspondences greatly benefits

from understanding part-wise deformations.

5.4.6 Robustness to template initialization

Figure 5.11 shows results initialized from different seed templates. Note that while initial

templates are very diverse and commonly do not match well to the rest of the collection,

the final templates are very similar in learned variations, labeling accuracy and final co-

alignments of all points.

5.4.7 Generality of learned parameters

We further validate whether the template that we learn can be generalized to new data.

We select random subsets of shapes from 7442 chairs dataset, such that smaller sets are

always included in larger sets, and learn a set of templates using the subset. We further
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Figure 5.11: Robustness to initial template. Each row corresponds to six different auto-
matic segmentations that produce different initial templates. The percentages under each
template indicate labeling accuracy of the whole dataset of goblets. Our algorithm further
automatically learns parameters for each initial template resulting in different final tem-
plates. Note that all initial templates converge to very similar final template parameters,
labeling accuracies and co-alignments regardless of the initial quality. The inset further il-
lustrates example segmentations produced with the automatically-picked template with the
minimal average fitting score.

use the learned set of templates to establish correspondences among a different set of 100

models (none of these models were part of the training set). The accuracies of resulting

correspondences are presented in Figure 5.12 (left plot, dark green curve). Note that the

accuracy increases as size of the dataset grows, and almost achieves the quality of corre-

spondences learned from all 7000 models (red horizontal line) after training on just a 1000.

This suggests that the learned templates can be efficiently used to analyze new data.
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Figure 5.12: Learning templates from a subset of models. We learned a set of templates
on subsets of different size of 7442 seats dataset. The left plot shows how size of the subset
influences fraction of correct correspondences for a fixed Euclidean error threshold. The
right plot shows the time require for learning the variations (does not include the labeling
time), and numbers next to data points indicate number of final templates. These results
suggest that variations can be learned in near constant time from a randomly selected
subset of all the shapes.

5.4.8 Scalability and timing

Finally, we discuss scalability and computational complexity of our algorithm. Let us

define an input collection of N models that can be described by Tmax templates. Note

that every model is added to a Learning Set exactly once, moreover at least one model is

included in a Learning Set at every iteration (our algorithm terminates when |SL| = 0).

Thus, our algorithm executes for at most N iterations, where each iteration involves re-

fitting models in Fitting Set, O(KLTmax) and, possibly, an agglomerative clustering O(K2
L).

Thus, our method is linear in the number of models N as long as number of templates that

describe all geometric variations Tmax does not depend on the collection size. Finally,

fitting any new collection of N 0 models to existing set of templates is O(Tmax · N 0
). Note

that except for agglomerative clustering, all the other steps can be performed in parallel.

The right plot in Figure 5.12 demonstrates that number of templates T
max

and the time

required to compute them do not depend on the number of models in the collection (note

that the curve flattens out because our procedure terminates after reaching the maximal
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Class N |Tinit|

Total
tlearn

sec

Ave.
tlabel

sec
Trimble 3D Warehouse (polygonal soups)

Chairs 111 2 1.8K 22
CommPlane 86 1 344 4

Seats 7442 2 38K 32
Planes 3114 1 12K 7

Helicopters 471 1 15K 18
Bikes 452 1 5.4K 11

Co Seg (manifold shapes)
FourLegged 20 1 95 4.6

Lamps 20 1 145 8.6
Candelabra 20 1 101 8.4

Guitars 44 1 219 7.7
Chairs 20 2 95 6.4

Goblets 12 1 39 1.4
Vase 28 1 130 1.2

Chairs (400) 400 3 14K 37
Vase (300) 300 1 3K 8.4

Table 5.2: Data statistics. This table provides number of models N , number of initial
templates used in analysis of a collection Tinit, total learning time tlearn and average per-
shape fitting time with the final set of templates. The last three columns correspond to
experiments with manually-refined initial templates.

number of iterations). Table 5.2 further includes compute times and statistics for all the

datasets.

5.4.9 Limitations

The current algorithm has several limitations that require further investigation. First, the

shape of each part is currently represented by an oriented box, and correspondences are

assigned based on closest points. While this make our method well suited for “boxy” parts

that protrude away from the rest of the shape (e.g., airplane wings, chair legs, etc.), the

method does not fare so well in presence of parts with complex shapes in close proxim-

ity to others (e.g., bike frames). It would be interesting to investigate the accuracy/speed

trade-offs of alternative shape representations (e.g., a set of meshes for each part). Second,
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our template does not explicitly model relative spatial relationships between parts, which

is sufficient for many man-made objects where parts often appear in consistent global ar-

rangements, but would not be as good for articulated shapes. A constellation model is an

alternative [34], which might provide better results for some object classes at greater com-

putational expense. Third, our template learning procedure requires initial template that

includes all possible parts. Since our automatic template initialization procedure only cre-

ates templates from a single segmentation, it is not suitable for diverse collections where

there might be no shape that includes all parts. Our current solution is to ask the user to

refine the initial template and, possibly, add more parts to the initial template, but we would

like to investigate fully automatic alternatives in the future. Fourth, our method is greedy,

and thus is not guaranteed to converge to an optimal set of templates.
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Chapter 6

Conclusion and Future Work

This dissertation offers several tools for finding structure in large collections of diverse

3D shapes. These tools can handle a larger space of geometric variations and allow for

substantially bigger datasets in comparison to previous techniques.

6.1 Summary

In this dissertation we described several algorithms to derive structure in diverse and unor-

ganized 3D collections.

First, we created a method for finding a map between pairs of surfaces by blending a col-

lection of low dimensional maps. This method blends near-isometric maps into the final

blended map, which can significantly deviate from a perfect isometry. Our approach is

fully automatic, efficient, and it provides robust mapping between non-isometric surfaces.

In practice, this method is suitable for discovering geometric similarities between pairs of

shapes that undergo non-rigid and non-uniform deformations, such as articulation and dif-

ferent scaling of parts. We evaluated our method on several benchmarks, demonstrating

significant improvement over previous matching techniques.
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Second, we developed fuzzy correspondences, a fully automatic computational tool to find

and encode semantic relationships between points in a diverse collection of 3D models.

Our framework relies on the transitivity of correspondences to improve the quality of pair-

wise alignments between shapes related by non-uniform deformations (including different

geometries and multiplicities of parts). Our representation encodes inherent ambiguity in

matching very dissimilar shapes with a continuous fuzzy correspondence function. We

evaluated our computational framework on several benchmarks, showing that it is both

efficient, in that it generates all correspondences by matching only a subset of pairs of

models, and accurate, in that it, improves the semantic alignment of points in comparison

to existing mapping methods.

Third, we developed a shape analysis tool to derive structure from large, unorganized,

diverse collections of 3D polygonal models. Given a collection of 3D shapes (and option-

ally an initial template), our method jointly partitions the shapes into clusters with similar

structure, learns a part-based deformable model of the shape variations within each cluster,

provides consistent segmentations for all the shapes with similar parts, and provides corre-

spondences between semantically equivalent points across all shapes in the collection. Our

algorithm executes out-of-core, has time complexity that is linear in the size of the col-

lection, and thus can handle very large datasets. It also performs favorably on benchmark

datasets for consistent segmentation and surface correspondence in comparison to previous

work.

6.2 Future Work

We identify several research challenges for future work on analysis of geometric structure.

One direction is to enhance the methods that treat high-level understanding of the data and

structure computation as two inter-related problems. Explicitly modeling and representing
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a larger space of geometric variations and functionality of a shape can substantially sim-

plify and improve the structure detection. For example, we can augment our deformable

templates from Chapter 5 with other types of part relationships, such as hierarchical de-

compositions, context information, etc. Representing the space of valid shapes in a concise

and generalizable form significantly simplifies the model-to-collection mapping problem

by restricting the search space. Furthermore, encoding and discovering the functionalities

of parts can improve the robustness of such an approach by ensuring that the geometry of

each part is consistent with its functional purpose.

Another interesting research direction is to investigate new tools enabled by our analy-

sis, which can be used for applications such as the exploration of geometric collections,

data-driven shape modeling, and shape reconstruction. Furthermore, discovering struc-

ture in scans of large-scale indoor and outdoor environments can find many applications in

robotics, computer vision and computer graphics.

The long-term goal of this research is to represent and organize the world’s geometric

data using high-level analysis tools. Our current research to discover correspondences,

segmentations and geometric variations is a first step towards that goal. We plan to fur-

ther develop data-driven techniques for recovering and generalizing geometric structures

in classes of shapes, ranging from everyday objects to scientific datasets. Ultimately, all

digitized shapes can be organized in a single repository that captures low-level geomet-

ric details as well as high-level structural understanding of every class of shapes. This

representation should include information about the decomposition of shapes into seman-

tically meaningful regions, functional and geometric relationships between these regions,

their hierarchical categorizations, and more. Such a repository can be made accessible and

useful for scientists, experts and the general public with appropriate high-level tools for

manipulation, exploration, understanding and detection of interesting functional relation-

ships between shapes. Efficiently mapping these data to geometry acquired in real time
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would also enable reasoning about shapes in a dynamic setting and the discovery of many

exciting applications.
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