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Abstract

Shape structure is about the arrangement and relations between
shape parts. Structure-aware shape processing goes beyond local
geometry and low level processing to analyze and process shapes
at a high level. It focuses more on the global inter and intra se-
mantic relations among the parts of shape rather than on their local
geometric details. With recent developments in easy shape acqui-
sition, access to vast repositories of 3D models, and simple-to-use
desktop fabrication possibilities, the study of structure in shapes
has become a central research topic in shape analysis, editing, and
modeling. A whole new line of structure-aware shape processing
algorithms has emerged that base their operation on an attempt to
understand such structure in shapes with an eventual goal of linking
object functions to shape geometry. The algorithms broadly consist
of two key phases: an analysis phase, which extracts structural in-
formation from input data; and a (smart) processing phase, which
utilizes the extracted information for exploration, editing, and syn-
thesis of novel shapes.

In this course, we organize, summarize, and present the key con-
cepts and methodological approaches towards efficient structure-
aware shape processing. Targeted both at early stage graduate stu-
dents to experts in shape analysis, we propose to discuss common
models of structure, their implementation in terms of mathematical
formalism and algorithms, and explain the key principles in the con-
text of a number of state-of-the-art approaches. Further, we attempt
to list the key open problems and challenges, both at the technical
and at the conceptual level, to make it easier for new researchers
to better explore and contribute to this topic. Our goal is to both
give the practitioner an overview of available structure-aware shape
processing techniques, as well as identify future research questions
in this important, emerging, and fascinating research area.

1 Introduction

For it is not a bundle of parts but an organization of parts,
of parts in their relative arrangement, . . . the coordinated
parts, now as related and fitted to the end or function of
the whole, and now as related to or resulting from the
physical causes inherent in the entire system of forces
to which the whole has been exposed.

Chapter XVI [Thompson 1992]

Realistic modeling, rendering, and animation of physical and vir-
tual shapes have matured significantly over the last few decades.
Yet, the creation and subsequent modeling of three-dimensional
shapes remains a tedious task which requires not only artistic and
creative talent, but also significant technical skills. Much perfec-
tion witnessed in computer-generated feature films requires exten-
sive manual processing and touchups. Every researcher working
in graphics and related fields has likely experienced the difficulty
of creating even a moderate-quality 3D model, whether based on
a mental concept, a hand sketch, or inspirations from one or more
photographs or existing 3D designs.

This situation, frequently referred to as the content creation bottle-
neck, is arguably the major obstacle to making computer graphics
as ubiquitous as it could be and it has recently become a dominant
problem in graphics. Classical modeling techniques have primarily

dealt with local or low-level geometric entities (e.g., points or tri-
angles) and criteria (e.g., smoothness or detail preservation), lack-
ing the freedom necessary to produce novel and creative content.
In contrast, recent research effort has shifted its focus to modeling
which works at a more global and higher-level characterization of
3D shapes, namely, at the structural level.

Shape structure is about the arrangement and relations between
shape parts. Structure-aware shape modeling goes beyond local ge-
ometry refinement and detail-preserving shape deformation. It in-
volves structure-preserving shape manipulation, as well as the gen-
eration of new shape structures. For example, new shapes can be
produced by editing an input shape while maintaining structural re-
lations such as symmetry. Novel shapes can be generated by assem-
bling parts from shapes in an existing collection, while retaining the
original structure. Such data-driven approaches create new shapes
by reusing existing 3D models; they are further supported by the
increasing volume of 3D shapes from on-line shape repositories.
The major ensuing challenge is that structure-aware shape process-
ing necessitates a proper understanding of the reused shapes at the
structural level, bringing in the need for semantic or even functional
analysis of shapes (see Figure 2).

Structures of real-world objects exhibit great variability and com-
plexity (Figure 1). Even seemingly simple objects such as house-
hold items and furniture obey a multitude of complex relations.
Such relations (or constraints) arise from various practical consider-
ations, which can be categorized as: semantic considerations (e.g.,
table-tops are horizontal); functional considerations (e.g., chair legs
support the seat and keep the chair stable); and fabrication or eco-
nomic considerations (e.g., repeated object parts are easier to repli-
cate by reusing machining or molding setups). Such considerations
lead to characteristic object structures, as reflected by the geomet-
ric arrangements and constraints among the object parts. Violat-
ing such structural constraints (which we are all intuitively famil-

Figure 1: Structure in man-made objects arises from a multitude
of factors, such as physical, aesthetical, or economical constraints.
This paper surveys methods for structure-aware processing of 3D
shapes.



Figure 2: A family of sofas of varying dimensions and functions
reuses parts and their relations (IKEA sofa collection EKTORP). Al-
though the models have very different geometric representations, at
a high-level, they have similar style. We focus on extracting struc-
ture from low-level geometric descriptions to characterize such a
notion of style leading towards a semantic understanding of shapes.

iar with) during model creation leads to implausible or unnatural
results. Further, as digital prototyping and physical fabrication be-
comes commonplace the synthesized objects have to conform to
such constraints to be functional or also to be just physically realiz-
able.

In classical shape modeling, the user remains in charge of manually
recognizing and asserting any higher-level structural constraints,
and resolving any dependencies. To reduce the burden on designers
and artists, we need methods that automatically recognize struc-
tural properties and invariants of a shape or shape families, that
understand their interdependencies, and that assist the user in cre-
ating structurally plausible shapes efficiently. Thus, the processing
pipeline is necessarily structure-aware throughout.

In this survey, we review methods that support structure-aware
shape processing. We focus in particular on techniques designed
for man-made objects. These objects often have simple structural
invariants across larger classes of shapes, such as symmetry, copla-
narity, orthogonality, or regular arrangements, allowing us to char-
acterize whole families of shapes concisely. Even though the low-
level geometric descriptions of each individual object might be de-
tailed and complex, the subparts of the objects share many such lo-
cal and non-local relations across a larger family of related shapes.
Thus, they can be compactly represented and parameterized as few
part geometries along with the relationship among the parts, e.g., as
a graph or hyper-graph.

A historical perspective. In the 1980-90s, the use of algebraic
methods to handle constraints was pioneered in computer aided ge-
ometric design. We refer the readers to the survey by Huffmann
er al. [2005] for key aspects of geometric constraint solving with
characterization of the different methods used for constraint driven
modeling. Instead, in this work we focus on the challenges arising
from having to deal with real unorganized models, which naturally
require geometric data understanding (e.g., 3D scans; non-manifold
and heterogeneous quality 3D models).

Up until the mid-2000’s, geometry modeling in graphics was dom-
inated by techniques focusing on low-level shape analysis and pro-
cessing. Typical examples include smoothing, subdivision, surface
reconstruction, and Laplacian -based detail-preserving editing. A
notable exception is the work of Funkhouser et al. [Funkhouser
et al. 2004] on modeling by example, where new shapes are gen-
erated by part composition based on a database of existing shapes
(see Figure 3). This modeling paradigm still plays the dominant
role in novel shape creation today, with the latest variants including
structure-aware part shuffling [Kraevoy et al. 2007], probabilistic
synthesis [Chaudhuri et al. 2011; Kalogerakis et al. 2012], set evo-
lution [Xu et al. 2012a], etc.

Figure 3: Modeling-by-example proposed a novel model synthesis
possibility by directly composing parts retrieved from a database
of 3D shapes [Funkhouser et al. 2004]. As 3D model repositories
continue to grow, such a design possibility has increasingly gained
research focus.

The analyze-and-edit approach introduced in the iWires work [Gal
et al. 2009] has set the tone for numerous works on structure-
preserving editing, e.g., [Zheng et al. 2011; Lin et al. 2011; Bokeloh
et al. 2012]. The analysis phase often takes the center stage as
it presents the taller challenge of shape or structural understand-
ing. Such works include inverse procedural modeling [Stáva et al.
2010; Bokeloh et al. 2010] and symmetry-driven generative analy-
sis [Pauly et al. 2008; Wang et al. 2011; Zhang et al. 2013]. Note
early work by Stiny [1971] on shape grammars has been an inspi-
ration in this area, with current works focusing on recovering such
grammars directly from the input examples.

Symmetry indeed plays a key role in structure-aware processing of
man-made objects, since symmetries are abundant in these objects
and from a functional point of view, symmetric structures are ex-
pected to share the same functionality. Methods for structural sym-
metry detection [Mitra et al. 2006; Podolak et al. 2006; Simari et al.
2006] have been made accessible to the geometric modeling com-
munity and since then, a large body of work has been developed on
symmetry-driven shape processing (cf., survey [Mitra et al. 2012]).
An attempt to understand functionality of man-made objects was
the notion of upright orientation [Fu et al. 2008], which is seen as
one of the early efforts in structural analysis of man-made objects.
Both symmetry and upright orientation represent early attempts at
extracting high-level semantic information from geometry.

Part analysis lies at the core of structure-aware shape processing.
Extracting parts from a shape is the classical segmentation problem
(c.f., survey [Shamir 2008]). Equally important is the part corre-
spondence problem, not only between a pair of shapes, but among
a shape collection (c.f., survey [van Kaick et al. 2011b]). Early
works on both the problems focused exclusively on local geometric
analysis including those on geodesics and curvature. An influential
effort was made by the ShapeAnnotator framework [Attene et al.
2009] which helps the user create semantic, part-based shape ontol-
ogy. Recent developments have taken the data-driven approach, in
particular by learning structural invariants from a set of examplars.
Such a co-analysis approach started with the work of Golovinskiy
and Funkhouser [Golovinskiy and Funkhouser 2009] on consistent
segmentation and gained momentum on several fronts including
style content separation [Xu et al. 2010], joint segmentation [Huang
et al. 2011], spectral clustering [Sidi et al. 2011; Kim et al. 2012a],
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Figure 4: An example of a structured shape (a) that is decomposed into parts. Each part controls a portion of geometry (b), which we call
part geometry. The parts (c) have parameters and a constraint energy that controls the parameters as well as the decomposition itself. The
example shows a pairwise relations (a part graph). In this particular case, it has a Markovian structure (only neighbors interact). Such
graphs would for example reflect the structure of enforcing connectivity or smoothness across neighboring pieces.

active learning [Wang et al. 2012], co-abstraction [Yumer and Kara
2012], discovery of functional substructures [Zheng et al. 2013],
and co-hierarchical analysis [van Kaick et al. 2013]. Going beyond
object modeling, Fisher et al. [2011; 2012] analyze scene data us-
ing spatial contexts and apply the results for novel scene synthesis.
Most recently, Xu et al. [2014b] develope a co-analysis method for
3D scenes based on extracting and clustering based on contextual
focal points in a heterogeneous scene collection.

Organization. We organize this survey on structure-aware shape
processing techniques by the underlying structure models as pri-
mary sorting criterion. We believe that formalizing our understand-
ing of “structure” in shapes is the intellectual key challenge in cre-
ating more powerful and generally applicable modeling tools. Be-
side discussing the broad types of structure analysis approaches, we
also summarize key application areas including smart acquisition,
structure-aware model editing, novel model synthesis, and design
space exploration. We conclude by listing some of the key chal-
lenges to be solved and their potential implications.

2 Overview of Structure

Starting with early scientific efforts to relate object form to its in-
tended functions, the inter-relation between form and function has
played an important role in shape understanding and design. In na-
ture, the geometric forms, such as the skeleton, of many organisms
can be explained by physical considerations arising from their en-
vironment, operational efficiency, and functional utility. For exam-
ple, the horns and shells of animals are often spiral-shaped due to
growth pattern and rate considerations [Thompson 1992]. Hence, it
is expected that functionally related natural objects would share a
similar form, or as we shall call in this survey, structure.

In man-made artifacts, such similarities can be even more pro-
nounced since most man-made objects are designed to serve singu-
lar functions. Structures of man-made objects arise due to physical
and ecomonic, i.e., cost, constraints during design and menufactur-
ing, or more pragmatically, due to semantic considerations. But,
what is a structure?

The Oxford dictionary defines structure as

(Definition): The arrangement of and relations between
the parts or elements of something complex.

In this view, structure constitutes a collection of parts and how the
parts are mutually related. It should not be confused with the notion
of structure in structural engineering. In this survey, we follow this
abstract notion for composite objects. Such a characterization is not
surprising given that most man-made objects (e.g., chairs, tables,
lamps, shelves) are a constellation of parts, where the constellations
are often characteristic of the corresponding model collection. We
assume that the global geometry is captured by a composition of

(abstract) parts, each of which has parameters that define the parts,
and a set of relations among these parts that impose structure on
the composite. A unique feature of the setup is that the relations
can arise among parts restricted to any particular model, or more
generally, across different but functionally related models (e.g., a
collection of chairs).

2.1 Modeling Structures

We describe a generic model for structuring shapes, which we later
use to compare and contrast apparently different structure-aware
shape processing techniques, and better understand their scope and
design choices. A shape S can be seen as a collection of parts, their
parameters, and most importantly, the relations that characterize the
arrangement of the parts (see Figure 4).

Parts and parameters. A part Pi of a shape is a logical entity of
semantic significance that controls the appearance of part geome-
try. Note that in this abstraction, parts are not necessarily disjoint,
i.e., they can overlap. Further, each part has a finite set of parame-
ters that affect the shape of the part. Note that unlike in traditional
geometry processing, by part we do not necessarily mean a surface
patch arising from segmentation. Instead, a part can simply be an
abstraction for a region of the object and act as a proxy for a se-
mantic part. Figure 4 shows a schematic example of a shape that is
decomposed into parts with multiple parameters per part.

Generally speaking, a part a vector of all the vertices forming a
shape space (e.g., as in [Yang et al. 2011]), a feature curve (e.g., as
in [Bokeloh et al. 2009; Gal et al. 2009]), a bounding box (e.g., as
in [Xu et al. 2010; Ovsjanikov et al. 2011], a fitted proxy such as a
box or generalized cylinder (e.g., as in [Zheng et al. 2011; Xu et al.
2011; Xu et al. 2012a]), a surface or volumetric segment [Shamir
2008], or a variational proxy, etc. Note that in most cases the choice
of parts automatically determines the choice of the respective pa-
rameters. Further, in some cases, the parts can be completely spec-
ified by the user, i.e., semantic parts can be provided as part of the
input as an input template. Most methods covered in this survey op-
erate on parts which are meaningful components of a shape [Shamir
2008], e.g., a leg of a chair, a table top, a wing of an airplane, or a
window over a facade, etc.

Relations. Relations capture how parts, and hence their parame-
ters, are correlated. Such relations can be between a pair of parts
(i.e., a pairwise relation) or among a set of parts (i.e., higher order
relations). The relations are the key element behind any structure.
Formally, relations can be represented mathematically by a con-
straint energy E that must be zero for a valid structure (relations
enforced as hard constraints) or that should be minimized (soft con-
straints). Let us consider few examples:

• In a constraint-based modeling setup, the relations would re-
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Figure 5: We can also use higher-order relations that couple larger cliques of parts (a), including non-local (non-Markovian) relations. In
this example, we show a part (hyper-) graph (b) that aims at preserving symmetry. It couples symmetric pieces using hyper-edges (red/blue),
leading to symmetric parameter changes. Such a setup can for example be used for symmetry preserving shape deformation (c).

quire elementary, pairwise relations such as parallelity, copla-
narity, bilateral symmetry, etc.

• Relations can also link a set of parts by considering higher-
order relations. For example, the windows on a building fa-
cade can be arranged on a 2-parameter regular grid. In gen-
eral, symmetry relations with more than two elements in-
volved will lead to higher-order relations. Figure 5 shows an
example – the blue parts are coupled by a 4-ary symmetry
energy.

• A set of relations can capture the part configuration of a func-
tional model collection, e.g., a set of chairs. Such constraints
should capture both coupled part-level continuous variations
and also discrete changes like chairs with or without arms.
Thus, the relations capture not only part-arrangements, but
also how they can vary in a coupled fashion, i.e., a correspond-
ing deformation model.

2.2 Discovering Structures

For most methods covered, the input shapes come in the form
of low-level geometric representations, such as polygonal meshes,
thus obscuring the underlying structure of the shapes. For example,
a 3D scanner returns a collection of points, possibly with normals;
or, models from 3D model repositories (e.g., Trimble 3D ware-
house, Turbosquid) often come as polygon meshes (manifold, or
polygon soups), mostly without access to any semantic informa-
tion. A key challenge is to discover the structure from a single
model, or a set of related example shapes (i.e., a model collection).
Thus, we have to determine (i) the parts, (ii) their parameters (i.e.,
representation), and most importantly, (iii) their relations. These
are in fact mutually dependent, so ideally they should be learned in
conjunction to each other.

A key aspect of structure-aware processing is to discover or learn
the underlying structure from input examples — it is an analysis
problem we refer to as structural analysis (Section 4). Starting
from generic assumptions of how parts and relations are formed, the
methods semi- or fully-automatically extract a structure model from
one or a set of shapes. In Section 4.2, we categorize the main strate-
gies used to discover structure models, which include symmetry-
driven analysis, statistical modeling, and co-analysis, which learns
a structure model from a shape collection.

2.3 Structure-aware Shape Processing

Shape or part structures, once extracted, can be used for a range
of structure-aware shape processing tasks (Section 5). A recurring
theme in these tasks is structure preservation, e.g., during shape
editing and synthesis. The working hypothesis is that preserving

structures also ensures plausibility of the manipulated or synthe-
sized models. Complementary to local differential operators, struc-
ture models might also provide non-local relations and thus cou-
ples distant parts of the shapes. Interestingly, focusing on struc-
ture over low-level details allows us to couple models even with
large geometric and topological variations. Thus, structure or part
constellations become the key focus, with geometry playing only a
secondary role. Preserving structures in course of scanning, edit-
ing, modeling, or even design exploration, then leads to meaningful
and intuitive shape processing. The structures provide high-level
handles for model manipulation that often reflect object semantics,
thus vastly simplifying the modeling interface.

3 Types of Structures

In order to discover a structure, one has to solve three problems:
(i) identify the relevant parts which is akin to a segmentation prob-
lem; (ii) identify the relevant parameters or representations for the
parts which is akin to part parameterization problem; and (iii) iden-
tify relations (i.e., correlation) among the parts both inside a shape
and also across different shapes in a model collection. The chal-
lenge is perform these steps in conjunction.

We now categorize different approaches mainly based on how each
of parts, their parameters, and their relations are discovered (see
Figure 6). In each case, depending on the richness of the input data,
broadly there are three options: (i) Models are manually prescribed
by the user; (ii) models are extracted based on some prescribed
model amounting to model-fitting; and (iii) models are learned di-
rectly from the data in an unsupervised or supervised setting.

3.1 Identifying Parts

The first task is to devise a scheme for splitting objects into parts.
Ideally, such parts should relate to semantic object parts, rather than
being constructed from low-level geometric details.

User specified parts. The simplest idea is to let the user explic-
itly create or specify parts in the input data sets. For example, in
a classic modeling system, the user creates parts such as spheres,
cubes, etc. To this end, many approaches use information such as
connected components of a triangle mesh [Jain et al. 2012; Zheng
et al. 2013] or the scene-graph hierarchy provided in a database of
3D models [Fisher et al. 2011].

Parts are obtained according to a fixed model. In this case,
a fixed segmentation model is constructed and applied. Popular
choices are for example the detection of crease lines [Gal et al.
2009], of objects with a certain symmetry properties [Mitra et al.
2010; Mitra et al. 2013; Bokeloh et al. 2010; Kalojanov et al. 2012],
or generic shape segmentation approaches [Shamir 2008].



Figure 6: Examples of various methods that define or discover
parts, parameters, and relations, i.e., extract structure for the re-
spective collections.

Parts are discovered directly from the data. Instead of using a
model that is completely based on a priori assumptions, it is also
possible to define a meta-model that describes how the part struc-
ture should be extracted using a learning approach. The difference
here is that the concrete extraction model will be adapted according
to some set of training data. If this process requires user annota-
tions, this is a supervised learning technique [Anguelov et al. 2005;
van Kaick et al. 2011a; Kalogerakis et al. 2010; Sunkel et al. 2013].
Unsupervised methods use clustering in order to find structural sim-
ilarities in the input data, typically a collection of shapes belong-
ing to the same family, automatically [Golovinskiy and Funkhouser
2009; Xu et al. 2010; Sidi et al. 2011; Huang et al. 2011; Hu et al.
2012; Kim et al. 2012a].

3.2 Identifying Parameters

Having established a part decomposition, the next task is to extract
its parameters.

User specified parameters. This option is frequently used in pro-
cedural modeling schemes. By permitting the user to write scripts
or shape grammars, custom parameters can be specified interac-
tively. There are also more traditional systems (from the 1980s)
where the whole modeling process is driven by specifying a scene
hierarchy with user defined parameters used for communication be-
tween modules that instantiate geometry [Stiny and Gips 1971].

Parameters are obtained according to a fixed model. There
are a large number of methods were the set of parameters is
fixed a priori. For examples, parts are arranged using rigid trans-
forms [Funkhouser et al. 2004; Gal et al. 2009], isometric varia-
tions [Huang et al. 2009], or restricted based on fabrication require-
ments [Yang et al. 2011]. Very frequently, parts can be arranged
with rigid motions or general homogeneous transformation matri-
ces. Controlling parts with axis-aligned scaling of the bounding
boxes is another option [Zheng et al. 2011]. Parametric models
also include specifying the geometric properties of fixed primitives
(radius of a sphere, width/height/depth of a cuboid).

Parameters are learned directly from the data. In the most gen-
eral setting, the set of parameters is not known a priori but the de-
grees of freedom have to be extracted from training geometry. This

is more complicated and structurally very related to the extraction
of global constraints from training data, which we discuss more in
detail in the next subsection. Common models for learning param-
eter sets from data are dimensionality reduction techniques, such as
principle component analysis [Duda et al. 2000], or its non-linear
variants (kernel PCA, spectral embedding techniques with custom
kernels) [Shawe-Taylor and Cristianini 2004].

3.3 Identifying Relations

The key aspect of structure is relation among parts. However, to
relate parts often amounts to establishing a global correspondence
among the parts. This is challenging as models often have sig-
nificant geometric and topological variations even with the same
model collection. In such scenarios, point-to-point correspondence
is ill-defined. An alternative is to assign a probabilistic or fuzzy
correspondence among shape collections [Kim et al. 2012a]. Al-
ternately, explicit correspondence extraction can be avoided as pro-
posed by Ovsjanikov et al. [Ovsjanikov et al. 2011] who analyze
model shape collections as a manifold of characteristic descriptors.
The descriptors are chosen such that they smoothly depend on the
shape. Assuming continuous variability, exploring the shape space
can be mapped to navigating a non-linear manifold.

Relations can capture how a part relates to itself (i.e., symmetry)
and thus can be modeled as an unary term. More interestingly, pair-
wise part relations can be captured as binary relations; while more
generally interaction between set of n parts can be captured as n-
ary relations. Since n-ary relations can be difficult to track com-
putationally, they are often split into lower-order relations, which
is strongly related to graphical models in machine learning (c.f.,
[Koller and Friedman 2009]). Pairwise relations lead to graphs
where nodes represent parts and their parameters and edges cor-
respond to the constraint energy induced by pairwise relations.
Higher order models correspond to hypergraphs, where each hyper-
edge might connect more than two parts. If the graph is sparse and
only connects locally neighboring parts, we have a Markov-random
field (assuming a soft constraint energy that has a probabilistic in-
terpretation, for example as the log-likelihood of an actual prob-
ability density). For the interpretation as a (classic) probabilistic
graphical model, we have to assume that the set of employed parts
is fixed a priori. The graphical model in Figure 4 is an example
for a Markovian model with pairwise edges. In contrast, Figure 5
is not a Markovian model, because there are non-local couplings.
Furthermore, and independently of this fact, higher-order edges are
used (the graph is a hypergraph).

User specified relations. In the context of computer-aided design
and sketching interfaces, a number of systems have been devel-
oped where the user can specify general geometric constraints that
are checked and maintained automatically by the modeling sys-
tem [Zeleznik et al. 2007; Igarashi et al. 1999]. This is not the
central topic of our survey; we will focus on automatic methods.

Relations are obtained by a priori model. In this case, the con-
straints are fixed, independent of the data. In many cases, these are
physical constraints: For example, properties such as connectivity
(dynamic stability), center of mass (for balance), or constraints on
the maximum stress within the material (for static stability) can be
imposed [Umetani et al. 2012; Whiting et al. 2012]. Deformation
models also fall into this category — they prescribe priors on dif-
ferential properties of a deformation function acting upon a piece
of geometry. These soft-constraints are given a priori by analogy
to physical processes such as the elastic or plastic deformation of
rods, shells, or solids.

Relations are discovered from the data. The final, most inter-
esting, case is to learn constraints from data. This can be done



with machine-learning approaches of different strength: A weakly
learned model would employ a rather rigid a priori assumption and
only apply it to example data in order to obtain concrete rules. An
example of such an approach is the learning of shape grammars
based on local similarity [Mitra and Pauly 2008; Bokeloh et al.
2010]: Here, the invariant is fixed a priory (all shapes must be sim-
ilar to an example shape within local regions). The learning is re-
stricted to computing the rules that arise from applying this model
to a concrete piece of example geometry. A much more flexible
model is for example the famous morphable face model of Blanz
et al. [Blanz and Vetter 1999]: It only assumes low-dimensional
linear subspaces for models and learns the geometric variability au-
tomatically from corresponding 3D scans. Such a model can also be
extacted directly using abstracted part geometry and proxies [Ovs-
janikov et al. 2011; Kalogerakis et al. 2012].

4 Structure Analysis

In this section, we discuss recent techniques developed for learn-
ing structure models, which is an analysis task. The learned struc-
tures are then utilized for a variety of processing tasks, in particular,
shape synthesis. Works on structure-aware processing are surveyed
in Section 5.

4.1 Challenges in Structure Discovery

Although, in the previous sections, we independently considered
parts, parameters, and their mutual relations, ideally they should be
learned simultaneously. This makes the problem challenging, es-
pecially in the fully unsupervised setting. For example, what are
good object parts depends on their mutual relations, but the mu-
tual relations can only be explicitly extracted when the parts along
with their correspondences are known. In order to break this cyclic
dependency, either training data is used, or the user prescribes can-
didate parts, or auxiliary model information (e.g., keywords, tags,
scene-graphs) are usually used. Further, in many settings, parts can
have significant variations across even related objects, and hence a
corresponding deformation model has to be additionally extracted
or factored out.

Instead of focusing on the variations (i.e., deformation), the general
strategy is to look for consistency and patterns. This is motivated
by statistical learning theory, which requires the repeated observa-
tion of objects originating from a common process. Only then is
it possible to gather statistics about the outcome of the process and
predict future events of this type. It is, in general, impossible to
learn information from one process by observing a second, com-
pletely unrelated process [Duda et al. 2000]. In terms of the part-
based model defined above, any function of a subset of parts can
be such a property if it (i) is observed repeatedly, and (ii) shows a
significant statistical relation across these observations.

Thus, the definition of structural invariants requires identifying ob-
jects that correspond to the same underlying process. Please note
that this abstract notion of correspondence does not necessarily re-
fer to correspondence of points or regions in shapes. Correspon-
dence is meant as an abstract association of properties that are re-
lated. For example, this could include generic properties such as
elastic properties of local surface elements, or non-local properties
such as the overall surface area of an object. Broadly, there are three
main approaches, which we describe next.

(i) Global point-wise correspondences: These techniques consider
a family of shapes with global, point-wise correspondences be-
tween the considered shapes. In our setting, the objects have only
one part, with a number of corresponding parameters essentially
representing a shape space (e.g., [Kilian et al. 2007]). If applied

Figure 7: Models, even from the same family, can have large vari-
ations in geometry and topology. As a result, the notion of point-
to-point correspondence is not always well defined in this context.
Hence, Kim et al. [2012a] introduce the notion of fuzzy correspon-
dence, which can then be used for interactive exploration of hetero-
geneous model collections.

directly to geometry (for example, every vertex of a mesh being a
parameter), this implies that the topology of the created or edited
shapes cannot be changed from what was determined in the analy-
sis phase. A classic example is a morphable model (providing a lin-
ear subspace of possible configurations) (e.g., [Allen et al. 2003]).
Physically based models such as elastic deformation also use global
correspondences, but the constraint energy is not learned but rather
specified a priori (e.g., [Umetani et al. 2012]).

(ii) Partial point-wise correspondences: These techniques are more
general and do not require a one-to-one identification of all points
in all shapes, but permit association across partial data. Hence, they
correspond to techniques that permit multiple parts, where each part
has its own parameter set. Only parts of compatible types, how-
ever, can be put into correspondences. Typical examples of part-
based models are texture synthesis, (inverse) procedural models, or
regularity-based shape resizing. Further, in the notion of model col-
lections, Kim et al. [Kim et al. 2012a] introduce the notion of fuzzy
correspondence, where instead of a point-to-point correspondence
a fuzzy or probabilistic notion of correspondence is proposed (see
Figure 7). In a recent approach [Huang et al. 2014] leverage func-
tional maps framework [Ovsjanikov et al. 2012] to relate partially
similar regions in collections of shapes.

(iii) Correspondence across derived properties or “descriptors”:
These models do not identify actual surface points, but derived
properties that summarize larger portions of the shape. Such mod-
els are typically discriminative [Kumar and Hebert 2003]. They can
detect changes of a property of a shape in a collection of shapes, but
they are typically not generative; they cannot generate new shapes
from scratch, just from knowing the derived property, because there
is a loss of information in computing this property. Typical ex-
amples are methods that identify objects by descriptors, possibly
combined with discriminative, supervised learning algorithms that
structure the space of descriptors according to labeled examples.
Such learning is for example performed in the data-driven shape
segmentation approach by Kalogerakis et al. [Kalogerakis et al.
2010].

4.2 Discovering Structures

We now survey works developed for structural analysis. There are
different ways to classify these techniques. In terms of the learn-
ing mechanism, they can be supervised, unsupervised, or semi-



supervised. In terms of what input a technique takes, they can be
based on analyzing a single shape or studying a whole collection,
i.e., co-analysis. From a computational point of view, we can exam-
ine the techniques by what optimization strategies are employed.

In what follows however, we categorize the surveyed methods in
terms of the broad strategies employed in the analysis; a key ques-
tion is what prior knowledge is relied upon. Supervised techniques
rely on training data [Kalogerakis et al. 2010] or user-specified tem-
plates. We focus on unsupervised approaches.

4.2.1 Symmetry as Source of Structure

Symmetry is a purely geometric notion, i.e., it can be computed
based purely on geometric analysis without any additional prior
knowledge. Yet it carries powerful semantic information and plays
a critical role in structural analysis of man-made objects, whether
the input is an individual shape or a shape collection. In the case
of analyzing individual models, symmetry provides the key source
of structure. The most important reason is that symmetric parts
in an object are expected, in fact, they were designed, to perform
the same function. Hence, detected symmetries provide the first
cues for functional analysis. Symmetry-driven analysis is primar-
ily based on the prior knowledge that symmetric parts are to be
grouped together [Wertheimer 1923].

Symmetry is the absence of information (i.e., redundancy) within
a shape. Typically, a group G of allowed transformations are spec-
ified. Most often, G is a subset of rigid, similarity, or isometric
transforms. In order to have a symmetry, the group G of operations
must not change at least a subsetP ⊆ S of a geometric object S. In
this case, we have found a (partial) symmetry: All of the operations
g ∈ G are symmetry transformations that keep P invariant.

In general there are two different types of symmetries: The weak
form are instances or building blocks [Kalojanov et al. 2012]: The
set of operations G refers to all possibilities of exchanging parts of
the object with one another (for example by rigid transformations)
without affecting the shape itself (in this case, G is not a subgroup
of the rigid motions). The stronger form are regular transforma-
tions [Liu et al. 2004; Pauly et al. 2008]: In this case, the trans-
formations acting on the geometry themselves form an algebraic
group. This means, that not just the geometry is redundant in the
sense of transformations of the same piece showing up repeatedly,
but the way these building blocks are instantiated are regular them-
selves. Slippability [Gelfand and Guibas 2004] can be considered
as a special case (continuous case) of such regularity with respect
to rigid motions.

Various methods have been proposed for detecting symmetry [Alt
et al. 1988; Gal and Cohen-Or 2006; Loy and Eklundh 2006; Mar-
tinet et al. 2006; Mitra et al. 2006; Podolak et al. 2006; Simari
et al. 2006; Ovsjanikov et al. 2008; Pauly et al. 2008; Bokeloh et al.
2009; Xu et al. 2009a; Raviv et al. 2010; Xu et al. 2012b]. For
a detailed survey and in-depth discussion of symmetry, see for ex-
ample the recent surveys for images [Liu et al. 2010] and for 3D
geometry [Mitra et al. 2012].

Symmetry is attractive as a structure model because it is agnostic
of the actual geometry that shows a certain symmetry; it can there-
fore abstract from the concrete shape and can be used to formulate
complex, high-level structure assumptions on larger classes of ge-
ometry. For example, symmetry has been used to complete partial
shapes by inferring the most symmetric one that is consistent with
the observation [Thrun and Wegbreit 2005]. Mitra et al. [2007]
have proposed a method to fully automatically make shapes more
symmetric.

Symmetry can also be used as an invariant for controlling object

Figure 8: Symmetry hierarchy provides a structural organization
of an object’s parts. Parts associated with a node are colored blue.
Each node represents either a grouping by symmetry (green) or as-
sembly (red) by connectivity.

deformation. The iWires system is based on the assumption that
a free-form edit of an object should maintain the original sym-
metry properties of the input shape [Gal et al. 2009] (Figure 17).
The interaction and structure detection is based on salient line fea-
tures [Kent et al. 1996; Ohtake et al. 2004], called “wires” [Singh
and Eugene 1998]. Similar thoughts have been used by Bokeloh
et al. [2011; 2012] and Xu et al. [2011], among others, in order to
deform objects in a (symmetry) structure preserving manner.

Hierarchical nesting of symmetries has also been explored for shape
representation and modeling [Mar 2007; Wang et al. 2011; Zhang
et al. 2013]. Wang et al. [2011] constructs a symmetry hierarchy
from a pre-segmented man-made object (Figure 8). Inter-part sym-
metries as well as self-symmetries of the parts are first detected.
Symmetry and (part) connectivity relations are encoded into a graph
representation. Then recursive graph contraction is performed to
form a hierarchical representation. The order of the contraction op-
erations is determined by a set of hand-crafted rules which reflect
the perceptual laws of grouping and the compactness principle (i.e.,
striving for the simplest representation).

In a follow-up, Zhang et al. [2013] define an explicit optimization
objective based symmetry maximization and apply the optimiza-
tion framework for hierarchical and layered analysis of irregular
facades, seeking a high-level understanding of facade structures.
They perform a symmetry-driven search for an optimal hierarchical
decomposition defined by split and layering operations applied to
an input facade. The objective is to maximize the sum of symmetry
of the substructures resulting from recursive decomposition.

The resulting hierarchical shape or pattern representations from
these two works are shown to reflect object or design semantics and
support structure-aware hierarchical editing. However, consistency
between the hierarchical structural representations obtained on a set
of related shapes is not ensured. This issue has been addressed in
another follow-up work [van Kaick et al. 2013]; see Section 4.2.3.

4.2.2 Statistical Models of Structure

In the image domain, assembling images from local neighborhoods
has been used in non-parametric texture synthesis. The underly-
ing idea is to statistically model structure locally by assuming a
Markov-random field (MRF). Instead of modeling global statistics
over complete images only image pieces are considered and their
potential connection to neighboring pieces. Non-parametric tex-
ture synthesis was introduced by [Efros and Leung 1999] and in-



spired further research for images [Wei and Levoy 2000; Hertz-
mann et al. 2001; Kwatra et al. 2003; Kwatra et al. 2005; Simakov
et al. 2008; Wei et al. 2008]. Also, the idea has been tried for 3D
geometry: [Bhat et al. 2004; Sharf et al. 2004; Zelinka and Gar-
land 2004; Lagae et al. 2005; Lai et al. 2005; Nguyen et al. 2005;
Zelinka and Garland 2006; Zhou et al. 2006; Merrell 2007; Merrell
and Manocha 2008; Chen and Meng 2009; Merrell and Manocha
2009; Alhashim et al. 2012]. MRF-based approaches are power-
ful tools for modeling local texture but lack the ability to produce
globally consistent results (e.g., closing loops). This is due to the
MRF assumption that captures only local statistics while the global
model structure is ignored. Assembling globally consistent pieces
would result in a NP-hard optimization problem. Typically, non-
parametric methods damp this problem by minimizing inconsisten-
cies rather than avoiding them completely.

Kalogerakis and co-workers learn a generative probabilistic model
describing a component-based structure from a pre-segmented set
of shapes [Kalogerakis et al. 2012]. Their key observation is that
structural variability heavily depends on the particular style of a
shape and its components. Sailing ships, for example, typically dif-
fer vastly from cargo ships and components such as sails or contain-
ers naturally point to a particular style. This relationship is mod-
eled with a probabilistic model consisting of observable random
variables and latent variables that model the cause for these obser-
vations. The observable variables can be extracted from the input
shapes such as the number of components, shape descriptors, and
adjacency information (part parameters). The style of a shape and
the style of sub components are modeled as latent variables. The
model is organized hierarchically: The shape style conditions on
the number of components and their style which in turn conditions
on the observable variables describing a component. Additionally,
lateral conditional dependencies are learned between observed ran-
dom variables that capture relationships between attributes of dif-
ferent components.

A different approach is to model the global structure directly and
thereby restrict the shape space to globally consistent shapes. In
traditional procedural modeling the structure is encoded into a pro-
cedure that the user has to provide [Stiny and Gips 1971; Parish
and Müller 2001; Wonka et al. 2003; Müller et al. 2006; Lipp et al.
2008]. Various methods were proposed to guide procedural mod-
eling to achieve the anticipated result [Talton et al. 2011; Beneš
et al. 2011]. Inverse procedural modeling poses the problem of cre-
ating procedures from examples. In an early work [Hart and Flynn
1997] find fractal representations for input shapes. Recently, this
line of research was picked up again for vector graphics [Ijiri et al.
2006; Ijiri et al. 2008; Huang et al. 2009; Yeh and Mĕch 2009;
Stáva et al. 2010] and shapes [Aliaga et al. 2007; Mitra and Pauly
2008; Bokeloh et al. 2010; Bokeloh et al. 2011; Bokeloh et al. 2012;
Vanegas et al. 2012; Talton et al. 2012].

4.2.3 Co-analysis of Model Collections

In recent years there have been increasing interests in the co-
analysis of sets of shapes. The premise is that understanding a
shape, and in particular its parts, can only be reliable by observing a
set of shapes possessing the same semantic or functionality, and not
from a single observation. While this claim is straightforward, that
more information can be extracted by simultaneously analyzing a
set, it is unclear how to exploit the distributed knowledge of a set
efficiently to achieve a coherent and reliable analysis of structures.

Unsupervised co-analysis only relies on the weak prior that the in-
put set of shapes are related, that is, they belong to the same ob-
ject class, e.g., chairs, airplanes, or lamps. The central problem
of co-analysis is that of co-segmentation, where the challenge is to
simultaneously segment all the shapes in the input set in a consis-

Figure 9: Unsupervised co-segmentation of a highly varied set of
container objects [Sidi et al. 2011].

tent manner (Figure 9). Thus, besides partitioning the shapes into
segments, we also obtain a labeling of the segments across the set,
where the parts with the same label serve the same semantic pur-
pose, albeit possibly being geometrically dissimilar.

Existing attempts to co-segmentation can be broadly classified
into supervised and unsupervised methods. In the supervised set-
ting [Kalogerakis et al. 2010; van Kaick et al. 2011b], a training
set with enough pre-analyzed shapes is assumed to be given. The
training set is then used to probabilistically label a set of unknown
shapes. Although supervised methods are not strictly speaking a
co-analysis (since the shapes are not simultaneously analyzed), the
result of the labeling leads to a consistent segmentation for shapes
in each object category.

The unsupervised setting is more challenging, since the entire
knowledge must be extracted from the input set itself [Golovinskiy
and Funkhouser 2009; Xu et al. 2010; Sidi et al. 2011; Huang et al.
2011; Hu et al. 2012; van Kaick et al. 2013]. It should be noted
that no method, be it supervised or unsupervised, can guarantee a
perfect co-segmentation of a set (see Figure 9), since the geometry
alone cannot always fully convey shape semantics. In particular, no
descriptors can capture all possible geometric variations of a part.

Early work by Golovinskiy and Funkhouser [2009] rigidly pre-
aligns all the shapes in the set and then clusters the shape faces
according to an underlying graph. The graph links faces that are
adjacent in the models and faces that are close-by after the align-
ment. The resulting clusters provide a natural co-segmentation of
the shapes. Xu et al. [2010] factor out the scale variation in the
shape parts by first clustering the shapes into different styles, where
style is defined by the anisotropic part scales of the shapes. In this
manner, they are able to co-segment shapes with more variability,
compared to [Golovinskiy and Funkhouser 2009], and also syn-
thesize new shapes by transferring (the part proportion) styles, as
shown in Figure 10. However, the technique is designed to only
deal with one specific style.

Sidi et al. [2011] pose the co-segmentation problem as that of clus-
tering segments resulting from an initial over-segmentation of the
set of shapes using diffusion maps. Compared to the two previous
works [Golovinskiy and Funkhouser 2009; Xu et al. 2010], the clus-
tering is performed in a space of shape descriptors rather than on the
spatial coordinates of the shapes themselves. This allows the han-
dling of corresponding parts differing in pose, location, and even
cardinality, factors which would challenge any technique based on
spatial alignment or direct clustering of shape geometry. In ad-
dition, the descriptor clustering approach allows to exploit a key



Figure 10: Style-content separation [Xu et al. 2010] by anisotropic
part scales facilitates part correspondence among a diverse set of
chairs (top). The separation is shown by the table with rows rep-
resenting identified styles. The correspondences allow automatic
synthesis of novel shapes (shaded in gold) from the example set via
style transfer.

enabling feature of the input set, namely, third-party connections.
Even if two shapes possess parts that are significantly dissimilar, we
can still establish a link between them if there are other parts in the
set (third parties) that create such a connection, resulting in a suc-
cessful co-segmentation. In a follow-up, Hu et al. [2012] improve
the feature modeling aspect of the algorithm. Instead of concate-
nating the different features into one feature descriptor, they pose
and solve a subspace clustering problem in multiple feature spaces.

Huang et al. [2011] develop a joint segmentation method where a
set is used to assist in the segmentation of individual shapes. They
can handle rich shape variations by using shape descriptors, but
without aiming at a consistent segmentation of the entire set. Thus,
strictly speaking, it is not a co-segmentation method.

Kim et al. [2013] propose learning a collection of deformable tem-
plates to represent variations in geometries and arrangements of
parts (for example, see Figure 11). This allows a linear-time al-
gorithm that jointly solves for model deformations, part segmenta-
tions, and shape correspondence, which is more efficient and effec-
tive than solving these problems independently.

Semi-supervised methods can be viewed as unsupervised methods
assisted by input coming out of the set, typically though user inter-
action. In the work by Wang et al. [2012] on active learning for co-
segmentation, the system automatically suggests constraints which
would most effectively refine the results while the user interactively
adds constraints as appropriate. Specifically, the user adds either a
cannot-link constraint or a must-link constraint between currently
obtained segments. The constraints are propagated to the set and
the co-segmentation is refined. Their work indeed demonstrates
that relatively few user constraints can lead to almost perfect co-
segmentation results. Their work also made available the COSEG
dataset for evaluating algorithms on co-segmentation.

Another advance in co-analysis was motivated by the potential of
hierarchical shape representations in collective understanding of
a shape collection possessing more diversities. The work by van
Kaick et al. [2013] presents a framework for co-hierarchical anal-
ysis of a shape collection. First, a candidate set of symmetry hi-
erarchies [Wang et al. 2011] for each shape in the collection is

Initial 
Template:
Final templates: 11 11 9 5

Figure 11: Analysis results for a collection of 36 chairs. Start-
ing from an initial template (top left), [Kim et al. 2013] capture
the main modes of variations within the collection by the final tem-
plates (top row). In this example, the algorithm extracted template
clusters for chairs without arms and with arms; a cluster for wide
benches; and a cluster for tall chairs. By jointly solving for model
deformations, part segmentation, and inter-model correspondence,
the algorithm achieves higher accuracy for each individual task.

selected. The core analysis is that of representative co-selection,
where one representative is selected from each candidate set of hi-
erarchies. Collectively, the selected representatives maximize the
within-cluster structural similarity among them. An iterative algo-
rithm for representative co-selection is developed, where at each
step, a novel cluster-and-select scheme is applied to a set of candi-
date hierarchies for all the shapes. The final set of selected repre-
sentatives are unified to form a structural co-hierarchy.

In an unsupervised setting, Zheng et al. [2014] establish part-level
correspondence across shape collections by investigating consis-
tency of part arrangement, rather than part geometry. This leads
to shape abstractions where relations play a dominant role over ge-
ometric details as consistent part structures emerge as proxies for
the shape families. Laga et al. [2013] also propose functional sub-
structures based on part semantics and context towards establishing
functional correspondence across models.

Most recently, Xu et al. [2014b] introduce focal points for char-
acterizing, comparing, and organizing collections of complex and
heterogeneous data and apply the concepts and algorithms devel-
oped to collections of 3D indoor scenes. Focal points are defined
as representative substructures in a scene collection. To organize a
heterogeneous scene collection, the scenes are clustered based on
a set of extracted focal points: scenes in a cluster are closely con-
nected when viewed from the perspective of the representative focal
points of that cluster. The key concept of representativity requires
that the focal points occur frequently in the cluster and that they
result in a compact cluster. They develop a co-analysis algorithm
which interleaves frequent pattern mining and subspace clustering
to extract a set of contextual focal points (see Figure 12) which
guide the clustering of the scene collection.

4.3 Structure from Physical Constraints

Some recent techniques analyze an input man-made object based
on domain-specific priors arising from physical or manufacturing
considerations. For example, physical laws (e.g., gravity, stability)
can be used as algebraic constraints or relations to guide geometric



optimization towards form-finding [Umetani et al. 2012; Whiting
et al. 2012]. Similarly, manufacturing constraints can determine
structural preferences. For example, in the context of architectural
buildings with glass facades [Yang et al. 2011], planar faces (e.g.,
quads) are more desirable as they are cheaper to build. A corre-
sponding constraint amounts to planarity constraint for the respec-
tive faces of the surface mesh (e.g., for quad meshes). Other con-
straints can be horizontal floor lines, or equal height for different
floors, etc. Finally, motion considerations for example in automata
for toys, the respective parts (e.g., gears, links, etc.) should sat-
isfy certain contact and kinematic constraints, again specified in the
form of algebraic constraints [Mitra et al. 2010; Zhu et al. 2012].

Additional physical constraints and priors arise for the shapes that
are used by people. For example, [Jiang et al. 2013] propose to hal-
lucinate potential actors in a scene, and use the relative arrangement
of objects and actors as a feature to improve shape classification.
Their main assumption is that there is a small number of poses that
people adopt to interact with a shape, and that the relative orienta-
tion of a person to a shape is consistent across the objects within the
same class. Similarly, [Grabner et al. 2011] align a human mesh to
a shape to produce a shape descriptor for objects that afford sitting.
Kim et al.[2014] leverage affordance priors for structural analysis
of shapes. In particular, they propose an algorithm for automati-
cally predicting a static pose that a person would need to adopt in
order to use an object. The algorithm stems from two observations:
(1) contact points usually share consistent local geometric features
related to the anthropometric properties of corresponding parts, and
(2) human body is subject to kinematic constraints and priors. Opti-
mizing these two terms enables estimating contact points and kine-
matic parameters for a pose (see Figure 13). This finer represen-
tation is particularly suitable for shape analysis problems such as
establishing corresponding points or structural constraints.

5 Structure-aware Shape Processing

Sematic shape processing is a long-standing goal in model creation
and synthesis. Structure, either prescribed as a part of the input or
discovered by analyzing model collections, gets us closer to this
goal. We defined structure as relations between parts (and their pa-
rameters) with the relations encoded as constraints or energy func-
tions. As a result deformation, synthesis, and design exploration
can all be cast as various forms of constrained-editing.

Optimization Strategies. Various optimization strategies have
been employed for structural-aware processing as instances of con-
strained optimization: (i) greedy progressive projection to the mul-
tiple constraints [Gal et al. 2009]; (ii) gradient descent [Umetani
et al. 2012; Whiting et al. 2012]; (iii) tangent space navigation us-

Figure 12: Focal points (marked red in the scenes) are contextual
and depend on scene composition in a collection. With more bed-
rooms (a) or more living rooms (b), different focals were extracted
and hybrid scenes are pulled towards one of the clusters.

Figure 13: Given an input shape, [Kim et al. 2014] algorithm pre-
dicts a human pose using a trained affordance model. The predicted
joint angles and surface contact points can be used to detect func-
tional similarities between the shapes, establish a set of key point
correspondences, and mark semantically salient surface regions.

ing a level-set approach [Yang et al. 2011; Bokeloh et al. 2012];
(iv) modal analysis by studying second order information of the
constraints [Yang et al. 2011]; or sparse basis (e.g., using ba-
sis pursuit) to locally represent the solution space [Habbecke and
Kobbelt 2012; Deng et al. 2013]. The main considerations in decid-
ing among these various options are simplicity of implementation;
speed and interactive-response; the order of the constraints; and the
dimension of the shape space determined by the structure model.

5.1 Structure-aware Shape Editing

In this section, we discuss a few example systems that aim at edit-
ing existing shapes. All of these have in common that they base
their structure model on an analysis of a single input shape. The
discovered structure is then maintained as a soft or hard constraint.
This could also be viewed as removing degrees of freedom in com-
parison to general, unconstrained shape modification, with the goal
of making it easier to perform plausible changes.

We consider three classes of examples: (i) As a baseline, we con-
sider traditional free-form deformation. (ii) We then discuss meth-
ods that extend these ideas towards the preservation of more general
relations, such as salient shape features or symmetry. We pick the
“iWires” system [Gal et al. 2009] as a canonical example of such
approaches. (iii) The last example concerns methods that are actu-
ally able to change the topology of the object. We discuss algebraic
regularity models as one example of such methods [Bokeloh et al.
2012].

5.1.1 Baseline: Free-form deformation

If we assume a triangle mesh as input, the simplest method for
editing is certainly performing low-level mesh operations (moving
vertices, possibly creating and deleting triangles). Obviously, this
provides the most degrees of freedom and the least structural con-
straints. In practice, editing of shapes in this way is impossible for
any but the simplest 3D models.

Instead of moving individual vertices, several methods have been
proposed to perform higher-level edits that affect multiple vertices
at the same time in a useful way. The first methods were free-
form deformations [Sederberg and Parry 1986; Coquillart 1990]



Figure 14: Left: Setting up a differential soft-constraint energy,
every one-ring neighborhood is a part Pi, and every vertex is a
parameter xi, shared by multiple parts. From the configuration of
vertices in the one-ring neighborhood, an estimate for differential
surface properties is obtained. Right: Deformation result for an
elastic deformation model.

that use a low-dimensional, band-limited, volumetric basis to im-
pose smooth, low-frequency deformations to the geometry (such as
a B-spline / Bezier basis of 3× 3× 3 control points). The vertices
x ∈ R3 are deformed by a function f : R3 → R3 that is composed
out of such low-frequency basis functions bi : R3 → R3:

f(x) =

n∑
i=1

xibi(x)

The underlying structure model is that high-frequency details of the
geometry should be preserved while the low-frequency bands are
subject to direct editing. According to our taxonomy, the parts in
this approach are the scalar basis functions bi that represent local-
ized, low-frequency degrees of freedom in the global deformation
field f . The parameters are the coefficients xi (which are 3D vec-
tors). The part-geometry is the set of triangles that have vertices
within the support of the part bi. There is no constraint energy —
the user has to adjust all parameters manually. Structure is only
implicitly imposed by using only a few, low-frequency basis func-
tions.

The requirement to adjust all control points of a low-frequency de-
formation basis explicitly creates some avoidable burden to the de-
signer. More recent free-form deformation techniques use physics-
based priors: The method uses an elastic energy as constraint en-
ergy. Additional handles are added to give the user control. In order
to formulate elastic deformation models, differential properties of
the deformed shape are computed and deformations that stretch or
bend the surface are penalized using a soft constraint energy. If the
input is a triangle mesh, the differential properties are typically read
off a one-ring neighborhood in the mesh [Sorkine and Alexa 2007],
so that the parts of such a model are all one ring neighborhoods and
the parameters are the vertex positions of the mesh. Figure 14 illus-
trates this notion (left), along with a result from an elastic free-form
deformation of the Stanford bunny model (right).

There are a large number of variants of this idea, dating back to
the seminal paper of Terzopoulos et al. [Terzopoulos et al. 1987].
A survey is provided by Botsch and Sorkine [Botsch and Sorkine
2008]. From a birds-eye-view, the structure model always in-
volves a constraint energy that penalizes deviations from the orig-
inal shape. By formulating the penalty in a differential domain,
local details are preserved more strongly than low-frequency shape
properties.

5.1.2 Structure-Aware Deformation

Free-form deformations have a local and non-adaptive way of pre-
serving structure: The shape of local pieces is preserved indepen-
dently of the content (lack of adaptivity). Further, no global rela-

Figure 15: Non-homogeneous resizing protects salient re-
gions[Kraevoy et al. 2008].

tions are considered; only a tendency towards low-frequency bend-
ing arises implicitly from chaining differential parts. Both of these
aspects open up room for new methods.

Local adaptivity. Local but adaptive deformation is considered for
example by [Kraevoy et al. 2008], see Figure 15. Their approach
uses a differential free-form deformation energy that prefers axis-
aligned stretch. Further, it estimates the “vulnerability” of local re-
gions by looking at differential properties (curvature, slippage anal-
ysis [Gelfand and Guibas 2004]), and the elasticity of the model is
adaptively reduced in vulnerable regions. Xu et al. [Xu et al. 2009b]
introduce adaptivity by adjusting the deformation penalties locally
to match the slippability properties of the object (again based on
slippage analysis); see Figure 16. This creates a deformation behav-
ior that often mimics the behavior of mechanical systems (joints,
cylinders etc.).

Figure 16: Possible joint locations are extracted by a local slippa-
bility analysis and subsequently used in enabling joint-aware de-
formation[Xu et al. 2009b]. Note that structure in the form of the
kinematic motion chains is discovered by analyzing the input model.

In both of these cases, the same concept of parts and parameters is
used. The only difference is how the constraint energy is created. In
both cases, the constraints only react to local differential properties
of the deformation field, but the behavior is more adaptive than in a
standard deformation approach.

Non-local relations. Global relations are used by iWires [Gal et al.
2009], see Figure 17. The method first detects crease lines in a tri-
angle mesh, which the authors call “wires”. These elements are the
parts of the deformation model. The parameters are the vertices of
the wires. Among these parts, all salient properties of Euclidean ge-
ometry (parallelity, orthogonality, different types of symmetry) are
enumerated in the analysis phase. These properties are then con-
sidered invariants of the deformation. Again, the user can control
the deformation by handles, and at first a conventional elastic so-
lution is computed. However, after that, the system tries to restore
the invariants iteratively by a greedy algorithm that bends the wires
such that they still meet the user constraints but better preserve the
original structure. Parallel lines should remain parallel, and ob-
jects that were symmetric under a Euclidean (rigid) transformation
should maintain this property.



Figure 17: The iWires system models shape structure by symmetry
relations within the object (specifically, among line features named
“wires”). These properties are preserved during interaction[Gal
et al. 2009].

A similar idea is examined by Zheng et al. [Zheng et al. 2011],
see Figure 18. Here, the parts are object-aligned bounding boxes
of shape components (obtained from segmentation). Again, Eu-
clidean invariants (symmetries) are used to propagate edits to affect
all symmetric elements similarly.

Figure 18: Controllers (shown in cyan), either a cuboid or a
generalized cylinder [Zheng et al. 2011], serve as high-level de-
formation handles for structure-aware deformation of man-made
shapes [Xu et al. 2011]. The numbers indicate the number of con-
trollers needed, showing that a small number of controllers usually
suffice for the modeling tasks.

Habbecke and Kobbelt [Habbecke and Kobbelt 2012] observe that
fully constrained systems are of limited interest in the context
of interactive modeling as they lack any design freedom. Hence
they focus on under-constrained systems. They linearize the con-
straint functions (i.e., energies) and examine their nullspace (see
also [Bokeloh et al. 2012]) as an instance of the Cardinality Mini-
mization Problem and efficiently solve the optimization using ideas
from compressed sensing (see Figure 19). Unlike image-based con-
strained reconstruction approaches, their proposed system interac-
tively supports manipulation even with hundreds of vertices and
constraints.

Figure 19: Modeling and editing a roof structure in a constrained-
optimization setup. The vertices are relaxed in the analysis stage,
and later automatically updated by the editing system [Habbecke
and Kobbelt 2012].

5.1.3 Topological Changes

All of the methods so far apply homeomorphisms to the original
shape, i.e., continuous, bijective mappings that preserve the topol-
ogy of the input. More recently, structure-aware editing methods
have appeared that are able to change the topology of the input.

The modeling by example system [Funkhouser et al. 2004] intro-
duced the concept of model synthesis as putting together parts from
different models to form a novel and coherent shape (see Figure 3).
The challenge, however, is how to define a family of shapes that is
similar to the input but actually changes in composition. A line of
work by Bokeloh et al. [Bokeloh et al. 2011; Bokeloh et al. 2012]
uses the invariant of maintaining the regularity properties of the
input shape. Regular patterns are a special kind of symmetry prop-
erty: A part of the shape is repeated multiple times in a regular
fashion, for example by a rigid transformation. Regularly repeating
elements are important structural features of a shape; they can com-
municate direction, grouping, emphasis, layout, order, etc. Other
important structural and visual properties of a shape such as straight
lines, planes, cylinders, and spheres can be represented as continu-
ous regular patterns. Using this regularity structure as invariant for
shape deformation the resulting shape will resemble the original
structure but with different proportions.

Both methods focus on discrete and continuous translational pat-
terns but differ fundamentally in their representation. In [Bokeloh
et al. 2011] an elastic deformation field is augmented with
anisotropic elasticity constraints penalizing deviation orthogonal to
translational patterns while allowing stretch in pattern direction.
Non-pattern regions are considered to be salient features and are
assigned a high stretch resistance. Thereby, occurring stretch will
be preferably diffused within regular patterns. Additionally, the
method extracts elements from discrete 1-parameter groups and re-
structures the object by inserting or removing elements in order to
minimize the distortion in pattern direction for discrete patterns.
Similar anisotropic energies have been proposed in [Kraevoy et al.
2008] allowing uniform scaling but minimize non-uniform scaling
in salient regions or in[Xu et al. 2009b] using local slippage to sim-
ulate mechanical joints.

The model of [Bokeloh et al. 2012] follows a stricter interpreta-
tion of maintaining regular patterns (see Figure 20). Instead of
constraining an elastic deformation field in a least-squares sense
to preserve regularity the method parameterizes shape deformation
directly over regular patterns. Each pattern is represented by a
small number of variables allowing only elementary changes such

Figure 20: Regularity preserving shape editing by algebraically
enforcing translative regularity patterns. Left: Degrees of freedom.
Right: Shape variants[Bokeloh et al. 2012].



Figure 21: Inverse procedural modeling: Shape grammar com-
puted from input shape (red) synthesizes variations of input
(grey)[Bokeloh et al. 2010].

as moving the entire pattern or changing the number of elements.
The method extracts all possible degrees of freedom by analyzing
the nullspace of a linear system of hard constraints linking adjacent
patterns and thereby guaranteeing a consistent shape. The resulting
model typically offers a small number of changeable parameters
that correspond to global changes in the shape and represent the al-
gebraic structure w.r.t. regularity. Quadratic programming is used
to combine the convex linear space of shapes with least-squares user
constraints and regularization. The key difference to [Bokeloh et al.
2011] is the inability to distort patterns at all. Users can only select
valid shapes from the shape space which can be a great advantage
in some applications but also be a disadvantage in others.

Formally, in [Bokeloh et al. 2012], a part in their model is a region
of geometry that has a fixed regularity pattern, i.e., (i) the same ge-
ometry shows up repeatedly, (ii) only differing by a rigid transfor-
mation, and (iii) these transformations form a commutative group
(or a large enough excerpt of a commutative Euclidean symmetry
group of rigid motions). By demanding maximal groups and area,
the part decomposition is uniquely defined. Commutative symme-
try groups are isomorphic to integer (or continuous) lattices; there-
fore, they can be characterized by simple repetition counts, which
are the parameters of the model. The constraint energy then just
aims at minimizing stretch to regularize the solution.

A different way of structure-aware deformation with topological
changes was proposed by Lin et al. [2011]. They explicitly deal
with resizing of irregular architecture where the regularity-based
approaches would not work. The input mesh is decomposed into a
hierarchy of parts (bounding boxes) manually defined by the user.
Part parameters are also defined by the user and specify if a part
must stay intact, can be replicated/deleted, or can be scaled. The
method analyzes a compatibility graph between adjacent parts and
constructs a series of 1D sequences which can be easily resized in
a structure-aware manner and constrain the remaining sequences.

Aside from editing, semi-automatic shape blending which allows
topology changes has been proposed by the recent work of Al-
hashim et al. [2014]; see the next section and Figure 27.

5.2 Structure-aware Shape Synthesis

In this section, we survey methods for structure-aware modeling
aimed at creating new variants of shapes based on structural simi-
larity to one or a collection of shapes. Methods have been proposed
that learn relations of part decompositions from a singe exemplar
using a fixed model to define parts like regular patterns [Pauly et al.
2008; Mitra and Pauly 2008; Bokeloh et al. 2011; Bokeloh et al.
2012] and/or partial symmetry [Stáva et al. 2010; Bokeloh et al.
2010]. Other methods operate on segmented shape collections to
learn part parameters and relations between them for a class of
shapes [Xu et al. 2010; Kalogerakis et al. 2012; Xu et al. 2012a].

Figure 22: Structure-preserving retargetting of irregular 3D archi-
tectures [Lin et al. 2011]. The original input model is shown at the
bottom left corner.

5.2.1 Variation from Single Example

Inverse procedural modeling. Bokeloh et al. [2010] introduced
inverse procedural modeling, wherein parameters of a procedu-
ral model is extracted starting from a single example (see Fig-
ure 21). Algorithmically, a shape grammar is constructed from
a single input shape that produces r-similar shapes meaning that
every r-neighborhood of geometry in the output maps exactly to
an r-neighborhood in the input shape. The algorithm decomposes
an input shape into building blocks at symmetric regions that al-
low docking of different building blocks at these cut lines form-
ing so called docking sites. These docking sites can be systemati-
cally found by investigating partial symmetries of the input shape.
A docking site follows the boundary of an r-symmetric region,
thereby having a corresponding docking site due to symmetry prop-
erties, and separates the model into two disjoint pieces. Intuitively,
the non-symmetric part can be replaced by the corresponding non-
symmetric part enclosed by the corresponding docking site. The
method samples symmetry transformations, computes all docking
sites, and combines them into a context-free shape grammar. Al-
though the context-free grammar is actually a limitation, it does en-
able fast synthesis of similar models without requiring to recompute
all available docking sites in each step. Subsequently, Kalojanov et
al. [2012] investigated the space of r-similar shapes further. In-
tuitively, one can overlay all docking sites and fracture the model
simultaneously into micro-tiles. As it turns out, this is a canonical
decomposition that can construct the entire space of r-similar mod-
els. Both methods are examples for fixed part parameters since ev-
ery part remains rigid. [Wu et al. 2014] use dynamic programming
to minimize description length of inferred grammars to produce a
meaningful split grammar for facade models.

Earlier, Merrell [2007] used a fixed grid to decompose a model
into cubic parameterless parts, analyzes geometric compatibility
between these parts along the cut boundaries, and synthesizes new
variants of the input shape by recombining pieces with compatible
boundaries, similarly to texture synthesis. The method was further
extended to handle more complex grid structures as in for example
the Sierpinski Tetrahedron [Merrell and Manocha 2008].

Structure retargetting. In the context of facade modeling, the
work of Lin et al. [2011] mentioned above performs retargeting of

Figure 23: Tile synthesis by utilizing a probabilistic graphical
model learned from examples [Yeh et al. 2013].



irregular 3D architectural structures including those of facades. Bao
et al. [2012] generate multiple variations starting from a single fa-
cade design. An input facade design is generated by hierarchically
segmenting and labeling an input image. The user can then manu-
ally specify constraints that should be maintained in any variation,
e.g., alignment constraints between windows. Subsequently, facade
variations are generated for different facade sizes, where multiple
variations can be produced for a certain size reminiscent of tradi-
tional media re-targeting approaches. Computing such facade vari-
ations is based on interleaving heuristic search with quadratic pro-
gramming. Yeh and co-workers [2013] propose a method to learn
neighborhood relationships of tiles in a regular grid that allows the
use of multi-tiles (larger regions spanning over multiple grid cells)
and takes statistical properties into account that were observed in
the example data (see Figure 23), while [Schulz et al. 2014] pro-
pose a structure-guided synthesis framework to create physically
fabricatable models.

Figure 24: A matrix of photo-inspired creations [Xu et al. 2011]
(rows: 3D model candidates; columns: photographic inspirations).
Structures of the 3D candidates are preserved.

Photo-inspired synthesis. Xu et al. [2011] introduce an algorithm
for the modeling of 3D man-made objects where the user draws cre-
ative inspiration from a single photograph. Model creation is sup-
ported by utilizing an available set of 3D candidate models. Specif-
ically, the user creates a digital 3D model as a geometric variation
from a 3D candidate; see Figure 24. The variation is obtained by
automatically deforming a retrieved 3D candidate to fit the pho-
tographed target under the guidance of silhouette correspondence.
The set of candidate models have been pre-analyzed to possess use-
ful high-level structural information, which is preserved by the ge-
ometric variation so that the final product is coherent with its in-
herited structural information readily usable for subsequent model
refinement or processing. On the downside, the modeling technique
is unable to create new part structures. Or, structures based on ab-
stracted geometry can be used to directly enable intuitive image
manipulation of indoor scenes [Zheng et al. 2012].

5.2.2 Synthesis from Shape Collection

With style-content separation achieved via co-analysis of a set of
related shapes, Xu et al. [2010] perform straightforward style trans-
fer by altering the scales of the shape parts, filling in a style-content
table with the transfer results. New variations are generated which

Figure 25: Evolution paths leading to the generation of a chair
(bottom) with a new structure [Xu et al. 2012a]. Note that new
topologies can be generated by the crossover operator. The an-
cestors of the final chair belong to sets of shapes that are evolved
together, i.e., a set evolution.

possess varying part proportion styles, while keeping the part struc-
tures entirely intact; no new part structures are created.

Ovsjanikov et al. [2011] implicitly extract such a morphable model
by searching for a low degree of deformation to explain an input
model collection using a template shape (as collection of bounding
boxes) to specify a representation. Later, Kim et al. [Kim et al.
2012a] introduce the notion of fuzzy or probabilistic correspon-
dence to facilitate a faceted shape retrieval system.

In contrast, Xu et al. [2012a] introduce set evolution to create non-
trivial 3D model variations, starting from a set of structured models
belonging to the same object class (see Figure 25). Instead of syn-
thesizing new models one at a time, as in the classical modeling
by example paradigm [Funkhouser et al. 2004; Kalogerakis et al.
2012] (see Figures 3 and 26), an entire set of models are evolved to
produce novel shapes. Their method utilizes concepts from evolu-
tion theory to spawn new models while adapting to user intent in an
interactive modeling setting.

They call the creation process fit and diverse. Specifically, in each
evolution step, the user selects a subset of shapes considered to be
fit which produce offsprings for the next generation. Thus, user
preferences define the fitness for the evolution so that over time, the
shape population is steered to keep good fitness. To avoid overfit-
ting which would result in an elite population with low diversity,
two mechanisms are used to increase the diversity. First, a novel
crossover operator is introduced that shuffles parts from different
shapes in the collection to create new mutations. Second, a small
percentage of individuals with lower fitness score are added to the
next generation. As a result, the evolution produces inspiring, and
sometimes unexpected, shapes. Finally, the part crossover operator
works at the fine level of shape parts and allows new topologies to
be created while still preserving the coarse-level functional struc-

Figure 26: Recombination of existing shapes based on a
probabilistic model (green=training data, blue=synthesized re-
sult)[Kalogerakis et al. 2012].
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Figure 27: Topology-varying shape blending between a source
(left) and target (right) produces multiple, continuous series of
plausible in-betweens.[Alhashim et al. 2014].

ture of the input shapes.

Jain et al. [2012] present a system to interpolate and blend between
shapes from a database. They treat shapes as a collection of parts,
which are held together by symmetry and contact constraints. The
system then synthesizes new models by combining parts with com-
parable symmetry and contact structures. Averkiou et al. [2014]
propose a modeling interface that couples shape exploration and
synthesis. The shapes are embedded in a 2-dimensional space and
the user can click on an empty region to create a missing shape
by interpolating the neighbors. Alhashim et al. [2014] develop a
modeling tool which allows continuous topology-varying blending
between two 3D shapes; see Figure 27. The blending is executed on
a curve-sheet abstraction for 3D shapes which facilitates topologi-
cal modeling. A key challenge is how to ensure that only plausible
in-betweens are generated. Without resorting to a full-fledged study
of shape functionality, their tool is also exploratory in nature where
the user can select interesting in-betweens, like in a design gallery,
to steer the creative modeling process.

Zheng et al. [2013] hypothesize that certain symmetric functional
arrangements (i.e., part arrangements among symmetrically related

Figure 28: Parts from different models, even those from different
model families, can still be combined based on the consistency
of relations among the parts, i.e., matching subgraphs in relation
structures. This allows cross pollination of parts even across dif-
ferent model collections enabling functionally plausible model syn-
thesis [Zheng et al. 2013].

Figure 29: Point set structuring has been proposed for surface re-
construction [Lafarge and Alliez 2013] even from very noisy and
sparse input pointsets by directly recovering local structure (c.f.,
[Li et al. 2011b]) before surface reconstruction.

parts) help capture object functions. Hence, preserving such ar-
rangements during model synthesis, even when combining models
from geometrically and topologically different sources (e.g., mod-
els from different collections) leads to functionally plausible mod-
els. Hence, they propose a purely geometric approach based on
such substructures to match, replace, and position triplets of parts
to create non-trivial, yet functionally plausible, model variations
without requiring access to extensive training data (see Figure 28).

5.3 Structure-aware Shape Reconstruction

The GlobFit framework [Li et al. 2011a] regularizes locally fitted
primitives based on extracted global mutual relations. The main
assumption is that man-made engineering objects primarily consist
of basic primitives, possibly repeated and globally aligned under
common relations. Hence, they introduce an algorithm to directly
couple the local and global aspects of the problem. The fitted prim-
itives become the parts, while the relations are learned by testing
for pairwise primitive relations. A set of feasible relations are ex-
tracted among the candidate relations, and then aligned to, while
best fitting to the input data. True2Form [Xu et al. 2014a] uses a
similar relation driven approach to propose a sketch-based model-
ing system that reconstructs 3D curves from typical design sketches
by progressively detecting and enforcing applicable properties, ac-
counting for their global impact on an evolving 3D curve network.
Earlier, Li et al. [2011c] extract structure (in the form of transla-
tional symmetry) from photographs to improve model reconstruc-
tion from sparse and noisy LiDAR scans.

More recently, Lafarge and Alliez [2013] reconstruct surfaces from
point sets via a structure-preserving approach. The key idea is to
use local planar components to consolidate point sets before actual
reconstruction. The final surface is then obtained via a novel graph-
cut problem formulated on the 3D Delaunay triangulation of the
structured point set. The approach gracefully combines detected
primitives with free-form parts of the inferred shape to produce ro-
bust and high-quality final models (see Figure 29).

The notion of context as structure information among co-occurring
models was introduced in recent efforts by Fisher et al. [2011;
2012], see also Figure 30. Structure has also been used recently



for semantic model reconstruction from sparse, noisy, and often in-
complete depth scans (e.g., Kinect scans). For example, Shen et
al. [2012] convert low-quality scans to high-quality 3D models us-
ing semantic labeled datasets (see Figure 31). The algorithm runs
bottom up and creates new structures by assembling existing la-
beled parts. Essentially the segmented input models become the
parts, while the database suggests how they can be structurally
linked. Alignment is performed to align the potential part arrange-
ments to best explain the acquired data. In a parallel effort, Kim
et al. [2012b] propose a two phase approach: (i) a learning phase
wherein they acquire 3D models of frequently occurring objects and
capture their variability modes from multiple scans, and (ii) a recog-
nition phase wherein from a single scan of a new environment, they
identify previously seen objects but in novel poses and locations to
support recognition at interactive rates.

5.4 Structure-aware Design Exploration

In the context of design exploration, a direct optimization approach
(e.g., gradient descent) is rarely desirable. For example, designers
are more interested in exploring the space of acceptable solutions,
rather than being presented with a single (best) solution. Thus, the
goal is to expose the space of acceptable solutions as characterized
by the solutions that satisfy the structure relations (or constraints)
within an allowed threshold margin.

Yang et al. [2011] introduce the notion of constrained meshes,
where the input is a single input mesh along with a set of non-
linear constraints (in terms of the mesh vertices). The goal is to
explore other meshes with the same connectivity, while respecting
the prescribed constraints. They model the problem by mapping
the meshes to points x ∈ RD , where D is 3 times the number of
deformable vertices. Each constraint defines a hypersurface in RD

, and the intersection of all these hypersurfaces forms the corre-
sponding shape space, or mesh manifold, M. Thus, each energy
Ei manifests as such a hypersurface. For example, face planarity
leads to the planar quad (PQ) mesh manifold. They locally navi-
gate in M (actually within a tolerance band around M) with the
help of local approximations ofM. These are tangent spaces and
quadratically parameterized surfaces having second order contact
withM. They observe that in many settings additional quality mea-
sures (e.g., aesthetics) are available to discriminate among the valid
solutions. Thus, while any point of the shape spaceM represents
a valid constrained mesh, only certain parts ofM are desirable ac-
cording to application specific quality measures, e.g., fairness of
selected mesh polygons. They enable such an exploration with the
help of appropriate energy functions and their second order approx-
imations that are intrinsic to M. Eigen-analysis of the intrinsic

Figure 30: Context-based model search result using graph ker-
nels[Fisher et al. 2012].

Figure 31: Structure-aware 3D model reconstruction from kinect
data. The reconstruction is based on retrieving and then assembling
parts taken from multiple example shapes in a small shape reposi-
tory, while preserving the built-in structures of the examples [Shen
et al. 2012].

Hessians of energy functions turns out to be a highly effective tool
for the identification of the good parts of the shape space for sub-
sequent exploration with applications in design exploration, opti-
mization, and handle driven deformation with boundary conditions,
while conforming to prescribed constraints (see Figure 32). The
setup has subsequently been extended to handle curve-based model
deformations [Zhao et al. 2012], and also deformations restricted
to local modifications based on sparsity considerations [Deng et al.
2013].

Umetani et al. [2012] propose a guided modeling interface for ex-
ploration of valid shapes in the context of wood plank-based furni-
ture. They propose an interactive design framework for efficient and
intuitive exploration of geometrically and physically valid shapes.
During geometric editing operation, the proposed system continu-
ously visualizes the valid range of the parameter being edited. The
planks (i.e., cuboids) become the parts, while the structures arise
from the user-specified part layout. During manipulation, as one or
more constraints (e.g., stability or toppling) are violated, the system
generates multiple suggestions involving both discrete and contin-
uous changes to restore validity. Thus, while the user focuses on
the aesthetic aspects of the design, their computational framework
helps to achieve physical realizability by providing active guid-
ance to the user leading to fabrication- and physically-based form-
finding possibility for conceptual design.

Whiting et al. [2012] also use structural constraints to guide form-

Figure 32: Constrained meshes, i.e., the shape space of meshes
with a set of prescribed constraints involving the free vertices, pre-
serve non-local part relations while allowing the users to directly
navigate in the implicitly defined constrained shape space[Yang
et al. 2011].



Figure 33: Improving the stability of a building using structural op-
timization, thus enabling a novel form-finding possibility [Whiting
et al. 2012].

finding for shapes, especially to masonry structures. They explore
how geometric changes can lead to improved structural stability.
The approach is based on a novel measure of structural soundness,
which is then optimized by taking derivatives with respect to chang-
ing geometry. Specifically, geometric form is refined via a gradient
descent while introducing other constraints like volume preserva-
tion and uniform thickness (see Figure 33).

6 Next Challenges

We still consider structure-aware shape processing as a relatively
young sub-field of computer graphics with many open issues and
problems to address. We present a list of important open problem
(in our opinion) to conclude this survey.

Hierarchical models. Most existing structure models represent flat
arraignments of shape parts or features without a hierarchical orga-
nization, except for symmetry hierarchies [Mar 2007; Wang et al.
2011]. However, symmetry hierarchies have so far been constructed
by analyzing input shapes in isolation and the results do not ensure
any consistency over a set of related shapes, limiting their utility.
Since the way we perceive complex structures is generally thought
of as being hierarchical, studies of hierarchical structure models for
shape processing deserve more effort.

Functional shape analysis. The shift from low-level geometry
processing to high-level structure-aware shape processing is posing
new questions. Instead of focusing on measures that tell how simi-
lar two surface regions are geometrically, we are now interested in
what makes two substructures functionally similar. Instead of pro-
ducing shape variations which preserve local geometry details, we
are now interested in how to maintain the same functionality dur-
ing shape editing or creation. We expect functional shape analysis,
i.e., how to properly map geometry to functionality, to draw more
attention in research on geometry processing.

Scalability. To date, most works on structure-aware shape pro-
cessing have only been demonstrated and evaluated on small to
medium-sized datasets over a handful of object categories. Pop-
ular object classes include those of chairs, airplanes, lamps, and
other household items. 3D scene models typically contain up to
twenty items. Hence, both in terms of data size and structural com-
plexity, the scalability of the proposed analysis and modeling tech-
niques has not been sufficiently investigated. In addition to scal-
ability analysis, it is also clearly beneficial to develop large-scale
benchmarks for various structure-aware processing tasks.

The data challenge. Much work covered in this survey is data-
driven, where existing 3D shapes, possibility pre-analyzed or man-
ually labeled, serve as either training data or examples for analysis
or modeling. However, such approaches are always limited by the
scant availability of quality 3D shapes and quality 3D shape collec-
tions. While the issue may resolve by itself as the number of digital

3D models continue to grow, one may look for alternative rich data
sources. One possibility is to tap into the massive amount of image
data, however, how image data can be utilized for structure-aware
processing of 3D shapes is the challenge.

Unified structural representation. We have discussed a number of
structure models in use so far and most of them were developed for
specific applications. For example, in iWires [Gal et al. 2009], the
model was built on feature curves and their relations and this was
later extended for part-based analysis and manipulation via con-
trollers [Zheng et al. 2011]. Data-driven modeling through reuse
of existing shapes and their structures will be greatly facilitated if
there were a unified structural representation. Such a representation
requires the necessary formalism, compactness, and generality.

Conflicting constraints. As economical and accessible 3D data
acquisition technologies, such as Kinect@home and LiDAR scans,
propel the growth of 3D model collections, the quality of input data
may become less unreliable and the structures extracted from such
data may contain an increasing level of noise in the form of out-
liers or conflicting relations. Extracting a consistent set of relations
from such inconsistent and conflicting relation sets will be another
interesting and challenging research direction to pursue.

7 Conclusion

Inter-part relations within single shapes and across multiple shapes
constitute structures of objects. In the context of man-made ob-
jects such structures capture characteristic non-local part relations
and provide high-level information. Such part configurations along
with their allowable variations arise out of various considerations:
semantic factors, physical realizability, or fabrication convenience.
Further, preserving such structures in course of any geometric ma-
nipulation help maintain the plausibility of the final geometric form.
In recent years, there has been a flurry of research efforts to discover
such structures from models, and subsequently preserve them in
course of subsequent model manipulation. In this survey, we orga-
nize the various efforts in this emerging topic of structure-aware
shape processing particularly focusing on extraction, representa-
tion, storage, and processing of structures in man-made shapes,
with applications to various tasks including semantic reconstruc-
tion, scene understanding, intuitive deformation, plausible synthe-
sis, and generally to design space exploration.
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STÁVA, O., BENES, B., MÉCH, R., ALIAGA, D., AND KRIS̆TOF,
P. 2010. Inverse procedural modeling by automatic generation
of l-systems. Computer Graphics Forum 29, 2, 665–674.

STINY, G., AND GIPS, J. 1971. Shape grammars and the generative
specification of painting and sculpture. In IFIP Congress 71.

SUNKEL, M., JANSEN, S., WAND, M., AND SEIDEL, H.-P. 2013.
A correlated parts model for object detection in large 3d scans.
Computer Graphcis Forum (Special Issue of Eurographics). to
appear.

TALTON, J. O., LOU, Y., LESSER, S., DUKE, J., MĚCH, R., AND
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