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Abstract

Data-driven methods serve an increasingly important role in dis-
covering geometric, structural, and semantic relationships between
shapes. In contrast to traditional approaches that process shapes
in isolation of each other, data-driven methods aggregate informa-
tion from 3D model collections to improve the analysis, modeling
and editing of shapes. Through reviewing the literature, we pro-
vide an overview of the main concepts and components of these
methods, as well as discuss their application to classification, seg-
mentation, matching, reconstruction, modeling and exploration, as
well as scene analysis and synthesis. We conclude our report with
ideas that can inspire future research in data-driven shape analysis
and processing.

Keywords: machine learning, geometry processing, geometry
analysis

Concepts: •Computing methodologies→ Image manipulation;
Computational photography;

1 Introduction

As the availability of 3D data increases, due to the developments
in both 3D sensing technology as well as 3D modeling software,
data-driven approaches become increasingly applicable and useful
to 3D shape processing. In contrast to traditional approaches [Levy
and Zhang 2011], data-driven methods look beyond single objects,
instead analyzing sets of shapes jointly to extract meaningful map-
pings and correlations between them. In addition, these methods are
able to learn from data computational models that effectively rea-
son about properties and relationships of shapes without relying on
hard-coded rules or explicitly programmed instructions. Leverag-
ing shared information across multiple objects, data-driven meth-
ods are able to facilitate high-level shape understanding through
discovering geometric and structural patterns among collections of
shapes, patterns which serve as strong priors in various geometry
processing applications.

The idea of utilizing data to support geometry processing has been
exploited and practiced for many years. However, most exist-
ing works based on this idea are confined to the example-based
paradigm, mostly leveraging only one core concept of data-driven
techniques – information transfer. Typically, the input to these
problems includes one or multiple exemplar shapes with some pre-
scribed or precomputed information of interest, and a target shape
that needs to be analyzed or processed. These techniques usually
establish a correlation between the source and the target shapes and
transfer the interesting information from the source to the target.
The applications of such approaches include a variety of methods
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Figure 1: Data-driven shape processing and modeling provides
a promising solution to the development of “big 3D data”. The
two major ways of 3D data generation, 3D sensing and 3D content
creation, populate 3D databases with fast growing amount of 3D
models. The database models are sparsely augmented with man-
ual segmentation and labeling, as well as reasonably organized, to
support data-driven shape analysis and processing, based on, e.g.,
machine learning techniques. The learned knowledge can in turn
support efficient 3D reconstruction and 3D content creation, dur-
ing which the knowledge can be transferred to the newly generated
data. Such 3D data with semantic information can be included into
the database to enrich it and facilitate further data-driven applica-
tions.

in shape analysis (e.g. [Schaefer and Yuksel 2007a]) and shape syn-
thesis (e.g. [Merrell 2007; Ma et al. 2014]).

As the availability of 3D data increases, several new concepts in
data-driven methods are emerging, opening space for new develop-
ments in shape analysis and content creation. First, the rich vari-
ability of 3D content in existing shape repositories makes it pos-
sible to directly reuse the shapes or parts for constructing new 3D
models [Funkhouser et al. 2004]. Content reuse for 3D modeling
is perhaps the most straightforward application of big 3D geomet-
ric data, providing a promising approach to address the challenging
3D content creation problem. Second, high-level shape understand-
ing can benefit from co-analyzing collections of shapes. Several
analysis tools demonstrate that shape analysis is more reliable if it
is supported by observing certain attributes across a set of seman-
tically related shapes instead of just focusing on a single object.
Co-analysis requires a critical step of finding correlations between
multiple shapes in the input set, which is substantially different
from building pair-wise correlation. A key concept to co-analysis is
the consistency of the correlations across the entire set, which has
both semantic [Kalogerakis et al. 2010; Sidi et al. 2011; Wang et al.
2012] and mathematical [Huang and Guibas 2013a] justifications.
Third, aside from analyzing patterns from a set of shapes, it is also
possible to endorse a subset of the shapes with some semantic infor-
mation (e.g., part labeling), which can be propogated to the other
shapes through learned mappings. This information propogation
evolves the concept of knowledge transfer between shapes.
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Relation to knowledge-driven shape processing. Prior to the
emergence of data-driven techniques, high-level shape understand-
ing and modeling was usually achieved with knowledge-driven
methods. In the knowledge-driven paradigm, geometric and struc-
tural patterns are extracted and interpreted with the help of explicit
rules or hand-crafted parameters. Such examples include heuristics-
based shape segmentation [Shamir 2008] and procedural shape
modeling [Müller et al. 2006]. Although these approaches have
certain empirical success, they exhibit several inherent limitations.
First, it is extremely difficult to hard-code explicit rules and heuris-
tics that can handle the enormous geometric and structural variabil-
ity of 3D shapes and scenes in general. As a result, knowledge-
driven approaches are often hard to generalize well to large and
diverse shape collections. Another issue is that non-experts find it
difficult to interact with knowledge-driven techniques that require
as input “low-level” geometric parameters or instructions.

In contrast to knowledge driven methods, data-driven techniques
learn representations and parameters from data. They usually do
not depend on hard-coded prior knowledge, and consequently do
not rely on hand-crafted parameters, making these techniques more
data-adaptive and thus lead to significantly improved performance
in many practical settings. The success of data-driven approaches,
backed by machine learning techniques, heavily relies on the acces-
sibility of large data collections. We have witnessed the successful
performance improvement of machine learning algorithms by in-
creasing the training set size [Banko and Brill 2001]. In light of
this, the recent developments in 3D modeling tools and acquisition
techniques for 3D geometry, as well as availability of large repos-
itories of 3D shapes (e.g., Trimble 3D Warehouse, Yobi3D , etc.),
offer great opportunities for developing data-driven approaches for
3D shape analysis and processing.

Relation to structure-aware shape processing. This report is
closely related to the recent survey on “structure-aware shape pro-
cessing” by Mitra and co-workers [Mitra et al. 2014], which con-
centrates on techniques for structural analysis of 3D shapes, as well
as high-level shape processing guided by structure-preservation. In
that survey, shape structure is defined as the arrangement and re-
lations between shape parts, which is analyzed through identifying
shape parts, part parameters, and part relations. Each of the three
can be determined through manual assignment, predefined model
fitting and data-driven learning.

In contrast, our report takes a very different perspective—we focus
on how the increasing availability of geometric data has changed
the field of shape analysis and processing. In particular, we want
to highlight several key distinctions: First, data-driven shape pro-
cessing goes beyond structure analysis. For example, leveraging
large shape collections may benefit a wider variety of problems in
shape understanding and processing, such as parametric modeling
of shape space [Allen et al. 2003], hypothesis generation for object
and scene understanding [Zia et al. 2013; Satkin et al. 2012], and
information transfer between multi-modal data [Wang et al. 2013b;
Su et al. 2014]. Data-driven shape processing may also exploit the
data-centered techniques in machine learning such as sparse rep-
resentation [Ren and Ramanan 2013] and feature learning [Hinton
et al. 2006; Bengio 2009; Yu and Ng 2010; Krizhevsky et al. 2012],
which are not pre-conditioned on any domain-specific or structural
prior beyond raw data. Second, even within the realm of structure-
aware shape processing, data-driven approaches are arguably be-
coming dominant due to their theoretical and practical advantages,
as well as the availability of large shape repositories and recent de-
velopments in machine learning.

Vision and motivation. With the emergence of “big data”, many
scientific disciplines have shifted their focus to data-driven tech-
niques. Although 3D geometry data is still far from being as ubiq-
uitous as some other data formats (e.g., photographs), the rapidly
growing number of 3D models, the recent developments in fusing
2D and 3D data, and the invention of commodity depth sensors,
have made the era of “big 3D data” more promising than ever. At
the same time, we expect data-driven approaches to take one of the
leading roles in the reconstruction and understanding of acquired
3D data, as well as the synthesis of new shapes. Data-driven geom-
etry processing will close the loop starting from acquisition, analy-
sis, and processing all the way to the generation of 3D shapes (see
Figure 1), and will be a key tool for manipulating big visual data.

Recent years have witnessed a rapid development of data-driven
geometry processing algorithms, both in the computer graphics and
computer vision communities. Given the research efforts and wide
interests in the subject, we believe many researchers would benefit
from a comprehensive and systematic survey. We also hope such a
survey can stimulate new theories, problems, and applications.

Organization. This survey is organized as follows. Section 2
gives a high-level overview of data-driven approaches and classi-
fies data-driven methods with respect to their application domains.
This section also provides two representative examples for the read-
ers to understand the general work-flow of data-driven geometry
processing. The sections following survey the various data-driven
shape processing problems in detail, and try to correlate the differ-
ent methods through comparisons in various aspects. Finally, we
conclude our survey by discussing a few key problems involved in
designing a data-driven method for shape processing, listing a set
of open challenges in this direction, as well as providing a vision
on future research.

Accompanying online resources. In order to assist the reader
in learning and leveraging the basic algorithms, we provide an on-
line wikipage [Xu et al. 2016], which collects tools and source code,
together with benchmark data for typical problems and applications
of data-driven shape processing. This page will also maintain links
and data mining tools for obtaining large data collections of shapes
and scenes. This website could serve as a starting point for those
who are conducting research in this direction. We also expect it to
benefit a wide spectrum of researchers from related fields.

2 Overview

In this section, we provide a high-level overview of the main com-
ponents and steps of data-driven approaches for processing 3D
shapes and scenes. Although the pipeline of these methods vary
significantly depending on their particular applications and goals,
a number of components tend to be common: the input data col-
lection and processing, data representations and feature extraction,
as well as learning and inference. Representation, learning and
inference are critical components of machine learning approaches
in general [Koller and Friedman 2009b]. In the case of shape
and scene processing, each of these components poses several in-
teresting and unique problems when dealing with 3D geometric
data. These problems have greatly motivated the research on data-
driven geometry processing, and in turn have brought new chal-
lenges to the computer vision and machine learning communities,
as reflected by the increased interest in 3D visual data from these
fields. Below, we discuss particular characteristics and challenges
of data-driven 3D shape and scene processing algorithms. Figure 2
provides a schematic overview of the most common components of
these algorithms.
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Figure 2: The general pipeline of data-driven geometry processing contains four major stages: data collection and preprocessing, feature
extraction (or feature learning), learning and inference. The inference supports many applications which would produce new shapes or
scenes through reconstruction modeling or synthesis. These new data, typically possessing labels for shapes or parts, can be used to enrich
the input datasets and enhance the learning tasks in future, forming a data-driven geometry processing loop.

Training shapes
with labeled parts Geometric feature space

x1

x2

Test shape
Test shape

with labeled parts

Figure 3: Pipeline of a supervised segmentation algorithm [Kalogerakis et al. 2010]. Given a set of shapes with labeled parts, the points of
each shape are embedded in a common feature space based on their local geometric descriptors (a color is assigned to points depending on
their given part label). A classifier is learned to split the feature space into regions corresponding to each part label. Given a test shape, its
points (shown in grey) are first embedded in the same space. Then part labels are inferred for all its points based on the learned classifier
and an underlying structured probabilistic model (Section 4).

2.1 3D data collection

Shape representation. A main component of data-driven ap-
proaches for shape and scene processing is data collection, where
the goal is acquire a number of 3D shapes and scenes depending on
the application. When shapes and scenes are captured with scanners
or depth sensors, their initial representation is in the form of range
data or unorganized point clouds. Several data-driven methods
for reconstruction, segmentation and recognition directly work on
these representations and do not require any further processing. On
the other hand, online repositories, such as the Trimble 3D Ware-
house, contain millions of shapes and scenes that are represented
as polygon meshes. A large number of data-driven techniques are
designed to handle complete shapes in the form of polygon meshes
created by 3D modeling tools or re-constructed from point clouds.
Choosing which representation to use depends on the application.
For example, data-driven reconstruction techniques aim for gen-
erating complete shapes and scenes from noisy point clouds with
missing data. The reconstructed shapes can then be processed with
other data-driven methods for categorization, segmentation, match-
ing and so on. Developing methods that can handle any 3D data rep-
resentation, as well as jointly reconstructing and analyzing shapes
is a potential direction for future research we discuss in Section 11.

When polygon meshes are used as the input representation, an im-
portant aspect to consider is whether and how data-driven meth-
ods will deal with possible “defects”, such as non-manifold and
non-orientable sets of polygons, inverted faces, isolated elements,
self-intersections, holes and topological noise. The vast majority of

meshes available in online repositories have these problems. Al-
though there is a number of mesh repairing tools (see [Campen
et al. 2012] for a survey), they may not handle all different types
of “defects”, and can take a significant amount of time to process
each shape in a large dataset. To avoid the issues caused by these
“defects”, some data-driven methods uniformly sample the input
meshes and work on the resulting point-based representation in-
stead (e.g., [Chaudhuri et al. 2011a; Kim et al. 2013a]).

Datasets. Although it is desirable to develop data-driven meth-
ods that can learn from a handful of training shapes or scenes, this is
generally a challenging problem in machine learning [Fei-Fei et al.
2006]. Several data-driven methods in computer vision have been
particularly successful due to the use of very large datasets that can
reach the size of several millions of images [Torralba et al. 2008].
In contrast, data-driven approaches for 3D shape and scene process-
ing approaches have mostly relied on datasets that reach the order
of a few thousands so far (e.g., Princeton Shape Benchmark [Shi-
lane et al. 2004b], or datasets collected from the web [Kim et al.
2013a]). Online repositories contain large amount of shapes, which
can lead to the development of methods that will leverage datasets
that are orders of magnitudes larger than the ones currently used.
One significant example is the recently available ShapeNet [Su et al.
2015c], which provides a richly-annotated, large-scale dataset of
3D shapes. Similar to ImageNet, a well-known image database in
the computer vision community, ShapeNet is organized based on
the WordNet hierarchy. It has indexed about 3 million models, out
of which 220 thousand models are classified into 3,135 WordNet



synsets (a synset refers to a meaningful concept in WordNet).

Another possibility is to develop synthetic datasets. A notable ex-
ample is the pose and part recognition algorithm used in Microsoft’s
Kinect that relies on 500K synthesized shapes of human bodies in
different poses [Shotton et al. 2011]. In general, large datasets are
important to capture the enormous 3D shape and scene variability,
and can significantly increase the predictive performance and us-
ability of learning methods. A more comprehensive summary of
existing online data collections can be found on our wikipage [Xu
et al. 2016].

2.2 3D data processing and feature representation

It is common to perform some additional processing on the input
representations of shapes and scenes before executing the main
learning step. The reason is that the input representations of 3D
shapes and scenes can have different resolutions (e.g., number of
points or faces), scale, orientation, and structure. In other words,
the input shapes and scenes do not initially have any type of com-
mon parameterization or alignment. This is significantly different
from other domains, such as natural language processing or vision,
where text or image datasets frequently come with a common pa-
rameterization beforehand (e.g., images with the same number of
pixels and objects of consistent orientation).

To achieve a common parameterization of the input shapes and
scenes, one popular approach is to embed them in a common ge-
ometric feature space. For this purpose a variety of shape descrip-
tors have been developed. These descriptors can be classified into
two main categories: global shape descriptors that convert each
shape to a feature vector, and local shape descriptors that convert
each point to a feature vector. Examples of global shape descriptors
are Extended Gaussian Images [Horn 1984], 3D shape histograms
[Ankerst et al. 1999; Chaudhuri and Koltun 2010], spherical func-
tions [Saupe and Vranic 2001], lightfield descriptors [Chen et al.
2003a], shape distributions [Osada et al. 2002], symmetry descrip-
tors [Kazhdan et al. 2004a], spherical harmonics [Kazhdan et al.
2003b], 3D Zernicke moments [Novotni and Klein 2003], and bags-
of-words created out of local descriptors [Bronstein et al. 2011].
Local shape descriptors include surface curvature, PCA descrip-
tors, local shape diameter [Shapira et al. 2008], shape contexts [Be-
longie et al. 2002; Kalogerakis et al. 2010; Kokkinos et al. 2012],
spin images [Johnson and Hebert 1999b], geodesic distance fea-
tures [Zhang et al. 2005], heat-kernel descriptors [Bronstein et al.
2011], and depth features [Shotton et al. 2011]. Global shape de-
scriptors are particularly useful for shape classification, retrieval
and organization. Local shape descriptors are useful for partial
shape matching, segmentation, and point correspondence estima-
tion. Before using any type of global or local descriptor, it is im-
portant to consider whether the descriptor will be invariant to dif-
ferent shape orientations, scales, or poses. In the presence of noise
and irregular mesh tessellations, it is important to robustly estimate
local descriptors, since surface derivatives are particularly suscep-
tible to surface and sampling noise [Kalogerakis et al. 2007]. It is
also possible to use several different descriptors as input, and let the
learning step decide which ones are more relevant for each class of
shapes [Kalogerakis et al. 2010].

A different approach, which has attracted large attention in the com-
puter vision community, is to avoid manually engineered features
and instead directly learn features them from raw data. This ap-
proach has been enlightened by the recent developments in deep
learning [Bengio 2009; Yu and Ng 2010], and in particular Convo-
lutional Neural Networks (CNNs) [Krizhevsky et al. 2012; Szegedy
et al. 2015]. A number of deep learning architectures have been re-
cently proposed to learn 3D shape and scene descriptors, operating

on either voxel-based representations [Wu et al. 2015], view-based
projections [Su et al. 2015a; Xie et al. 2015], spectral representa-
tions [Boscaini et al. 2015], or RGB-D data [Socher et al. 2012;
Blum et al. 2012; Lai et al. 2013; Bo et al. 2014].

Instead of embedding shapes in a common geometric feature space,
several methods instead try to directly align shapes in Euclidean
space. We refer the reader to the survey on dynamic geometry pro-
cessing for a tutorial on rigid and non-rigid registration techniques
[Chang et al. 2012a]. An interesting extension of these techniques
is to include the alignment process in the learning step of data-
driven methods, since it is inter-dependent with other shape anal-
ysis tasks such as shape segmentation and correspondences [Kim
et al. 2013a].

Some data-driven methods require additional processing steps on
the input. For example, learning deformation handles or fully
generative models of shapes usually rely on segmenting the input
shapes into parts with automatic algorithms [Huang et al. 2011; Sidi
et al. 2011] and representing these parts with surface abstractions
[Yumer and Kara 2012a] or descriptors [Kalogerakis et al. 2012a].
To decrease the amount of computation required during learning, it
is also common to represent the shapes as a set of patches (super-
faces) [Huang et al. 2011] inspired by the computation of super-
pixels in image segmentation.

2.3 Learning and Inference

The processed representations of shapes and scenes are used to per-
form learning and inference for a variety of applications: shape
classification, segmentation, matching, reconstruction, modeling,
synthesis, and scene analysis. The learning procedures significantly
vary depending on the application, thus we discuss them individu-
ally in each of the following sections on these applications. As
a common theme, learning is viewed as an optimization problem
that runs on a set of variables representing geometric, structural,
semantic or functional properties of shapes and scenes. There is
usually a single or multiple objective (or loss) functions for quan-
tifying preferences for different models or patterns governing the
3D data. After learning a model from the training data, inference
procedures are used to predict values of variables for new shapes
or scenes. Again, the inference procedures vary depending on the
application, and are discussed separately in the following sections.
It is common that inference itself is an optimization problem, and
sometimes is part of the learning process when there are latent vari-
ables or partially observed input shapes or scene data.

A general classification of the different types of algorithms used in
data-driven approaches for shape and scene processing can be de-
rived from the type of input information available during learning:

• Supervised learning algorithms are trained on a set of shapes
or scenes annotated with labeled data. For example, in the
case of shape classification, these labeled data can have the
form of tags, while in the case of segmentation, the labeled
data have the form of segmentation boundaries or part labels.
The labeled data can be provided by humans or generated syn-
thetically. After learning, the learned models are applied on
different sets of shapes (test shapes) to produce results rele-
vant to the task.

• Unsupervised algorithms co-analyze the input shapes or
scenes without any additional labeled data i.e., the desired
output is unknown beforehand. The goal of these methods
is to discover correlations in the geometry and structure of the
input shape or scene data. For example, unsupervised shape
segmentation methods usually perform some type of cluster-
ing in the feature space of points or patches belonging to the



input shapes.

• Semi-supervised algorithms make use of shapes (or scenes)
with and without any labeled data. Active learning is a spe-
cial case of semi-supervised learning in which a learning algo-
rithm interactively queries the user to obtain desired outputs
for more data points related to shapes.

In general, supervised methods tend to output results that are closer
to what a human would expect given the provided labeled data.
However, they may fail to produce desirable results when the train-
ing shapes (or scenes) are geometrically and structurally dissimilar
from the test shapes (or scenes). They also tend to require a sub-
stantial amount of labeled information as input, which can become a
significant burden for the user. Unsupervised methods can deal with
collections of shapes and scenes with larger variability and require
no human supervision. However, they sometimes require parameter
tuning to yield the desired results. Semi-supervised methods rep-
resent a trade-off between supervised and unsupervised methods:
they provide more direct control to the user about the desired result
compared to unsupervised methods, and often produce consider-
able improvements in the results by making use of both labeled and
unlabeled shapes or scenes compared to supervised methods.

The data-driven loop. An advantageous feature of data-driven
shape processing is that the output data, produced by learning and
inference, typically come with rich semantic information. For ex-
ample, data-driven shape segmentation produces parts with seman-
tic labels [Kalogerakis et al. 2010]; data-driven reconstruction is
commonly coupled with semantic part or shape recognition [Shen
et al. 2012; Nan et al. 2012]; data-driven shape modeling can gener-
ate readily usable shapes inheriting the semantic information from
the input data [Xu et al. 2011]. These processed and generated
data can be used to enrich the existing shape collections with both
training labels and reusable contents, which in turn benefit subse-
quent learning. In a sense, data-driven methods close the loop of
data generation and data analysis for 3D shapes and scenes; see
Figure 2. Such concept has been practiced in several prior works,
such as the data-driven shape reconstruction framework proposed
in [Pauly et al. 2005a] (Figure 12).

Pipeline example. To help the reader grasp the pipeline of data-
driven methods, a schematic overview of the components is given
in Figure 2. Depending on the particular application, the pipeline
can have several variations, or some components might be skipped.
We discuss the main components and steps of algorithms for each
application in more detail in the following sections. A didactic ex-
ample of the pipeline in the case of supervised shape segmentation
is shown in Figure 3. The input shapes are annotated with labeled
part information. A geometric descriptor is extracted for each point
on the training shapes, and the points are embedded in a common
feature space. The learning step uses a classification algorithm that
non-linearly separates the input space into a set of regions corre-
sponding to part labels in order to optimize classification perfor-
mance (more details are provided in Section 4). Given a test shape,
a probabilistic model is used to infer part labels for each point on
that shape based on its geometric descriptor in the feature space.

2.4 A comparative overview

Before reviewing the related works in detail, we provide a compar-
ative overview of them in Table 5, and correlate them under a set of
criteria:

• Training data. Data-driven methods can be categorized ac-
cording to the shape or scene representations they operate

Figure 4: Fine-grained classification of 3D models [Huang et al.
2013a], where text labels are propagated from brown to blue mod-
els.

on, the scale (size) of the training datasets they use, and
the type of pre-processing applied to these datasets. The
most common representation for shapes are polygon meshes
and point clouds. 3D scenes are typically represented as
an arrangement of individual shapes, usually organized in a
scene graph. Pre-processing includes pre-segmentation, over-
segmentation, pre-alignment, initial correspondence, or/and
labeling.

• Features. Roughly speaking, there are two types of feature
representations involved in data-driven shape processing. The
most commonly used feature representations are low-level
ones, such as local geometric features (e.g., local curvature)
and global shape descriptors (e.g. shape distribution [Os-
ada et al. 2002]). If the input shapes are pre-segmented into
meaningful parts, high-level structural representations (spa-
tial relationships of parts) can be derived. Generally, working
with high-level feature representations enables the learning
of more powerful models for more advanced inference tasks,
such as structural analysis [Mitra et al. 2014], on complex
man-made objects and scenes.

• Learning model/approach. The specific choice of learn-
ing method is often application-dependent. In most cases,
machine learning techniques are adapted or developed from
scratch to process geometric data. For some problems, such
as shape correspondence, the core problem is to extract ge-
ometric correlations between different shapes in an unsuper-
vised manner, which itself can be seen as a learning problem
specific to geometry processing.

• Learning type. As discussed above, there are three basic
types of data-driven methods, depending on the use of labeled
training data: supervised, semi-supervised and unsupervised
methods.

• Learning outcome. Learning can produce different types
of outputs: parametric or non-parametric models (classifiers,
clusterings, regressors, etc.), distance metrics which can be
utilized for further analysis, and/or feature representations
learned from raw data.

• Application. The main applications of data-driven shape
analysis and processing include classification, segmentation,
correspondence, modeling, synthesis, reconstruction, explo-
ration and organization.

3 Shape classification

Data-driven techniques commonly make assumptions about the size
and homogeneity of the input data set. In particular, existing analy-
sis techniques often assume that all models belong to the same class
of objects [Kim et al. 2013a] or scenes [Fisher et al. 2011], and
cannot directly scale to entire repositories such as the Trimble 3D



Method Input Data Shapes Classes Acc

[Huang et al. 2013a] 3D Warehouse 1206-5850 26 86
[Golovinskiy et al. 2009] LIDAR 1063 16 58
[Shilane and Funkhouser 2007] PSB 1814 90 75
[Funkhouser and Shilane 2006] PSB 1814 90 83
[Barutcuoglu and DeCoro 2006] PSB 1814 90 84
[Bronstein et al. 2011] SG 715 13 89
[Litman et al. 2014] SG 715 13 91
[Li et al. 2012] SHREC12 1200 60 88
[Li et al. 2014] SHREC14 400-104 1352 87
[Wu et al. 2015] ModelNet40 48,000 40 77
[Su et al. 2015a] ModelNet40 48,000 40 90
[Su et al. 2016] ModelNet40 48,000 40 94

Table 1: Performance of several methods for shape classification
(the accuracy in the right-most column as measured as fraction
of correctly-labeled shapes). Huang et al. [Huang et al. 2013a]
predict fine-grained tag attributes for big collections of similar
shapes. Golovinskiy et al. [Golovinskiy et al. 2009] propose a
method for classifying point clouds of objects in urban environ-
ments. The methods aimed at classifying meshes are evaluated on
Princeton Shape Benchmark (PSB) [Shilane and Funkhouser 2007;
Funkhouser and Shilane 2006; Barutcuoglu and DeCoro 2006].
To evaluate performance of the method in the presence of non-
rigid deformations ShapeGoogle (SG) dataset is also commonly
used [Bronstein et al. 2011; Litman et al. 2014]. Several recent
techniques use uniformly sampled representations (volumetric and
view-based images) of 3D shapes in conjunction with neural net-
works [Wu et al. 2015; Su et al. 2015a; Su et al. 2016].

Warehouse [Trimble 2014]. Similarly, techniques for data-driven
reconstruction of indoor environments assume that the input data
set only has furniture models [Nan et al. 2012], while modeling
and synthesis interfaces restrict the input data to particular object
or scene classes [Chaudhuri et al. 2011a; Kalogerakis et al. 2012a;
Fisher et al. 2012]. Thus, as a first step these methods need to query
a 3D model repository to retrieve a subset of relevant models.

Most public shape repositories such as 3D Warehouse [Trimble
2014] rely on the users to provide tags and names of the shapes with
little additional quality control measures. As a result, the shapes
are sparsely labeled with inconsistent and noisy tags. This moti-
vates developing automatic algorithms to infer text associated with
models. Existing work focuses on establishing class memberships
for an entire shape (e.g. this shape is a chair), as well as inferring
finer-scale attributes (e.g. this chair has a rocking leg).

Classification methods assign a class membership for unlabeled
shapes. One approach is to retrieve for each unlabeled shape the
most similar shape from a database of 3D models with known shape
classes. There has been a large number of shape descriptors pro-
posed in recent years that can be used in such a retrieval task, and
one can refer to various surveys (e.g., [Tangelder and Veltkamp
2008b]) for a thorough overview and comparisons. One can fur-
ther improve classification results by leveraging machine learning
techniques to learn classifiers that are based on global shape de-
scriptors [Frome et al. 2004; Golovinskiy et al. 2009]. Barutcuoglu
et al. [Barutcuoglu and DeCoro 2006] demonstrate that Bayesian
aggregation can be used to improve classification of shapes that are
a part of a hierarchical ontology of objects. Geometry matching
algorithms also facilitate distinguishing important features for clas-
sification [Funkhouser and Shilane 2006; Shilane and Funkhouser
2007]. Bronstein et al.[Bronstein et al. 2011] leverage “bag of
features” to learn powerful descriptor-space metrics for non-rigid
shapes. These technique can be further improved by using sparse

Figure 5: Ranking of parts with respect to “dangerous” attribute
(image from [Chaudhuri et al. 2013])

coding techniques [Litman et al. 2014] and perform well on bench-
marks [Li et al. 2012; Li et al. 2014]. Motivated by the success of
deep neural networks in image classification, Wu et al. [Wu et al.
2015] represent a shape by a volumetric occupancy grid and train
neural network to classify them. Su et al. [Su et al. 2015a] demon-
strate that by rendering the shape from multiple viewpoints and ana-
lyzing the views as images enables leveraging the power of existing
neural networks that were trained for image analysis. Su et al. [Su
et al. 2016] further combine both shape representations by sam-
pling volumetric occupancy grids with anisotropic view-dependent
kernels. See Table 1 for a brief summary of some methods.

Tag attributes often capture fine-scale attributes of shapes that
belong to the same class. These attributes can include presence or
absence of particular parts, object style, or comparative adjectives.
Huang et al. [Huang et al. 2013a] developed a framework for propa-
gating these attributes in a collection of partially annotated 3D mod-
els. For example, only brown models in Figure 4 were labeled, and
blue models were annotated automatically. To achieve automatic la-
beling, they start by co-aligning all models to a canonical domain,
and generate a voxel grid around the co-aligned models. For each
voxel they compute local shape features, such as spin images, for
each shape. Then, they learn a distance metric that best discrimi-
nates between different tags. All shapes are finally embedded in a
weighted feature space where nearest neighbors are connected in a
graph. A graph cut clustering is used to assign tags to unlabeled
shapes. Tag attributes can also be used to describe semantics, func-
tion, or style of parts in shapes. Data-driven consistent segmenta-
tion and labeling techniques can be applied to propagate part tags
across shapes (see Section 4). An alternative approach is to par-
tition shapes into multiple sets of parts, then extract descriptors to
define part similarity. A characteristic example of such an approach
was demonstrated in Shapira et al. [Shapira et al. 2010]. Given the
hierarchical segmentations of 3D shapes as input, part tagging was
achieved by comparing local geometric features of parts as well as
their context within the whole shape.

While the above method works well for discrete tags, they do not
capture more continuous relations, such as animal A is more dan-
gerous than animal B. Chaudhuri et al. [Chaudhuri et al. 2013] fo-
cus on estimating ranking based on comparative adjectives. They
use crowdsourcing to gather pairwise comparisons of shape parts
with respect to different adjectives, and use a Support Vector Ma-
chine ranking method to predict attribute strengths from shape fea-
tures for novel shape parts (Figure 5).



Figure 6: A random forest classifier applied on depth data repre-
senting a human body shape (image from [Fossati et al. 2013])

Style similarity methods have recently been proposed to classify
shapes into style-related categories e.g., buildings can be classified
into architectural styles, such as Gothic, Baroque, Byzantine and so
on. In contrast to the previously discussed approaches that rely on
generic visual similarity measures to compare shapes, these meth-
ods learn distance functions for style elements [Lun et al. 2015] or
common feature spaces [Liu et al. 2015] to quantify the stylistic
similarity of shapes. The methods can be used to compare the style
similarity of shapes, even when these belong to different classes
(e.g., chairs and lamps). To align the style similarity measures with
the human perception of style, style comparisons of shapes are gath-
ered through crowdsourcing. The learned similarity measures can
be used to retrieve stylistically similar shapes to populate a scene,
or associate shapes with style-related tags.

While the techniques described above are suitable for retrieving and
classifying shapes, a large number of applications require a more
involved structural analysis to infer semantic and functional proper-
ties of shapes or their parts. The following two sections will discuss
methods that perform structural analysis in collections of shapes
based on segmentation and local matching.

4 Shape segmentation

The goal of data-driven shape segmentation is to partition the
shapes of an input collection into parts, and also estimate part corre-
spondences across these shapes. We organize the literature on shape
segmentation into the following three categories: supervised seg-
mentation, unsupervised segmentation, and semi-supervised seg-
mentation following the main classification discussed in Section
2. Table 2 summarizes representative techniques and reports their
segmentation and part labeling performance based on established
benchmarks. Table 3 reports characteristic running times for the
same techniques.

4.1 Supervised shape segmentation

Classification techniques. Supervised shape segmentation is
frequently formulated as a classification problem. Given a train-
ing set of shapes containing points, faces or patches that are labeled
according to a part category (see Figure 3), the goal of a classifier is
to identify which part category other points, faces, or patches from
different shapes belong to. Supervised shape segmentation is exe-
cuted in two steps: during the first step, the parameters of the clas-
sifier are learned from the training data. During the second step,
the classifier is applied on new shapes. A simple linear classifier
has the form:

c = f(
∑
j

θj · xj) (1)

where xj is a geometric feature of a point (face, or patch), such
as the ones discussed in Section 2. The parameters θj serve as
weights for each geometric feature. The function f is non-linear
and maps to a discrete value (label), which is a part category, or
to probabilities per category. In general, choosing a good set of

geometric features that help predicting part labels, and employing
classifiers that can discriminate the input data points correctly are
important design choices. There is no rule of thumb on which is the
best classifier for a problem. This depends on the underlying dis-
tribution and characteristics of the input geometric features, their
dimensionality, amount of labeled data, existence of noise in the la-
beled data or shapes, training and test time constraints - for a related
discussion on how to choose a classifier for a problem, we refer the
reader to [Manning et al. 2008]. Due to the large dimensionality
and complexity of geometric feature spaces, non-linear classifiers
are more commonly used. For example, to segment human bodies
into parts and recognize poses, the Microsoft’s Kinect uses a ran-
dom forest classifier trained on synthetic depth images of humans
of many shapes and sizes in highly varied poses sampled from a
large motion capture database [Shotton et al. 2011] (Figure 6).

Structured models. For computer graphics applications, it is im-
portant to segment shapes with accurate and smooth boundaries.
For example, to help the user create a new shape by re-combining
parts from other shapes [Funkhouser et al. 2004], irregular and
noisy segmentation boundaries can cause problems in the part at-
tachment. From this aspect, using a classifier per point/face in-
dependently is usually not enough. Thus, it is more common to
formulate the shape segmentation problem as an energy minimiza-
tion problem that involves a unary term assessing the consistency
of each point/face with each part label, as well as a pairwise term
assessing the consistency of neighboring points/faces with pairs of
labels. For example, pairs of points that have low curvature (i.e.,
are on flat surface) are more likely to have the same part label. This
energy minimization formulation has been used in several single-
shape and data-driven segmentations (unsupervised or supervised)
[Katz and Tal 2003; Anguelov et al. 2005c; Shapira et al. 2010;
Kalogerakis et al. 2010]. In the case of supervised segmentation
[Kalogerakis et al. 2010], the energy can be written as:

E(c; θ) =
∑
i

Eunary(ci;xi, θ1) +
∑
i,j

Epairwise(ci, cj ;yij , θ2)

(2)
where c = {ci} is a vector of random variables representing the
part label per point (or face) i, xi is its geometric feature vector,
i, j are indices to points (or faces) that are considered neighbors,
yij is a geometric feature vector representing dihedral angle, angle
between normals, or other features, and θ = {θ1, θ2} are the energy
parameters. The important difference of supervised data-driven
methods with previous single-shape segmentation methods is that
the parameters θ are automatically learned from the training shapes
to capture complex feature space patterns per part [Anguelov et al.
2005c; Kalogerakis et al. 2010]. We also note that the above energy
of Equation 2, when written in an exponentiated form and normal-
ized, can be treated as a probabilistic graphical model [Koller and
Friedman 2009b], called Conditional Random Field [Lafferty et al.
2001] that represents the joint probability distribution over part la-
bels conditioned on the input features:

P (c|x,y, θ) = exp(−E(c; θ))/Z(x,y, θ) (3)

where Z(x,y, θ) is a normalization factor, also known as parti-
tion function. Minimizing the energy of Equation 2, or correspond-
ingly finding the assignment c that maximizes the above probability
distribution is known as a Maximum A Posteriori inference prob-
lem that can be solved in various manners, such as graph cuts, be-
lief propagation, variational or linear programming relaxation tech-
niques [Koller and Friedman 2009b].

The parameters θ can be jointly learned through maximum likeli-
hood (ML) or maximum a posteriori (MAP) estimates [Koller and
Friedman 2009b]. However, due to high computational complexity



Segmentation Learning Type of PSB rand index (# train. L-PSB accuracy (# train. COSEG
method type manual input shapes if applicable) shapes if applicable) accuracy

[Kalogerakis et al. 2010] supervised labeled shapes 9.4% (19) / 14.8% (3) 95.3% (19) / 89.2% (3) 91.9% (12) / 89.0% (3)
[Benhabiles et al. 2011] supervised segmented shapes 8.8% (19) / 9.7% (6) not applicable not applicable
[Huang et al. 2011] unsupervised none 10.1% not applicable not applicable
[Sidi et al. 2011] unsupervised none unknown unknown 87.7%
[van Kaick et al. 2011a] supervised labeled shapes unknown 8̃8.7% (12), see caption unknown
[Hu et al. 2012a] unsupervised none unknown 88.5% 91.4%
[Lv et al. 2012] semi-supervised labeled shapes unknown 92.3% (3) unknown
[Wang et al. 2013b] supervised labeled images unknown 8̃8.0% (19), see caption unknown
[Kim et al. 2013a] semi-/unsupervised box templates unknown unknown 92.7% (semi-superv.)
[Huang et al. 2014b] unsupervised none unknown unknown 90.1%
[Xu et al. 2014b] supervised labeled shapes 10.0% 86.0% unknown
[Xie et al. 2014] supervised labeled shapes 10.2% (19) 94.2 (19) / 88.6 (5) unknown

Table 2: Performance of data-driven methods for segmentation in the Princeton Segmentation Benchmark (PSB) and COSEG datasets. Left
to right: segmentation method, learning type depending on the nature of data required as input to the method, type of manual input if such
required, segmentation performance expressed by the rand index metric [Chen et al. 2009], labeling accuracy [Kalogerakis et al. 2010] based
on the PSB and COSEG datasets. We report the rand index segmentation error metric averaged over all classes of the PSB benchmark. The
labeling accuracy is averaged over the Labeled PSB (L-PSB) benchmark excluding the “Bust”, “Mech”, and “Bearing” classes. The reason
is that there are no clear semantic correspondences between parts in these classes, or the ground-truth segmentations do not sufficiently
capture semantic parts in their shapes. We report the labeling accuracy averaged over the categories of the COSEG dataset used in [Sidi
et al. 2011]. The COSEG classes “iron”, “large chairs”, “large vases”, “tele-aliens” were added later and are excluded here since most
papers frequently do not report performance in those. We note that van Kaick et al. [van Kaick et al. 2011a] reported the labeling accuracy
in ten of the L-PSB classes, while Wang et al. [Wang et al. 2013b] reported the labeling accuracy in seven of the L-PSB classes. The method
by Kim et al. [Kim et al. 2013a] can run in either semi-supervised or unsupervised mode. In unsupervised mode, the corresponding labeling
accuracy is 89.9% in the COSEG dataset on average.

of ML or MAP learning and the non-linearity of classifiers used in
shape segmentation, it is common to train the parameters θ1 and θ2
of the model separately i.e., train the classifiers of the unary and
pairwise term separately [Sutton and Mccallum 2005]. The exact
form of the unary and pairwise terms vary across supervised shape
segmentation methods: the unary term can have the form of a log-
linear model [Anguelov et al. 2005c], cascade of JointBoost classi-
fiers [Kalogerakis et al. 2010], Gentleboost [van Kaick et al. 2011a],
or feedforward neural networks [Xie et al. 2014]. The pairwise term
can have the form of a learned log-linear model [Anguelov et al.
2005c], label-dependent GentleBoost classifier [Kalogerakis et al.
2010], or a smoothness term based on dihedral angles and edge
length tuned by experimentation [Shapira et al. 2010; van Kaick
et al. 2011a; Xie et al. 2014]. Again the form of the unary and pair-
wise terms depend on the amount of training data, dimensionality
and underlying distribution of geometric features used, and compu-
tational cost.

Joint labeling. Instead of applying the learned probabilistic
model to a single shape, an alternative approach is to find corre-
spondences between faces of pairs of shapes, and incorporate a
third “inter-shape” term in the energy of Equation 2 [van Kaick
et al. 2011a]. The “inter-shape” term favors pairs of corresponding
faces on different shapes to have the same label. As a result, the
energy can be minimized jointly over a set of shapes to take into
account any additional correspondences.

Boundary learning. Instead of applying a classifier per mesh
point, face or patch to predict a part label, a different approach is to
predict the probability that a polygon mesh edge is a segmentation
boundary [Benhabiles et al. 2011]. The problem can be formulated
as a binary classifier (e.g., Adaboost) that is trained from human
segmentation boundaries. The input to the classifier are geomet-
ric features of edges, such as dihedral angles, curvature, and shape
diameter. The output is a probability for an edge to be a segmenta-
tion boundary. Since the predicted probabilities over the mesh do
not correspond to closed smooth boundaries, a thinning and an ac-

tive contour model [Kass et al. 1988] are used in post-processing to
produce the final segmentations.

Transductive segmentation. Another way to formulate the
shape segmentation problem is to group patches on a mesh such
that the segment similarity is maximized between the resulting seg-
ments and the provided segments in the training database. The seg-
ment similarity can be measured as the reconstruction cost of the
resulting segment from the training ones. The grouping of patches
can be solved as an integer programming problem [Xu et al. 2014b].

Shape segmentation from labeled images. Instead of using la-
beled training shapes for supervised shape segmentation, an alter-
native source of training data can come in the form of segmented
and labeled images, as demonstrated by Wang et al. [Wang et al.
2013b]. Given an input 3D shape, this method first renders 2D bi-
nary images of it from different viewpoints. Each binary image
is used to retrieve multiple segmented and labeled training images
from an input database based on a bi-class Hausdorff distance mea-
sure. Each retrieved image is used to perform label transfer to
the 2D shape projections. All labeled projections are then back-
projected onto the input 3D model to compute a labeling probabil-
ity map. The energy function for segmentation is formulated by
using this probability map in the unary term expressed per face or
point, while dihedral angles and Euclidean distances are used in the
pairwise term.

4.2 Semi-supervised shape segmentation

Entropy regularization. The parameters θ of Equation 2 can be
learned not only from the training labeled shapes, but also from the
unlabeled shapes [Lv et al. 2012]. The idea is that learning should
maximize the likelihood function of the parameters over the labeled
shapes, and also minimize the entropy (uncertainty) of the classifier
over the unlabeled shapes (or correspondingly maximize the nega-
tive entropy). The idea is that minimizing the entropy over unla-
beled shapes encourages the algorithm to find putative labelings for



Segmentation Reported Dataset size for Reported
method running times reported running times processor

[Kalogerakis et al. 2010] 8h train. / 5 min test. 6 train. shapes / 1 test shape Intel Xeon E5355 2.66GHz
[Benhabiles et al. 2011] 10 min train. / 1 min test. unknown for train. / 1 test shape Intel Core 2 Duo 2.99GHz
[Huang et al. 2011] 32h 380 shapes unknown, 2.4 GHz
[Sidi et al. 2011] 10 min 30 shapes AMD Opteron 2.4GHz
[van Kaick et al. 2011a] 10h train. / few min test. 20-30 train. shapes / 1 test shape AMD Opteron 1GHz
[Hu et al. 2012a] 8 min (excl. feat. extr.) 20 shapes Intel dual-core 2.93GHz
[Lv et al. 2012] 7h train. / few min test. 20 shapes Intel I7 2600 3.4GHz
[Wang et al. 2013b] 1.5 min (no train. step) 1 test shape unknown
[Kim et al. 2013a] 11h 7442 shapes unknown
[Huang et al. 2014b] 33h 8401 shapes unknown, 3.2GHZ
[Xu et al. 2014b] 30 sec (no train. step) 1 test shape Intel I5 CPU
[Xie et al. 2014] 15 sec train. (excl. feat. extr.) 6 train. shapes Intel Quad-Core 3.2 GHz

Table 3: Running times reported for the data-driven segmentation methods of Table 2. We note that running times are reported in different
dataset sizes and processors in the referenced papers, while it is frequently not specified whether the execution uses one or multiple threads
or whether the running times include all the algorithm steps, such as super-face or feature extraction. Exact processor information is also
frequently not provided. Thus, the reported running times of this table are only indicative and should not serve as a basis for a fair comparison.

the unlabeled data [Jiao et al. 2006]. However, it is generally hard
to strike a balance between the likelihood and entropy terms.

Metric embedding and active learning. A more general formu-
lation for semi-supervised segmentation was presented in [Wang
et al. 2012]. Starting from a set of shapes that are co-segmented
in an unsupervised manner [Sidi et al. 2011], the user interactively
adds two types of constraints: “must-link” constraints, which spec-
ify that two patches (super-faces) should belong to the same clus-
ter, and “cannot-link” constraints which specify that two patches
must be in different clusters. These constraints are used to perform
constrained clustering in an embedded feature space of super-faces
coming from all the shapes of the input dataset. The key idea is
to transform the original feature space, such that super-faces with
“must-link” constraints come closer together to form a cluster in
the embedded feature space, while super-faces with “cannot-link”
constraints move away from each other. To minimize the effort re-
quired from the user, the method suggests to the user pairs of points
in feature space that when constrained are likely to improve the
co-segmentation. The suggestions involve points that are far from
their cluster centers, and have a low confidence of belonging to their
clusters. Yi et al. [Yi et al. 2016] propose a method for achieving
accurate segmentation of a dataset. Their method balances between
manual mesh labeling, automatic propagation of these annotations,
and verification of manual and automatic annotations. Their opti-
mization explicitly minimizes the expected human work time.

Template fitting. A different form of partial supervision can
come in the form of part-based templates. Kim et al.’s method
[Kim et al. 2013a] allows users to specify or refine a few templates
made out of boxes representing expected parts in an input database.
The boxes iteratively fit to the shapes of a collection through simul-
taneous alignment, surface segmentation and point-to-point corre-
spondences estimated between each template and each input shape.
Alternatively, the templates can be inferred automatically from the
shapes of the input collection without human supervision based on
single shape segmentation heuristics. Optionally, the user can re-
fine and improve these estimated templates. From this aspect, Kim
et al.’s method can run in either a semi-supervised or unsupervised
method. It was also the first method to handle segmentation and
correspondences in collections with size on the order of thousands
of shapes.

4.3 Unsupervised segmentation

Unsupervised data-driven shape segmentation techniques fall into
two categories: clustering based techniques and matching based
techniques. In the following, we highlight the key idea of each
type of approach.

Clustering based techniques are adapted from supervised tech-
niques. They compute feature descriptors on points or faces. Clus-
tering is performed over all points/faces over all shapes. Each
resulting cluster indicates a consistent segment across the input
shapes. The promise of the clustering based approach is that when
the number of shapes becomes large, the sampling density in the
clustering space becomes dense enough, so that certain statistical
assumptions are satisfied, e.g., diffusion distances between points
from different clusters is significantly larger than those between
points within each cluster. When these assumptions are satisfied,
clustering based approaches may produce results that are compara-
ble to supervised techniques (c.f. [Hu et al. 2012a]) . In [Sidi et al.
2011], the authors utilize spectral clustering to perform clustering.
In [Hu et al. 2012a], the authors employ subspace clustering, a more
advanced clustering method, to obtain improved results.

Clustering methods can also be applied to shape parts. In [Xu et al.
2010], the authors perform co-analysis over a set of shapes via fac-
toring out the part scale variation by grouping the shapes into dif-
ferent styles, where style is defined by the anisotropic part scales of
the shapes. In [van Kaick et al. 2013], the authors introduce unsu-
pervised co-hierarchical analysis of a set of shapes. They propose
a novel cluster-and-select scheme for selecting representative part
hierarchies for all shapes and grouping the shapes according to the
hierarchies. The method can be used to compute consistent hierar-
chical segmentations for the input set.

Matching based methods [Golovinskiy and Funkhouser 2009b;
Huang et al. 2011; Wang et al. 2013a; Huang et al. 2014b] build
maps across shapes and utilize these maps to achieve consistency
of segmentations. As shown in Figure 7, this strategy allows us to
identify meaningful parts despite the lack of strong geometric cues
on a particular shape. Likewise, the approach is able to identify co-
herent single parts even when the geometry of the individual shape
suggests the presence of multiple segments. A challenge here is
to find a suitable shape representation so that maps across diverse
shapes are well-defined. In [Huang et al. 2011], Huang et al. intro-
duce an optimization strategy that jointly optimizes shape segmen-
tations and maps between optimized segmentations. Since the maps
are defined at the part-level, this technique is suitable for hetero-



Figure 7: Comparison of single-shape segmentation (left) and
joint shape segmentation (right) on models from the PSB bench-
mark [Chen et al. 2009]. Each segmentation on the left was pro-
duced by the top-performing algorithm in the benchmark for that
shape. The segmentations on the right were produced by [Huang
et al. 2011], which jointly optimized segmentations and correspon-
dences across the entire dataset.

geneous shape collections. Experimentally, it generates compara-
ble results with supervised method [Kalogerakis et al. 2010] on the
Princeton segmentation benchmark. Recently, Huang et al.[Huang
et al. 2014b] formulated the same idea under the framework of func-
tional maps [Ovsjanikov et al. 2012a] and gain improved segmen-
tation quality and computational efficiency.

5 Joint shape matching

Another fundamental problem in shape analysis is shape matching,
which finds relations or maps between shapes. These maps allow
us to transfer information across shapes and aggregate information
from a collection of shapes for a better understanding of individual
shapes (e.g., detecting shared structures such as skeletons or shape
parts). They also provide a powerful platform for comparing shapes
(i.e., with respect to different measures and at different places). As
we can see from other sections, shape maps are widely applied in
shape classification and shape exploration as well.

So far, most existing research in shape matching has focused on
matching pairs of shapes in isolation. We refer to [van Kaick et al.
2011c] for a survey and to [Leordeanu and Hebert 2005; Lipman
and Funkhouser 2009; van Kaick et al. 2011c; Ovsjanikov et al.
2010; Kim et al. 2011; Ovsjanikov et al. 2012a] for recent advances.
Although significant progress has been made, state-of-the-art tech-
niques are limited to shapes that are similar to each other. On the
other hand, these techniques tend to be insufficient among shape
collections that possess large geometric and topological variations.

The availability of large shape collections offers opportunities to
address this issue. Intuitively, when matching two dissimilar
shapes, we may utilize intermediate shapes to transfer maps. In
other words, we can build maps between similar shapes, and use
the composite maps to obtain maps between less similar shapes. As
we will see shortly, this intuition can be generalized to enforcing a
cycle-consistency constraint; namely composite maps along cycles
should be the identity map and the composite map between any two
shapes is path-independent. In this section, we discuss joint shape
matching techniques that take a shape collection and noisy maps as

Figure 8: Joint shape matching takes as input maps computed be-
tween pairs of shapes in isolation and utilizes the cycle-consistency
constraint to improve shape maps. This figure shows the result of
Huang et al. [Huang et al. 2014b], which performs joint shape
matching under the functional map setting.

input, and output improved maps across the shape collection.

5.1 Model graph and cycle-consistency

To formulate the joint matching problem, we consider a model
graph G = (S, E) (c.f. [Huber 2002]). The vertex set S =
{S1, · · · , Sn)} consists of the input shapes. The edge set E charac-
terizes the pairs of shapes that are selected for performing pair-wise
matching. For small-scale datasets, we typically match all pairs
of shapes. For large-scale datasets, the edge set usually connects
shapes that are similar according to a pre-defined shape descrip-
tor [Kim et al. 2012a; Huang et al. 2013a], thus generating a sparse
shape graph.

The key component of a joint matching algorithm is to utilize the
so-called cycle-consistency constraint. In particular, if all the maps
in G are correct, then composite maps along any loops should be
the identity map. This is true for maps that are represented as trans-
formations (e.g., rotations and rigid/affine transformations), or full
point-wise maps that can be described as permutation matrices). We
can easily modify the constraint to handle partial maps; namely,
each point, when transformed along a loop, either disappears or
goes back to the original point (See [Huang et al. 2014b] for de-
tails).

The cycle-consistency constraint is useful because the initial maps,
which are computed between pairs of shapes in isolation, are not
expected to satisfy the cycle consistency constraint. On the other
hand, although we do not know which maps or correspondences
are incorrect, we can detect inconsistent cycles. These inconsistent
cycles provide useful information for us to detect incorrect corre-
spondences or maps, i.e., an inconsistent cycle indicates that at least
one of the participating maps or correspondences is incorrect. To
incorporate this observation into algorithms, one has to formulate
the cycle-consistency constraint properly. Existing works in data-
driven shape matching fall into two categories: combinatorial tech-
niques and matrix recovery based techniques. The reminder of this
section provides the details.



5.2 Combinatorial techniques

Spanning tree optimization. Earlier works in joint matching aim
at finding a spanning tree in the model graph. In [Goldberg et al.
2004; Huang et al. 2006], the authors propose to use the maximum
spanning tree (MST) of the model graph. However, this strategy can
easily fail since a single incorrect edge in the MST may break the
entire matching result. In the seminal work [Huber 2002], Huber
showed that finding the best spanning tree maximizing the number
of consistent edges is NP-hard. Although finding the best spanning
tree is not tractable, Huber introduced several local operations for
improving the score of spanning trees. However, these approaches
are generally limited to small-scale problems so that the search
space can be sufficiently explored.

Inconsistent cycle detection. Another line of approaches [Zach
et al. 2010; Roberts et al. 2011; Nguyen et al. 2011] applies global
optimization to select cycle-consistent maps. These approaches are
typically formulated as solving constrained optimization problems,
where objective functions encode the scores of selected maps, and
constraints enforce the consistency of selected maps along cycles.
The major advantage of these approaches is that the correct maps
are determined globally. However, as the cycle consistency con-
straint needs to apportion blame along many edges on a cycle, the
success of these approaches relies on the assumption that correct
maps are dominant in the model graph so that the small number of
bad maps can be identified through their participation in many bad
cycles.

MRF formulation. Joint matching may also be formulated as solv-
ing a second order Markov Random Field (or MRF) [Cho et al.
2010b; Cho et al. 2010a; Crandall et al. 2011; Huang et al. 2012b].
The basic idea is to sample the transformation/deformation space of
each shape to obtain a candidate set of transformation/deformation
samples per shape. Joint matching is then formulated as optimizing
the best sample for each shape. The objective function considers
initial maps. Specifically, each pair of samples from two differ-
ent shapes would generate a candidate map between them. The
objective function then formulates second-order potentials, where
each term characterize the alignment score between these candi-
date maps and the initial maps [Huang et al. 2013a; Huang et al.
2012b].

The key challenge in the MRF formulation is generating the can-
didate samples for each shape. The most popular strategy is to
perform uniform sampling [Crandall et al. 2011; Huang et al.
2013a], which works well when the transformation space is low-
dimensional. To apply the MRF formulation on high-dimensional
problems, Huang et al. [Huang et al. 2012b] introduce a diffusion-
and-sharpening strategy. The idea is to diffuse the maps among the
model graph to obtain rich samples of candidate transformations or
correspondences and then perform clustering to reduce the number
of candidate samples.

5.3 Matrix based techniques

A recent trend in map computation is to formulate joint map com-
putation as inferring matrices [Singer and Wu 2011; Huang et al.
2012b; Kim et al. 2012a; Huang and Guibas 2013a; Wang and
Singer 2013; Chen et al. 2014c; Huang et al. 2014b]. The basic
idea is to consider a big map collection matrix

X =


X11 X12 · · · X1n

X21 X22 · · · X2n

...
. . . · · ·

...
X21 · · · · · · Xnn

 ,

Figure 9: Comparison among various data-driven shape match-
ing methods: optimized composite maps [Nguyen et al. 2011],
fuzzy correspondences [Kim et al. 2012a], hub-and-spoke net-
work [Huang et al. 2012b] and semidefinite programming relax-
ation [Huang and Guibas 2013a]. The input maps are given by
blended intrinsic maps [Kim et al. 2011].

where each block Xij encodes the map from shape Si to shape Sj .
In this matrix representation, the cycle-consistency constraint can
be equivalently described by simple properties of X, i.e., depending
on the types of maps, X is either positive semidefinite or low-rank
(c.f. [Huang and Guibas 2013a; Huang et al. 2014b]). In addition,
we may view the initial pair-wise maps as noisy measurements of
the entries of X. Based on this perspective, we can formulate joint
matching as matrix recovery from noisy measurements of its en-
tries.

Spectral techniques. The initial attempts in matrix recovery are
spectral techniques and their variants [Singer and Wu 2011; Kim
et al. 2012a; Wang et al. 2013a]. The basic idea is to consider the
map collection Xinput that encodes initial maps in its blocks. Then,
the recovered matrix is given by X = UΣVT , where U,Σ,V rep-
resent the singular value decomposition (or SVD) of Xinput. Various
methods have added heuristics on top of this basic procedure. For
example, Kim et al. [Kim et al. 2012a] use the optimized maps to
recompute initial maps.

This SVD strategy can be viewed as matrix recovery because X
is equivalent to the optimal low-rank approximation of Xinput (with
given rank) under the matrix Frobenius norm. However, as the input
maps may contain outliers, employing the Frobenius norm for ma-
trix recovery is sub-optimal. Moreover, it is hard to analyze these
techniques, even in the very basic setting where maps are given by
permutation matrices [Pachauri et al. 2013].

Point-based maps. In a series of works, Huang and cowork-
ers [Huang and Guibas 2013a; Chen et al. 2014c; Huang et al.
2014a] consider the case of point-based maps and develop joint
matching algorithms that admit theoretical guarantees. The work
of [Huang and Guibas 2013a] considers the basic setting of per-
mutation matrix maps and proves the equivalence between cycle-
consistent maps and the low-rank or positive semi-definiteness of
the map collection matrix. This leads to a semidefinite program-
ming formulation for joint matching. In particular, the L1 norm
is used to measure the distance between the recovered maps and
the initial maps. The authors provide exact recovery conditions,
which state that the ground-truth maps can be recovered if the per-
centage of incorrect correspondences in the input maps is below
a constant. In a followup work, Chen et al. [Chen et al. 2014c]



extends this to partial maps and provide a better analysis in the
case where incorrect correspondences in the input maps are ran-
dom. The computational issue is addressed in [Huang et al. 2014a],
which employs the alternating direction of multiplier methods for
optimization. Figure 9 compares the SDP formulation of [Huang
and Guibas 2013a] with several other data-driven shape matching
methods. Note that all data-driven shape matching methods im-
prove upon pair-wise matching, yet the SDP formulation leads to
the largest improvement.

Rotations and functional maps. Maps that are represented by gen-
eral matrices (e.g., rotations or functional maps) can also be handled
in a similar fashion. In [Wang and Singer 2013], Wang and Singer
consider the case of rotations between objects. Their formulation
is similar to [Huang and Guibas 2013a] but utilize an L1 Frobe-
nius norm for measuring the distance between initial rotations and
recovered rotations. Recently, Huang et al. [Huang et al. 2014b]
extend this idea to functional maps. The major difference between
functional maps and point-based maps or rotations is that the map
collection matrix is no-longer symmetric. Thus, their method is
formulated to recover low-rank matrices.

5.4 Discussion and future directions

The key to joint shape matching is to have a proper formulation
of the cycle-consistency constraint. We have witnessed the evolu-
tion of this constraint from earlier works on combinatorial search
and inconsistent cycle detection to more recent works which use
spectral techniques, MRF based methods and matrix recovery tech-
niques. In particular, matrix recovery techniques admit theoreti-
cal guarantees, providing a fundamental understanding of why joint
shape matching can improve upon isolated pair-wise matching.

One future direction is to integrate pair-wise matching and joint
matching into one optimization problem. Since the major role of
joint matching is to remove the noise presented in pair-wise match-
ing, it makes sense to perform them together. Such unified ap-
proaches have the potential to further improve upon decomposed
approaches (i.e., from pair-wise to joint). The technical challenge
is to find map representations so that pair-wise matching and map
consistency can be formulated in the same framework.

6 Shape reconstruction

Reconstructing geometric shapes from physical objects is a funda-
mental problem in geometry processing. The input to this problem
is usually a point cloud produced by aligned range scans, which
provides an observation of an object. The goal of a shape recon-
struction algorithm is to convert this point cloud into a high-quality
geometric model. In practice, the input point cloud data is noisy and
incomplete. Thus, the key to a successful shape reconstruction al-
gorithm is formulating appropriate shape priors. Traditional shape
reconstruction algorithms usually utilize generic priors, such as sur-
face smoothness [Diebel et al. 2006], and typically assume that the
input data captures most of the object’s surface. To handle higher
degrees of noise and partiality of the input data, it is important to
build structural shape priors.

Data-driven techniques tackle this challenge by leveraging shape
collections to learn strong structural priors from similar objects,
and use them to reconstruct high-quality 3D models. Existing ap-
proaches fall into two categories, based on how they represent the
shape priors: parametric and non-parametric. The former usu-
ally builds a low-dimensional parametric representation of the un-
derlying shape space, learning the representation from exemplars
and enforcing the parameterization when reconstructing new mod-
els. Parametric methods typically require building correspondences

Figure 10: Derived from a dataset of prototypical 3D scans of
faces, the morphable face model contributes to two main steps in
face manipulation: (1) deriving a 3D face model from a novel im-
age, and (2) modifying shape and texture in a natural way [Blanz
and Vetter 1999].

across the exemplar shapes. In contrast, non-parametric methods
directly operate on the input shapes by copying and deforming ex-
isting shapes or shape parts.

6.1 Parametric methods

Morphable face. The morphable face model [Blanz and Vet-
ter 1999] is a representative work of parametric data-driven shape
reconstruction, a technique which reconstructs 3D textured faces
from photos and scans. The model is learned from a dataset of pro-
totypical 3D shapes of faces, and can then be used to derive a new
3D face from a novel image. (See Figure10).

In particular, the morphable face model represents the geometry of
a face with a shape-vector S = (pT

1 , · · · ,pT
n )T ) ∈ R3n), that con-

tains the 3D coordinates of its n vertices. Similarly, it encodes the
texture of a face by a texture-vector T = (cT1 , c

T
2 , · · · , cTn ) ∈ R3n,

that contains the RGB color values of the corresponding vertices.
A morphable face model is then constructed using a database of
m exemplar faces, each represented by its shape-vector Si and Ti.
In [Blanz and Vetter 1999] the exemplar faces are constructed by
matching a template to scanned human faces.

The morphable face model uses Principal Component Analysis
(PCA) to characterize the shape space. A new shape and its as-
sociated texture are given by

Smod = S +

m−1∑
i=1

αisi, Tmod = T +

m−1∑
i=1

βiti,

where S and T are the mean-shape and mean-texture, respectively,
and si and ti are eigenvectors of the covariance matrices. αi and
βi are coefficients. PCA also gives probability distributions over
coefficients. The probability for coefficient αi is given by

p({αi}) ∼ exp

(
−1

2

m−1∑
i=1

(αi/σi)
2

)
,

with σ2
i being the corresponding eigenvalue of the shape covariant

matrix CS (the probability p({βi}) is computed in a similar way).

With this morphable face model, reconstruction of textured mod-
els can be posed as a small-scale non-linear optimization problem.
For example, given a 2D image of a human face Iinput, one can
reconstruct the underlying textured 3D model by searching for a
similar rendered face I({αi}, {βi}, p), parameterized by the shape
and texture coefficients αi and βi, and the rendering parameters p



Figure 11: Parameterizing the variation in human shapes can be
used to synthesize new individuals or edit existing ones [Allen et al.
2003].

(e.g., camera configuration, lighting parameters). The optimization
problem is formulated as minimizing a data term, which measures
the distance between the input image and the rendered image, and
regularization terms that are learned from exemplar faces. The suc-
cess of the morphable model relies on the low-dimensionality of
the solution space, and so is also applicable to several other data
sets where this assumption holds, including the domain of human
bodies and poses.

Morphable human bodies. Allen et al. [Allen et al. 2003] gen-
eralize the morphable model to characterize human bodies (Figure
11). Given a set of 250 scanned human bodies, the method first per-
forms non-rigid registration to fit a hole-free, artist-generated mesh
(template) to each of these scans. The result is a set of mutually
consistent parameterized shapes based on the corresponding ver-
tex positions originating from the template. Similar to [Blanz and
Vetter 1999], the method employs PCA to characterize the shape
space, which enables applications in shape exploration, synthesis
and reconstruction.

In addition to variations in body shape, human models also exhibit
variations in poses. The SCAPE model (Shape Completion and
Animation for People) [Anguelov et al. 2005a] addresses this chal-
lenge by learning two separate models of body deformation – one
accounting for variations in poses and one for differences in body
shapes. The pose deformation component is acquired from a set of
dense 3D scans of a single person in multiple poses. A key aspect
of the pose model is that it decomposes deformation into a rigid
and a non-rigid component. The rigid component is modeled using
a standard skeleton system. The non-rigid component, which cap-
tures remaining deformations such as flexing of the muscles, asso-
ciates each triangle with a local affine transformation matrix. These
transformation matrices are learned from exemplars using a joint re-
gression model. In [Hasler et al. 2009b], Hasler et al. introduce a
unified model for parameterizing both shapes and poses. The basic
idea is to consider the relative transformations between all pairs of
neighboring triangles. These transformation matrices allow us to
reconstruct the original shape by solving a least squares problem.
In this regard, each shape is encoded as a set of edge-wise transfor-
mation matrices, which are fit into the PCA framework to obtain a
statistical model of human shapes. The model is further extended to
estimate shapes of dressed humans from range scans [Hasler et al.
2009a].

Recent works on statistical human shape analysis focus on com-
bining learned shape priors with sparse observations and special
effects. In [Loper et al. 2014], the authors introduce an approach
that reconstructs high-quality shapes and poses from a sparse set of
markers. The success of this approach relies on learning meaning-
ful shape priors from a database consisting of thousands of shapes.
In [Tsoli et al. 2014], the authors study human breathing from ac-
quired data.

Figure 12: The data-driven shape reconstruction pipeline proposed
in [Pauly et al. 2005a].

Data-driven tracking. Object tracking aims to analyze dynamic
shapes and/or poses of physical objects. Successful tracking tech-
niques (e.g., [Weise et al. 2009; Weise et al. 2011; Li et al. 2013;
Cao et al. 2013; Cao et al. 2014]) typically utilize parametric shape
spaces. These reduced shape spaces provide shape priors that im-
prove both the efficiency and robustness of the tracking process.
The way to utilize and construct shape spaces vary in different
settings, and are typically tailored to the specific problem setting.
Weise et al. [Weise et al. 2009] utilize a linear PCA subspace
trained with a very large set of pre-processed facial expressions.
This method requires an extended training session with a careful
choice of facial action units. In addition, the learned face model
is actor-specific. These restrictions are partially resolved in [Li
et al. 2010], which introduces an example-based blendshape op-
timization technique, involving only a limited number of random
facial expressions. In [Weise et al. 2011], the authors combine both
blendshapes and data-driven animation priors to improve the track-
ing performance. In a recent work, Li et al. [Li et al. 2013] employ
adaptive PCA to further improve tracking performance on nuanced
emotions and micro-expression. The key idea is to combine a gen-
eral blendshape PCA model and a corrective PCA model that is up-
dated on-the-fly. This corrective PCA model captures the details of
the specific actor and missing deformations from the initial blend-
shape model. Wei et al. [Wei et al. 2016] train a neural network
to predict correspondences between depth scans of humans. They
demonstrate that one can train a network on synthetic data using the
existing morphable human bodies.

6.2 Non-parametric methods

Parametric methods require canonical domains to characterize the
shape space, which have so far been demonstrated within domains
of organic shapes, such as body shapes or faces. In this section, we
discuss another category of methods that have shown the potential
to handle more diverse shape collections.

Generally speaking, a non-parametric data-driven shape reconstruc-
tion method utilizes a collection of relevant shapes and combines
three phases, i.e., a query phase, a transformation phase and an
assembly phase. Existing methods differ in how the input shape
collection is preprocessed and how these phases are performed.

Example-based scan completion. Pauly et al. [Pauly et al.
2005a] introduce one of the first non-parametric systems. As shown
in [Pauly et al. 2005a], the method takes a point cloud and a col-
lection of complete objects as input. The reconstruction procedure
incorporates all three phases described above. The first phase de-
termines a set of similar objects. The retrieval phase combines both
text-based search and PCA signatures, which are then refined by
rigid alignment. The second step performs non-rigid alignment be-
tween the retrieved shapes and the input point cloud. This step
partitions the input point cloud into a set of patches, where each
patch is associated with one retrieved shape (via the corresponding



region). The final phase merges the corresponding regions into a
unified shape.

Nan et al. [Nan et al. 2012] introduce a similar system for indoor
scene reconstruction. Given an input point cloud of an indoor scene
that consists of a set of objects with known categories, the method
searches in a database of 3D models to find matched objects and
then deforms them in a non-rigid manner to fit the input point cloud.
Note that this method treats complete 3D objects as building blocks,
so the final reconstruction does not necessarily reflect the original
scene. Shao et al. [Shao et al. 2012] adopt an interactive approach
to labeled segmentations of RGBD images, followed by 3D model
retrieval for scene modeling. Chen et al. [Chen et al. 2014b] learn
contextual relationships from a 3D scene database to further con-
strain the reconstruction for semantic compatibility between both
objects and parts.

In contrast to considering entire 3D shapes, Gal et al. [Gal et al.
2007a] utilize a dictionary of local shape priors (defined as patches)
for shape reconstruction. The method is mainly designed for en-
hancing shape features, where each region of an input point cloud
is matched to a shape patch in the database. The matched shape
patch is then used to enhance and rectify the local region. Recently,
Mattausch et al. [Mattausch et al. 2014] introduce a patch-based
reconstruction system for indoor scenes. Their method considers
recognizing and fitting planar patches from point cloud data.

Shen et al. [Shen et al. 2012] extends this idea for single object
reconstruction by assembling object parts. Their method utilizes a
collection consistently segmented 3D shapes. Given a scan of an
object, the method recursively searches for parts in the collection to
assemble the original object. The retrieval phase considers both the
geometric similarity between the input and retrieved parts as well as
part compatibility which is learned from the input shapes. Sung et
al. [Sung et al. 2015] describe a framework for reliably estimating
the part structure of partial scans by treating each part as a local
coordinate system. Their method also utilizes symmetric properties
of the target object and shape collection, providing more accurate
reconstructions on their shape completion benchmark.

Data-driven SLAM. Non-parametric methods have also found
applications in reconstructing temporal geometric data (e.g., the
output of the Kinect scanner). The Simultaneous localization and
mapping (or SLAM) method is a notable technique which jointly
estimates the trajectory of the scanning device along side the ge-
ometry of the environment. In this case, shape collections serve as
priors for the objects in the environment, which can be used to train
object detectors. For example, the SLAM++ system proposed by
Salas-Moreno et al. [Salas-Moreno et al. 2013] trained domain spe-
cific object detectors from shape collections. The learned detectors
are integrated inside the SLAM framework to recognize and track
those objects. Similarly, Kim et al. [Kim et al. 2012b] use learned
object models to reconstruct dense 3D models from a single scan
of an indoor scene. More recently, Sun et al. [Song and Xiao 2014]
introduced a 3D sliding window object detector with improved per-
formance and capability extending to a broader range of objects. Li
et al. [Li et al. 2015a] propose a data-assisted online reconstruction
technique which allows object retrieval from a 3D shape database
while simultaneously scanning an environment in real-time.

Shape-driven reconstruction from images. Recently, there is
a growing interest in reconstructing 3D objects directly from im-
ages (e.g., [Xu et al. 2011; Kholgade et al. 2014; Aubry et al. 2014;
Su et al. 2014]). This problem introduces fundamental challenges
in both querying similar objects and deforming objects/parts to fit
the input object. In terms of searching similar objects, success-
ful methods typically render objects in the database from a dense

set of viewpoints and pick objects where one view is similar to
the input image object. Since depth information is missing from
the image object, it is important to properly regularize 3D object
transformations; otherwise, a 3D object may be deformed arbitrar-
ily even though its projection on the image domain matches the
image object. Most existing techniques consider rigid transforma-
tions or user-specified deformations [Xu et al. 2011]. In a recent
work, Su et al. [Su et al. 2014] propose to learn meaningful de-
formations of each shape from its optimal deformation to similar
shapes. Huang et al. [Huang et al. 2015b] jointly analyze a large
collection of images in object categories and a smaller collection of
3D models to achieve simultaneous analysis and reconstruction of
2D images.

7 Shape modeling and synthesis

So far, the creation of detailed three-dimensional content remains
a tedious task which can mainly be performed by skilled artists.
3D content creation has been a major bottleneck hindering the de-
velopment of ubiquitous 3D graphics. Thus, providing easy-to-use
tools for casual and novice users to design and create 3D models
has been a key challenge in computer graphics. To address this
challenge, current literature has been focused on two main direc-
tions, i.e., intelligent interfaces for interactive shape modeling and
smart models for automated model synthesis. The former strives
to endow modeling interfaces with a higher-level understanding of
the structure and semantics of 3D shapes, allowing the interface to
reason around the incomplete shapes being modeled. The latter di-
rection focuses on developing data-driven models to synthesize new
shapes automatically. The core problem is to learn generative shape
models from a set of exemplars (e.g., probability distributions, fit-
ness functions, functional constraints, etc) so that the synthesized
shapes are plausible and novel. It can be seen that both of the two
paradigms depend on data-driven modeling of shape structures and
semantics. With the availability of large 3D shape collections, the
data-driven approach becomes a promising answer to the content
creation bottleneck.

7.1 Interactive shape modeling and editing

Interactive 3D modeling software (3DS Max, Maya, etc.) provide
artists with a large set of tools for creating and editing detailed 3D
models. Unfortunately, this same software is often onerous to har-
ness for non-professional users. For casual users, more intuitive
modeling interfaces with a certain machine intelligence are to be
preferred. Below, we discuss such methods for assembly-based
modeling and guided shape editing.

Assembly-based modeling. Early works on 3D modeling based
on shape sets are primarily driven by the purpose of content reuse
in part-assembly based modeling approaches. The seminal work
of modeling by example [Funkhouser et al. 2004] presents a pio-
neering system of shape modeling by searching a shape database
for parts to reuse in the construction of new shapes. Kraevoy et
al. [2007] describe a system for shape creation via interchanging
parts between a small set of compatible shapes. Guo et al. [Guo
et al. 2014] propose assembly-based creature modeling guided by a
shape grammar.

Beyond content reuse through database queries or hand-crafted
rules, Chaudhuri and Koltun [2010] propose a data-driven tech-
nique for suggesting the modeler with shape parts that can poten-
tially augment the current shape being built. Such part suggestions
are generated through retrieving a shape from a database based on
partial shape matching. Although this is a purely geometric method
without accounting for the semantics of shape parts, it represents



Figure 13: Given a library of models, a Bayesian network encoding semantic and geometric relationships among shape parts is
learned [Chaudhuri et al. 2011a] (top). The modeling process (bottom) performs probabilistic inference in the learned Bayesian network to
generate ranked lists of category labels and components within each category, customized for the currently assembled model.

the first attempt at utilizing a shape database to augment the model-
ing interface. Later, Chaudhuri et al. [2011a] show that the incorpo-
ration of semantic relationships increases the relevance of presented
parts. Given a repository of 3D shapes, the method learns a proba-
bilistic graphical model encoding semantic and geometric relation-
ships among shape parts. During modeling, inference in the learned
Bayesian network is performed to produce a relevance ranking of
the parts.

A common limitation of the above techniques is that they do not
provide a way to directly express a high-level design goal (e.g. “cre-
ate a cute toy”). Chaudhuri et al. [2013] proposed a method that
learns semantic attributes for shape parts that reflect the high-level
intent people may have for creating content in a domain (e.g. adjec-
tives such as “dangerous”, “scary” or “strong”) and ranks them ac-
cording to the strength of each learned attribute (Figure 5). During
an interactive session, the user explores and modifies the strengths
of semantic attributes to generate new part assemblies.

3D shape collections can supply other useful information as well,
such as contextual and spatial relationships between shape parts, to
enhance a variety of modeling interfaces. Xie et al. [Xie et al. 2013]
propose a data-driven sketch-based 3D modeling system. In the off-
line learning stage, a shape database is pre-analyzed to extract the
contextual information among parts. During the online stage, the
user designs a 3D model by progressively sketching its parts and
retrieving and assembling shape parts from the database. Both the
retrieval and assembly are assisted by precomputed contextual in-
formation so that more relevant parts can be returned and selected
parts can be automatically placed. Inspired by the ShadowDraw
system [Lee et al. 2011], Fan et al. [Fan et al. 2013] propose 3D
modeling by drawing with data-driven shadow guidance. The user’s
strokes are used to query a 3D shape database for generating the
shadow image, which in turn can guide the user’s drawing. Along
the drawing, 3D candidate parts are retrieved for assembly-based
modeling. Starting from a collection of expertly-created, fabricable
3D models, Schulz et al. [Schulz et al. 2014] extract parameterized
design templates encoding all information necessary for fabrica-
tion. The templates can then be used to generate new fabricable
models in an interactive design system.

Shape editing. The general idea of data-driven shape editing is
to learn a model from a collection of closely related shapes that
characterizes the plausible variations or deformations of the shapes
in this collection. In this way, the learned model can be used to
constrain a user’s edit to maintain plausibility. For organic shapes,
such as human faces [Blanz and Vetter 1999; Chen et al. 2014a] or
bodies [Allen et al. 2003], parametric models can be learned from
a shape set characterizing its shape space. Such parametric models
can be used to edit the shapes through exploring the shape space
with the set of parameters.

Figure 14: Given a hundred training airplanes (in green), the prob-
abilistic model from [Kalogerakis et al. 2012a] synthesizes several
hundreds of new airplanes (in blue).

An alternative widely-adopted approach is the analyze-and-edit
paradigm. This technique first extracts the structure of the input
shape, and then uses this structure to constrain the editing phase
to be more tenable [Gal et al. 2009]. Instead of learning structure
from a single shape, Fish et al. [Fish et al. 2014] learn it from a set
of shapes that belong to the same family, resulting in a set of proba-
bility distributions characterizing the part arrangements. These dis-
tributions can be used to guide structure-preserving editing, where
models can be edited while maintaining their familial traits. Yumer
et al. [Yumer and Kara 2014] extract co-constrained handles from
a set of shapes for shape deformation. The handles are gener-
ated based on co-abstraction [Yumer and Kara 2012a] of the set of
shapes and the deformation co-constraints are learned statistically
from the set. The deformation handles can also be controlled with
continuous semantic attributes [Yumer et al. 2015]. This approach
also benefit from deep neural network trained to predict appropriate
deformations for 3D models [Yumer and Mitra 2016].

Based on learned structures from a database of 3D models, Xu et
al. [Xu et al. 2011] propose photo-inspired 3D object modeling.
Guided by the object in a photograph, the method creates a 3D
model as a geometric variation of a candidate model retrieved from
the database. Due to the pre-analyzed structural information, the
method addresses the ill-posed problem of 3D modeling from a sin-
gle 2D image via structure-preserving 3D warping. The final result
is structurally plausible and is readily usable for subsequent edit-
ing. Moreover, the resulting 3D model, although built from a single
view, is structurally coherent from all views.

7.2 Automated synthesis of shapes

Many applications such as 3D games and films require large col-
lections of 3D shapes for populating their environments. Modeling
each shape individually can be tedious even with the best interac-
tive tools. The goal of data-driven shape synthesis algorithms is to
generate several shapes automatically with no or very little user su-



pervision: users may only provide some preferences or high-level
specifications to control the shape synthesis process. Existing meth-
ods achieve this task by using probabilistic generative models of
shapes, evolutionary methods, or learned probabilistic grammars.

Statistical models of shapes. The basic idea of these methods
is to define a parametric shape space and then fit a probability dis-
tribution to the data points that represent the input exemplar shapes.
Since the input shapes are assumed to be plausible and desired rep-
resentatives of the shape space, high-probability areas of the shape
space which tend to become associated with new, plausible shape
variants. This idea was first explored in the context of paramet-
ric models [Blanz and Vetter 1999; Allen et al. 2003], discussed in
Section 6. By associating each principal component of the shape
space defined by these methods with a Gaussian distribution, this
distribution can be sampled to generate new human faces or bodies
(Figure 11). Since the probability distribution of plausible shapes
tends to be highly non-uniform in several shape classes, Talton et
al. [Talton et al. 2009a] use kernel density estimation with Gaussian
kernels to represent plausible shape variability. The method is able
to generate new shapes for tree and human body parametric spaces.

Shapes have structure i.e., shapes vary in terms of their type and
style, different shape styles have different number and type of parts,
parts have various sub-parts that can be made of patches, and so
on. Thus, to generate shapes in complex domains, it is important
to define shape spaces over structural and geometric parameters,
and capture hierarchical relationships between these parameters at
different levels. Kalogerakis et al. [Kalogerakis et al. 2012a] (Fig-
ure 14) proposed a probabilistic model that represents variation and
relationships of geometric descriptors and adjacency features for
different part styles, as well as variation and relationships of part
styles and repetitions for different shape styles. The method learns
the model from a set of consistently segmented shapes. Part and
shape styles are discovered based on latent variables that capture the
underlying modes of shape variability. The method uses a search
procedure to assemble new shapes from parts of the input shapes
according to the learned probability distribution. Users can also
set preferences for generating shapes from a particular shape style,
with given part styles or specific parts. Instead of relying on pre-
segmented shapes and high-level part descriptors to encode shape
variability, Huang et al. [Huang et al. 2015a] propose a probabilis-
tic model that jointly estimates shape segmentation, surface corre-
spondences, and surface descriptors from an input shape dataset. A
deep learning procedure was used to capture hierarchical relation-
ships of corresponding surface point positions and parts as well as
their existence in the input shapes. Their probabilistic model can be
sampled to directly generate point-sampled surface geometry and
shape structure.

Set evolution. Xu et al. [Xu et al. 2012] developed a method for
generating shapes inspired by the theory of evolution in biology.
The basic idea of set evolution is to define cross-over and mutation
operators on shapes to perform part warping and part replacement.
Starting from an initial generation of shapes with part correspon-
dences and built-in structural information such as inter-part sym-
metries, these operators are applied to create a new generation of
shapes. A selected subset from the generation is presented via a
gallery to the user who provides feedback to the system by rating
them. The ratings are used to define the fitness function for the evo-
lution. Through the evolution, the set is personalized and populated
with shapes that better fit to the user. At the same time, the system
explicitly maintains the diversity of the population so as to prevent
it from converging into an “elite” set.

Figure 15: Scene comparisons may yield different similarity dis-
tances (left) depending on the focal points [Xu et al. 2014a].

Learned shape grammars. Talton et al. [Talton et al. 2012]
leverage techniques from natural language processing to learn prob-
abilistic generative grammars of shapes. The method takes as input
a set of exemplar shapes represented with a scene graph specifying
parent/child relationships and relative transformations between la-
beled shape components. They use Bayesian inference to learn a
probabilistic formal grammar that can be used to synthesize novel
shapes.

8 Scene analysis and synthesis

Analyzing and modeling indoor and outdoor environments has im-
portant applications in various domains. For example, in robotics
it is desirable for an autonomous agent to understand the seman-
tics of 3D environments to be able to interact with them. In ur-
ban planning and architecture, professionals build digital models of
cities and buildings to validate and improve their designs. In com-
puter graphics, artists create novel 3D scenes for movies and video
games.

The fast growing number of 3D scenes in digital repositories pro-
vide new opportunities for data-driven scene analysis, editing, and
synthesis. Emerging collections of 3D scenes pose novel research
challenges that cannot be easily addressed with existing tools. In
particular, representations created for analyzing collections of sin-
gle models mostly focus on arrangement and relations between
shape parts [Mitra et al. 2014], which usually exhibit less variations
than objects in scenes. Capturing scene structure poses a greater
challenge due to looser spatial relations and a more diverse mixture
of functional substructures.

Inferring scene semantics is a long-standing problem in image
understanding, with many methods developed for object recog-
nition [Quattoni and Torralba 2009], classification [Swadzba and
Wachsmuth 2010], layout and structure reasoning [Choi et al. 2013;
Fouhey et al. 2013] with a single image. Previous work demon-
strates that one can leverage collections of 3D models to facilitate
scene understanding in images [Satkin et al. 2012]. In addition, the
depth information in RGBD scans can be used to establish the link
between 2D and 3D for model-driven scene understanding [Silber-
man et al. 2012]. The semantic annotations of images are not imme-
diately useful for modeling and synthesizing 3D scenes, for which
the geometric and structural priors have to be learned from 3D data.

In this section, we cover the data-driven techniques that leverage
collections of 3D scenes for modeling, editing, and synthesizing
novel scenes.

Context-based retrieval. To address the large variation in the ge-
ometry and arrangement of objects in scenes, Fisher et al. [Fisher
and Hanrahan 2010; Fisher et al. 2011] propose to take advantage
of local context. One of the key insights of their work is that collec-



Figure 16: The algorithm processes raw scene graphs with possible
over-segmentation (a) into consistent hierarchies capturing seman-
tic and functional groups (b,c) [Liu et al. 2014].

tions of 3D scenes provide rich information about context in which
objects appear. They show that capturing these contextual priors
can help in scene retrieval and editing.

Their system takes an annotated collection of 3D scenes as input,
where each object in a scene is classified. They represent each scene
as a graph, where nodes represent objects and edges represent rela-
tions between objects, such as support and surface contact. In order
to compare scenes, they define kernel functions for pairs of nodes
measuring similarity in object geometry, and for pairs of edges,
measuring similarity in relations of two pairs of objects. They fur-
ther define a graph kernel to compare pairs of scenes. In particular,
they compare all walks of fixed length originating at all pairs of ob-
jects in both scene graphs, which loosely captures similarities of all
contexts in which objects appear [Fisher et al. 2011]. They show
that this similarity metric can be used to retrieve scenes. By com-
paring only paths originated at a particular object, they can retrieve
objects for interactive scene editing.

Focal points. Measuring the similarity of complex hybrid scenes
such as studios composed of a bedroom, living room, and din-
ing room poses a challenge to graph kernel techniques since they
only measure global scene similarity. Thus, Xu et al. [2014a] ad-
vocate analyzing salient sub-scenes, which they call focal points,
to compare hybrid scenes, i.e., scenes containing multiple salient
sub-scenes. Figure 15 shows an example of comparing complex
scenes, where the middle scene is a hybrid one encompassing two
semantically salient sub-scenes, i.e., bed-nightstands and TV-table-
sofa. The middle scene is closer to the left one when the bed and
nightstands are focused on, and otherwise when the TV-table-sofa
combo is the focal point. Therefore, scene comparison may yield
different similarity distances depending on the focal points.

Formally, a focal point is defined as a representative substructure
of a scene which can characterize a semantic scene category. That
means the substructure should re-occur frequently only within that
category. Therefore, focal point detection is naturally coupled with
the identification of scene categories via scene clustering. This
poses coupled problems of detecting focal points based on scene
groups and grouping scenes based on focal points. These two prob-
lems are solved via interleaved optimization which alternates be-
tween focal point detection and focal-based scene clustering. The
former is achieved by mining frequent substructures and the latter
uses subspace clustering, where scene distances are defined in a
focal-centric manner. Inspired by the work of Fisher et al. [Fisher
et al. 2011], scene distances are computed using focal-centric graph
kernels which are estimated from walks originating from represen-
tative focal points.

The detected focal points can be used to organize the scene col-
lection and to support efficient exploration of the collection (see
Section 9). Focal-based scene similarity can be used for novel ap-
plications such as multi-query scene retrieval, where one may issue
queries consisting of multiple semantically related scenes and wish

Figure 17: The interaction bisector surface (in blue) of several
two-object scenes [Zhao et al. 2014].

to retrieve more scenes “of the same kind”.

Synthesis. Given an annotated scene collection, one can also
synthesize new scenes that have a similar distribution of objects.
The scene synthesis technique of Fisher et al. [2012] learns two
probabilistic models from the training dataset: (1) object occur-
rence, indicating which objects should be placed in the scene, and
(2) layout optimization, indicating where to place the objects. Next,
it takes an example scene, and then synthesizes similar scenes using
the learned priors. It replaces or adds new objects using context-
based retrieval techniques, and then optimizes for object placement
based on learned object-to-object spatial relations. Synthesizing
example scenes might be a challenging task, thus Xu et al. [2013a]
propose modeling 3D indoor scenes from 2D sketches, by lever-
aging a database of 3D scenes. Their system jointly optimizes for
sketch-guided co-retrieval and co-placement of all objects.

Hierarchical scene annotation. All aforementioned applica-
tions take an annotated collection of 3D scenes as an input. Un-
fortunately, most scenes in public repositories are not annotated
and thus require additional manual labeling [Fisher et al. 2012].
Liu et al. [2014] address the challenge of annotating novel scenes.
The key observation of their work is that understanding hierarchical
structure of a scene enables efficient encoding of functional scene
substructures, which significantly simplifies detecting objects and
representing their relationships. Thus, they propose a supervised
learning approach to estimate a hierarchical structure for novel
scenes. Given a collection of scene graphs with consistent hier-
archies and labels, they train a probabilistic hierarchical grammar
encoding the distributions of shapes, cardinalities, and spatial re-
lationships between objects. Such a grammar can then be used to
parse new scenes: find segmentations, object labels, and hierarchi-
cal organization of objects consistent with the annotated collection
(see Figure 16).

Challenges and opportunities. The topic of 3D scene analy-
sis is quite new and there are many open problems and research
opportunities. The first problem is to efficiently characterize spa-
tial relationships between objects and object groups. Most existing
methods work with bounding box representation which are efficient
to process, but not sufficiently informative to characterize object-
to-object relationships. For example, one cannot reliably determine
the object enclosure relationship based on a bounding box. Re-
cently, He et al. [2014] propose to use biologically-inspired bisector
surface to characterize the geometric interaction between adjacent
objects and to index 3D scenes (Figure 17). The bisector surface
can be extended into a geometric descriptor for contextual model-
ing of the functionality of a 3D object in a given scene [Hu et al.
2015]. Second, most existing techniques heavily rely on expert user
supervision for scene understanding. Unfortunately, online reposi-
tories rarely have models with reliable object tags. Therefore there
is a need for methods that can leverage scenes containing only par-
tial and/or noisy annotations. Finally, the popularity of commodity
RGBD cameras has significantly simplified the acquisition of in-



door scenes. This emerging scanning technique opens space for
new applications such as online scene analysis [Zhang et al. 2014;
Xu et al. 2015].

9 Exploration and organization

The rapidly growing quantity and variety of digital 3D models in
large online collections have caused an emerging need to develop
algorithms and techniques that effectively organize these large col-
lections and allow users to interactively explore them. For example,
an architect might furnish a digital building by searching through
databases organized according to furniture types, regions of inter-
est and design styles. Likewise, an industrial designer can explore
shape variations among existing products when creating a new ob-
ject. Most existing repositories only support text-based search, re-
lying on user-entered tags and titles. This approach suffers from in-
accurate and ambiguous tags, often entered in different languages.
While it is possible to try using shape analysis to infer consistent
tags as discussed in Section 3, it is difficult to convey stylistic and
geometric variations using only text. An alternative approach can
be to perform shape, sketch, or image based queries. However, to
formulate such search queries the user needs to have a clear mental
model of the shape that should be retrieved. Thus, some researchers
focus on providing tools for exploring shape collections. Unlike
search, exploration techniques do not assume a-priori knowledge
of the repository content, and help the user to understand geomet-
ric, topological, and semantic variations within the collection.

Problem statement and method categorization. Data explo-
ration and organization is a classical problem in data analysis and
visualization [Paulovich et al. 2011]. Given a data collection, the
research focuses on grouping and relating data points, learning
the data variations in the collection, and organizing the collection
into a structured form, to facilitate retrieval, browsing, summariza-
tion, and visualization of the data, based on efficient interfaces or
metaphors.

The first step to organizing model collections is to devise appropri-
ate metrics to relate different data points. Various similarity met-
rics have been proposed in the past to relate entire shapes as well
as local regions on shapes. In particular, previous sections of this
document cover algorithms for computing global shape similarities
(Section 3), part-wise correspondences (Section 4), and point-wise
correspondences (Section 5). In this section, we will focus on tech-
niques that take advantage of these correlations to provide different
interfaces for exploring and understanding geometric variability in
collections of 3D shapes. We categorize the existing exploration
approaches based on four aspects:

• Metaphor: a user interface for exploring shape variations.
We will discuss five basic exploration interfaces, ones that
use proxy shapes (templates), regions of interest, probability
plots, query shapes, or continuous attributes.

• Shape comparison: techniques used to relate different
shapes. We will discuss techniques that use global shape sim-
ilarities, as well as part or point correspondences.

• Variability: shape variations captured by the system. Most
methods we will discuss rely on geometric variability of
shapes or parts. Some techniques also take advantage of topo-
logical variability; that is, variance in number of parts or how
they are connected (or variance in numbers of objects and
their arrangements in scenes).

• Organizational form: a method to group shapes. We will
discuss methods that group similar shapes to facilitate explor-

Method Meta. Comp. Var. Org.
[Ovsjanikov et al. 2011] temp. simi. geom. n/a
[Kim et al. 2013a] temp. part both cluster
[Averkiou et al. 2014] plot part both cluster
[Kim et al. 2012a] ROI point both n/a
[Rustamov et al. 2013] ROI point geom. n/a
[Huang et al. 2014b] ROI point both cluster
[Xu et al. 2014a] ROI simi. topo. cluster
[Fish et al. 2014] plot part geom. cluster
[Huang et al. 2013b] query simi. both hierarchy

Table 4: A summary of several recent works over four aspects.
Metaphor: templates, surface painted ROIs, probability distribu-
tion plots, or query shapes. Shape Comparison: shape similarity,
part or point correspondence. Variability: geometry, topology or
both. Organization Form: cluster or hierarchy.

ing intra-group similarities and inter-group variations, typi-
cally including clustering and hierarchical clustering.

Table 4 summarizes several representative works in terms of these
aspects. In the remaining part of this section we list several recent
techniques which are grouped based on the exploration metaphor.

Template-based exploration. Component-wise variability in
position and scale of parts reveals useful information about a model
collection. Several techniques use box-like templates to show vari-
ations among models of the same class. Ovsjanikov et al. [Ovs-
janikov et al. 2011] describe a technique for learning these part-
wise variations without solving the challenging problem of consis-
tent segmentation. First, they use the segmentation of a single shape
to construct the initial template. This is the only step that needs to
be verified and potentially fixed by the user. The next goal is to
automatically infer deformations of the template that would cap-
ture the most important geometric variations of other models in the
collection. They hypothesize that all shapes can be projected on a
low-dimensional manifold based on their global shape descriptors.
Finally, they reveal the manifold structure by deforming a template
to fit to the sample points. Directions for interesting variations are
depicted by arrows on the template and the shapes that correspond
to the current template configuration are presented to the user.

The descriptor-based approach described above assumes that all
intra-class shapes share the same parts and that there exists a low-
dimensional manifold that can be captured by deforming a sin-
gle template. These assumptions do not hold for large and di-
verse collections of 3D models. To tackle this challenge, Kim et
al. [Kim et al. 2013a] proposed an algorithm for learning several
part-based templates capturing multi-modal variability in collec-
tions of shapes. They start with an initial template that includes a
super-set of all parts that might occur in a dataset, and jointly learn
part segmentations, point-to-point surface correspondence as well
as a compact deformation model. The output is a set of templates
that groups the input models into clusters, capturing their styles and
variations.

ROI-based exploration. Not all interesting variations occur at
the scale of parts: they can occur at sub-part scale, or span multiple
sub-regions from multiple parts. In these cases the user may pre-
fer to select an arbitrary region on a 3D model and look for more
models sharing similar regions of interest. Such detailed and flex-
ible queries require a finer understanding of correspondences be-
tween different shapes. Kim et al. [Kim et al. 2012a] propose fuzzy
point correspondences to encode the inherent ambiguity in relat-
ing diverse shapes. Fuzzy point correspondences are represented



Figure 18: Shape exploration based on fuzzy correspondence. The
user paints a region of interest (ROI) on a query shape (left column),
and the method sorts models based on their similarity within the
region (right).

by real values specified for all pairs of points, indicating how well
the points correspond. They leverage transitivity in correspondence
relationships to compute this representation from a sparse set of
pairwise point correspondences. The interface proposed by Kim et
al. allows users to paint regions of interest directly on a surface
and then retrieve similar regions among other shapes, or even show
geometric variations found in the selected region (see Figure 18).

One limitation of correspondence-based techniques is that they typ-
ically do not consider the entire collection when estimating shape
differences. Rustamov et al. [Rustamov et al. 2013] focus on a
fundamental intrinsic representation for shape differences. Starting
with a functional map between two shapes, that is, a map that de-
scribes a change of functional basis, they derive a shape difference
operator revealing detailed information about the location, type,
and magnitude of distortions induced by a map. This makes shape
difference a quantifiable object that can be co-analyzed within a
context of the entire collection. They show that this deeper un-
derstanding of shape differences can help in exploration. For ex-
ample, one can embed shapes in a low-dimensional space based
on shape differences, or use shape difference to interpolate vari-
ations by showing “intermediate” shapes between two regions of
interest. To extend these technique to man-made objects, Huang et
al. [Huang et al. 2014b] construct a consistent functional basis for
shape collections exhibiting large geometric and topological vari-
ability. They show that the resulting consistent maps are capable
of capturing discrete topological variability, such as variance in the
number of bars of the back of a chair.

ROI-based scene exploration. Recent works on organizing and
exploring 3D visual data mostly focus on object collections. Ex-
ploring 3D scenes poses additional challenges since scenes typi-
cally exhibit more structural variations. Unlike man-made objects
that usually contain a handful of object parts, scenes can contain
anywhere from ten to hundreds of objects. Not only this, but the
objects themselves do not typically have a prescribed rigid arrange-
ment with respect to each other. Thus, global scene similarity met-
rics, such as the graph kernel based one used in [Fisher et al. 2012]
are limited to organizing datasets based on very high-level features,
such as scene type. Xu et al. [Xu et al. 2014a] advocate that 3D
scenes should be compared from the perspective of a particular fo-
cal point which is a representative substructure of a specific scene
category. Focal points are detected through contextual analysis of
a collection of scenes, resulting in a clustering of the scene col-
lection where each cluster is characterized by its representative fo-
cal points (see Section 8). Consequently, the focal points extracted
from a scene collection can be used to organize collection into an

Figure 19: Focal-based scene clustering produces overlapping
clusters, which is due to hybrid scenes possessing multiple focal
points. An exploratory path, from (a) to (e), through the overlap,
smoothly transit between the two scene clusters, representing bed-
room and offices, respectively.

Figure 20: Given a set of heterogeneous shapes, a reliable quali-
tative similarity is derived from quartets composed of two pairs of
objects (left). Aggregating such qualitative information from many
quartets computed across the whole set leads to a categorization
tree as a hierarchical organization of the input shape collection
(right).

interlinked and well-connected cluster formation, which facilitates
scene exploration. Figure 19 shows an illustration of such cluster-
based organization and an exploratory path transiting between two
scene clusters/categories.

Plot-based exploration. All aforementioned exploration tech-
niques typically do not visualize the probabilistic nature of shape
variations. Fish et al. [Fish et al. 2014] study the configurations
of shape parts from a probabilistic perspective, trying to indicate
which shape variations are more likely to occur. To learn the dis-
tributions of part arrangements, all shapes in the family are pre-
segmented consistently. The resulting set of probability density
functions (PDFs) characterizes the variability of relations and ar-
rangements across different parts. A peak in a PDF curve represents
that particular a configuration of the related parts frequently ap-
peared among several shapes in the family. The multiple PDFs can
be used as interfaces to interactively explore the shape family from
various perspectives. Averkiou et al. [Averkiou et al. 2014] use
part structure inferred by this method to produce a low-dimensional
part-aware embedding of all models. The user can explore interest-
ing variations in part arrangements simply by moving the mouse
over the 2D embedding. In addition, their technique allows the
synthesis of novel shapes by clicking on empty spaces in the em-
bedded space. Upon clicking, the system would deform parts from
neighboring shapes to synthesize a novel part arrangement.

Query-based exploration. For a heterogeneous shape collection
encompassing diverse object classes, it is typically not possible to
characterize part-structure and correspondences between all pairs of
shapes. Even global shape similarity is not a very reliable feature in



this setting, which makes organizing and exploring heterogeneous
collections especially difficult. To address this challenge, Huang et
al. [Huang et al. 2013b] introduce qualitative analysis techniques
from the field of bioinformatics. Instead of relying on quantita-
tive distances, which may be ill-applied between dissimilar shapes,
the method considers a more reliable qualitative similarity derived
from quartets composed of two pairs of objects. The shapes that
are paired in the quartet are close to each other and far from the
shapes in the other pair, where distances are estimated from multi-
ple shape descriptors. They aggregate this topological information
from many quartets computed across the entire shape collection,
and construct a hierarchical categorization tree (see Figure 20).
Analogous to the phylogenetic trees of species, this categorization
tree of a shape collection provides an overview of the shapes as
well as their mutual distance and hierarchical relations. Based on
such an organization, they also define the degree of separation chart
for every shape in the collection and apply it for interactive shape
exploration.

Attribute-based exploration. Yet another approach seeks to al-
low users to interactively explore shapes with continuously valued
semantic attributes. Blanz and Vetter [Blanz and Vetter 1999] pro-
vide an interface to explore faces based on continuous facial at-
tributes, such as “smile” or “frown”, built upon the face parametric
model (Section 6). Similarly, Allen et al. [Allen et al. 2003] allow
users to explore the range of human bodies with features such as
height, weight, and age. Chaudhuri et al.’s [Chaudhuri et al. 2013]
interface enables exploration of shape parts according to learned
strengths of semantic attributes (Figure 5).

10 Discussion

There is no “magic recipe” for developing new data-driven and ma-
chine learning applications in geometry processing and computer
graphics. Yet, there are some important considerations one needs
to make in devising a data-driven method, including computational
complexity, scalability, applicability issues, proper evaluation pro-
cedures and limitations. In this section, we briefly discuss these
issues.

Computational complexity. As explained in Section 2, data-
driven shape analysis and processing algorithms generally contain
several stages (Figure 2). The complexity of each stage varies and
largely depends on the number of input shapes, resolution of the
input shape representation (number of faces, surface points, pixels
or voxels), as well as the number and type of the used geomet-
ric features. The feature extraction stage is usually executed per
each shape, thus, its time complexity often tends to be linear in the
number of input shapes. Local geometric features, such as surface
curvature or PCA-based descriptors, are usually computed within a
small neighborhood around each vertex, face, or surface point, thus
their extraction depends linearly on the number of these primitives
in the input shape representation. Extracting geometric features that
capture less local or global information about the shape, such as
shape diameter, geodesic distance-based features or heat-kernel de-
scriptors, is often computationally more intensive i.e., super-linear
in the number of primitives.

During the learning and inference steps, data-driven methods usu-
ally solve an optimization problem, which involves minimizing or
maximizing a function e.g., a data likelihood function. In gen-
eral, optimization techniques inhabit a wide range of computational
complexities. For example, if the optimization involves the least-
squares solution of a linear system, as in the case of linear regres-
sion, the complexity is O(N · F 2), where N is the number of input

training examples and F is the dimensionality of the input feature
vector. If optimization is performed through a steepest descent al-
gorithm, the complexity is O(N · F ) per parameter update step.
However, the performance of iterative optimization algorithms de-
pends on the number of steps, which in turn varies according to
their convergence properties and the function they optimize. We
refer the reader to [Nocedal and Wright 2006; Koller and Friedman
2009b; Solomon 2015] for an in-depth discussion on the computa-
tional complexity and convergence properties of various optimiza-
tion and inference algorithms.

Scalability. Data-driven methods are inherently bound up with
the input data. Rapid developments in capturing and modeling tech-
niques have engendered the growth of 3D shape and scene reposi-
tories over recent years, which have in turn influenced the advance-
ment of data-driven geometry processing. This is evidenced by the
fact that the number of training shapes employed in data-driven ge-
ometry processing techniques has grown from a few tens [Kaloger-
akis et al. 2010; Sidi et al. 2011] to several thousands [Kim et al.
2013a; Huang et al. 2014b]. On the one hand, the increasing avail-
ability of 3D data can improve the accuracy and generalization of
data-driven methods. On the other hand, issues of scalability arise.
More data causes longer processing times, which in turn makes
the debugging of such methods harder for developers. The scala-
bility issues are further exacerbated by the complexity (i.e., high-
dimensionality) of the 3D geometric feature representations. Po-
tential workarounds include debugging the pipeline of these meth-
ods on smaller datasets before turning to larger ones, trying sim-
pler learning techniques before switching to more complex ones, or
making use of computing clusters for executing offline steps.

Scope of application. Not every problem in shape analysis and
processing is well suited to be solved by a data-driven method.
When the underlying rules, principles, and parameters can be man-
ually and unambiguously specified in a problem, then non-data-
driven methods should be considered for it. For example, deform-
ing a shape with an elastic material and known physical parame-
ters and forces can be addressed by a physics-based method rather
than a data-driven one. In contrast, there are several problems in
shape analysis and processing for which it is hard, or even impos-
sible, to hand-design a set of rules and principles, or quantify them
through manually specified parameters. This is often the case for
problems that involve shape and scene recognition, high-level pro-
cessing, structure parsing, co-analysis, reconstruction from noisy
missing data, and modeling with high-level user input. Shape co-
analysis (e.g., co-segmentation), in particular, requires estimating
several possible geometric and semantic correlations among input
shapes, which would be practically impossible to capture through
hand-designed rules. Data-driven methods that automatically com-
pute geometric, semantic and structural relationships in the input
shapes are more appropriate for such co-analysis problems [Xu
et al. 2010; Huang et al. 2011; Huang and Guibas 2013a]. An-
other example can be found in the problem of shape style analysis.
Although humans have an innate sense of style similarity, it is hard
to manually quantify geometric criteria for modeling the stylistic
similarity of shapes. A style analysis algorithm whose parameters
are learned through a data-driven method is much more well-suited
to perform this quantification [Liu et al. 2015; Lun et al. 2015].

Evaluation. Correctly evaluating the predictive performance of
data-driven methods should be another important consideration for
researchers of such methods. A common pitfall is to evaluate
the predictive performance of a data-driven method with the same
dataset on which it was trained on (e.g., through supervised learn-
ing), or a dataset for which any parameters of the method were



manually tuned. The risk here is that the method might not be able
to generalize to any other datasets beyond the ones used in train-
ing or hand-tuning. A method that simply memorizes the training
dataset, or overfits a model to a particular dataset, will obviously
perform well there. However, if its performance on other datasets
is poor, the method is effectively useless. The best practice is to
introduce training and test splits of the input datasets. The models
and parameters should then be learned or tuned exclusively on the
training portion, and evaluated exclusively on the testing portion.
To insure fair-play, it is also necessary that different data-driven
methods be compared using the same training and test splits.

Limitations. The data-driven approach to shape analysis and pro-
cessing is bound by a few limitations that we summarize below. We
also discuss potential workarounds to overcome some of these.

• Generalization guarantees. It is generally hard to provide
any guarantees about the generalization performance of data-
driven algorithms. In other words, when a data-driven algo-
rithm makes use of a particular dataset for training, it is of-
ten impossible to predict how well it will generalize to other
datasets beforehand. Although statistical error bounds can
be provided under particular assumptions on data distribu-
tions, in particular within the context of the Probably Approx-
imately Correct learning theory [Valiant 1984] or the Bayes
decision theory [Fukunaga 1990], these assumptions often
cannot be validated in practice.

• Complexity and scalability. As discussed above, data-driven
methods are computationally intensive in general. The com-
plexity of data-driven methods depends on the number of in-
put training shapes. As a general rule of thumb, the accuracy
of data-driven methods improves with more training data. On
the other hand, this comes at a higher computational cost dur-
ing training time.

• Size of 3D shape datasets. Despite their recent growth, the
size of available 3D shape datasets remains much smaller than
those used in computer vision and natural language process-
ing (e.g., image and text datasets). As a result, overfitting re-
mains a common issue with data-driven methods for 3D shape
processing. Overfitting occurs when a learned model, or func-
tion, captures random error, noise, or patterns specific only to
the input training dataset instead of the underlying, correct
relationships in the data. It usually occurs when the learned
model, or function, is excessively complex, e.g., having an ex-
tremely large number of parameters relative to the size of the
training dataset. To mitigate this issue, regularization tech-
niques can be used to favor simpler models and functions [Ng
2004; Domingos 2012]. Another promising approach is to
use both 3D shapes and 2D images as input to data-driven
methods, or in other words, to perform co-analysis of image
and shape data. We discuss this issue as one important fu-
ture research direction for further development in data-driven
methods in the next section.

• Data collection. Data-driven techniques rely on the availabil-
ity of data for the particular problem they attempt to solve.
Gathering training data for several geometry processing tasks
is often not an easy task, especially when human labor is
involved to process or annotate geometric data. Although
crowdsourcing Internet marketplaces, such as Amazon Me-
chanical Turk [Amazon 2009], can help gather training data
efficiently, online questionnaires and user studies still require
careful design, monetary compensation, and participant con-
sistency checks.

• From data to knowledge. Data-driven methods put particu-
lar emphasis on discovering patterns and models that explain
the input data and provide useful insights to the problem being
solved. However, these learned patterns and models might not
always be readily interpretable i.e., might not correspond to
“easy-to-understand” rules. This is a common situation when
one treats the internals of the data-driven method (e.g., the
learning process) as a “black box” without first trying to un-
derstand their exact functionality in detail. In general, inter-
preting such patterns and models requires significant time and
effort.

11 Conclusion and open problems

In this survey, we have so far discussed state-of-the-art on data-
driven methods for 3D shape analysis and processing. We also
presented the main concepts and methodologies used to develop
such methods. We hope that this survey will act as a tutorial that
will help researchers develop new data-driven algorithms related to
shape analysis and processing. There are several exciting research
directions that have not been sufficiently explored so far in our com-
munity that we discuss below:

Joint analysis of 2D and 3D data. Generating 3D content from
images requires building mappings from 2D to 3D space. Unfor-
tunately, the problem remains largely ill-posed. However, with the
help vast quantities of 2D images available on the web, effective
priors can be developed to map 2D visual elements or features to
3D shape and scene representations. Indeed, we have in fact seen
recent attempts made in this very vein of thought with some success
in [Su et al. 2014; Aubry et al. 2014; Li et al. 2015b; Hueting et al.
2015; Su et al. 2015b], which attempts depth estimation through
joint analysis over 2D image collections and 3D model databases.
We have also seen success of the joint analysis framework in the
setting of texture-data with [Yumer et al. 2014], which attempts
cosegementation of textured 3D shapes.

Following this line, it would be interesting to jointly analyze and
process multi-modal visual data, including depth scans and videos.
The key challenge lies in the integration of heterogeneous informa-
tion in a unified learning framework.

Better and scalable shape analysis techniques. Many data-
driven applications rely on high-quality shape analysis results, par-
ticularly shape segmentations and correspondences. We believe it
is important to further advance research in both these directions.
This includes designing shape analysis techniques for specific data
and/or making them scalable to very large datasets, especially re-
cently emerging large-scale richly-annotated repositories [Su et al.
2015c].

From geometry to semantics and vice versa. Several data-
driven methods have tried to map 2D and 3D geometric data to
high-level concepts, such as shape categories, semantic attributes,
or part labels. Gathering relevant training data is a key component
in achieving this aim, a task which remains a non-trivial endeavor.
Several recent promising works employ crowdsourcing to address
this issue [Chen et al. 2009; Chaudhuri et al. 2013; Lun et al. 2015;
Liu et al. 2015; Yumer et al. 2015]. Existing methods deal with
cases where only a handful of different entities are predicted for in-
put shapes or scenes. Scaling these methods to handle thousands
of categories, part labels and other such entities, as well as attain-
ing human-level performance, is an open problem. The opposite
direction is also interesting and insufficiently explored: generating
shapes and scenes based on high-level specifications such as shape



styles, attributes, or even natural language. Such approaches may
even potentially be combined with further diverse inputs, such as
sketches and interactive handles, in the shape-generating pipeline.
WordsEye [Coyne and Sproat 2001] was an early attempt to bridge
this gap, yet requires extensive manual mappings.

Understanding function from geometry. The geometry of a
shape is strongly related to its functionality, including the shape’s
relationship to human activity. Thus, analyzing shapes and scenes
requires some understanding of their function. The recent works
by Laga et al. [Laga et al. 2013], Kim et al. [Kim et al. 2014] and
Hu et al. [Hu et al. 2015; ?] are important examples of data-driven
approaches that take into account functional aspects of shapes in
the process of their analysis. In addition, data-driven methods
can guide the synthesis of shapes that can be manufactured or 3D
printed based on given functional specifications; an example of
such an attempt is reflected in the work of Schulz et al [Schulz et al.
2014].

Data-driven shape abstractions. It is relatively easy for hu-
mans to communicate the essence of shapes with a few lines,
sketches, and abstract forms. Developing methods that can build
such abstractions automatically has significant applications in shape
and scene visualization, artistic rendering, and shape analysis.
There are a few data-driven approaches to line drawing [Cole et al.
2008; Kalogerakis et al. 2009; Kalogerakis et al. 2012b], saliency
analysis [Chen et al. 2012], surface abstraction [Yumer and Kara
2012a], and viewpoint preferences [Secord et al. 2011] related to
this goal. Matching human performance in these tasks is still a
largely open problem, while synthesizing and editing shapes using
shape abstractions as input remains a significant challenge.

Feature learning. Several shape and scene processing tasks de-
pend on engineering geometric features for points and shapes, as
discussed in Section 3. In general, it seems that some features work
well in particular settings, but can fail in others. A prevailing is-
sue is that universal geometric descriptors - features that can serve
as reliable mid or high level representations ubiquitously across all
variety of shapes - do not yet exist.

Recent work in machine learning has demonstrated that power-
ful feature representations can be learned directly from raw input
text and image data with deep architectures [Hinton et al. 2006;
Krizhevsky et al. 2012; Zeiler and Fergus 2014]. These archi-
tectures are composed of multiple processing layers which learn
representations of the input data at multiple levels of abstraction.
These data-driven representations are optimized for processing-
performance in complex interpretation tasks. Such feature learning
for 3D shapes with deep architectures has recently been demon-
strated in the context of shape classification [Wu et al. 2015; Su
et al. 2015a; Xie et al. 2015; Huang et al. 2015a]. Learning fea-
tures for performing other complex high-level shape analysis and
processing tasks remains an open problem.
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Work Training data Feature Learning model/approach Learning type Learning outcome ApplicationRep. Preproc. Scale Type Sel.
[Funkhouser et al. 2005] Point No Thousands Local No SVM classifier Supervised Object classifier Classification
[Bronstein et al. 2011] Mesh No Thousands Local No Similarity Sensitive Hashing Supervised Distance metric Classification
[Huang et al. 2013a] Mesh Pre-align. Thousands Local No Max-marginal distance learning Semi-supervised Distance metric Classification
[Kalogerakis et al. 2010] Mesh No Tens Local Yes Jointboost classifier Supervised Face classifier Segmentation
[van Kaick et al. 2011a] Mesh Yes Tens Local Yes Gentleboost classifier Supervised Face classifier Segmentation
[Benhabiles et al. 2011] Mesh No Tens L.&G. Yes Adaboost classifier Supervised Boundary classifier Segmentation
[Xie et al. 2014] Mesh No Hundreds Local Yes Feedforward neural networks Supervised Face/patch classifier Segmentation
[Xu et al. 2014b] Mesh Pre-seg. Tens Local No Sparse model selection Supervised Segment similarity Segmentation
[Lv et al. 2012] Mesh No Tens Local Yes Entropy regularization Semi-supervised Face classifier Segmentation
[Wang et al. 2012] Mesh Pre-seg. Hundreds Local No Active learning Semi-supervised Segment classifier Segmentation
[Wang et al. 2013b] Image Labeled parts Hundreds Local No 2D shape matching Supervised 2D shape similarity Segmentation
[Hu et al. 2012a] Mesh Over-seg. Tens Local Yes Subspace clustering Unsupervised Patch similarity Seg. / Corr.
[Sidi et al. 2011] Mesh Pre-seg. Tens Local No Spectral clustering Unsupervised Seg. simi./classifier Seg. / Corr.
[Xu et al. 2010] Mesh Part Tens Struct. No Spectral clustering Unsupervised Part proportion simi. Seg. / Corr.
[van Kaick et al. 2013] Mesh Part Tens Struct. No Multi-instance clustering Unsupervised Seg. hier. simi. Seg. / Corr.
[Golovinskiy and Funkhouser 2009b] Mesh No Tens Global No Global shape alignment Unsupervised Face similarity Seg. / Corr.
[Huang et al. 2011] Mesh Pre-seg. Tens Local No Joint part matching Unsupervised Segment similarity Seg. / Corr.
[Huang et al. 2014b] Mesh Init. corr. Tens Global No Consistent func. map networks Unsupervised Segment similarity Seg. / Corr.
[Kim et al. 2013a] Mesh Template Thousands Local No Shape alignment Semi-supervised Templates Seg. / Corr.
[Mattausch et al. 2014] Mesh Over-seg. Hundreds Local No Density-based clustering Unsupervised Patch similarity Recognition
[Nguyen et al. 2011] Mesh Init. corr. Tens L.&G. No Inconsistent map detection Unsupervised Point similarity Corr. / Expl.
[Huang et al. 2012b] Mesh Init. corr. Tens L.&G. No MRF joint matching Unsupervised Point similarity Corr. / Expl.
[Kim et al. 2012a] Mesh Pre-align. Tens Global No Spectral matrix recovery Unsupervised Point similarity Corr. / Expl.
[Huang and Guibas 2013a] Mesh Init. corr. Tens Global No Low-rank matrix recovery Unsupervised Point similarity Corr. / Expl.
[Ovsjanikov et al. 2011] Mesh Part Hundreds Global No Manifold learning Unsupervised Parametric model Exploration
[Rustamov et al. 2013] Mesh Map Tens None N/A Functional map analysis Unsupervised Difference operator Exploration
[Fish et al. 2014] Mesh Labeled parts Hundreds Struct. No Kernel Density Estimation Supervised Prob. distributions Expl. / Synth.
[Averkiou et al. 2014] Mesh [Kim et al. 2013a] Thousands Struct. No Manifold learning Unsupervised Parametric models Expl. / Synth.
[Huang et al. 2013b] Mesh No Hundreds Global No Quartet analysis and clustering Unsupervised Distance measure Organization
[Blanz and Vetter 1999] Mesh Pre-align. Hundreds Local No Principal Component Analysis Unsupervised Parametric model Recon. / Expl.
[Allen et al. 2003] Point Pre-align. Hundreds Local No Principal Component Analysis Unsupervised Parametric model Recon. / Expl.
[Hasler et al. 2009b] Point Pre-align. Hundreds Local No PCA & linear regression Unsupervised Parametric model Recon. / Expl.
[Pauly et al. 2005a] Mesh Pre-align. Hundreds Global No Global shape alignment Unsupervised Shape similarity Reconstruction
[Nan et al. 2012] Point Labeled parts Hundreds Struct. No Random Forest Classifier Supervised Object classifier Reconstruction
[Shen et al. 2012] Mesh Labeled parts Tens Global No Part matching Unsupervised Part detector Reconstruction
[Kim et al. 2012b] Point Labeled parts Tens Local No Joint part fitting and matching Unsupervised Object detector Reconstruction
[Salas-Moreno et al. 2013] Mesh No Tens L.&G. No Shape matching Unsupervised Object detector Reconstruction
[Xu et al. 2011] Mesh Labeled parts Tens Struct. No Structural shape matching Unsupervised Part detector Modeling
[Aubry et al. 2014] Mesh Projected Thousands Visual No Linear Discriminant Analysis Supervised Object detector Recognition
[Su et al. 2014] Mesh Projected Tens Visual No Shape matching Unsupervised 2D-3D correlation Reconstruction
[Chaudhuri and Koltun 2010] Mesh No Thousands Global No Shape matching Unsupervised Part detector Modeling
[Chaudhuri et al. 2011a] Mesh [Kalogerakis et al. 2010] Hundreds Local No Bayesian Network Unsupervised Part reasoning model Modeling
[Xie et al. 2013] Mesh Labeled parts Tens Struct. No Contextual part matching Unsupervised Part detector Modeling
[Kalogerakis et al. 2012a] Mesh [Kalogerakis et al. 2010] Hundreds L.&G. No Bayesian Network Unsupervised Shape reasoning model Synthesis
[Xu et al. 2012] Mesh Part Tens Struct. No Part matching Unsupervised Part similarity Synthesis
[Talton et al. 2012] Mesh Labeled parts Tens Struct. No Structured concept learning Unsupervised Probabilistic grammar Synthesis
[Yumer and Kara 2012a] Mesh No Tens Global No Shape matching Unsupervised Shape abs. similarity Modeling
[Yumer and Kara 2014] Mesh Pre-seg. Tens Local No Segment matching Unsupervised Segment abs. simi. Modeling
[Chaudhuri et al. 2013] Mesh [Kalogerakis et al. 2010] Hundreds L.&G. No SVM ranking Supervised Ranking metric Model. / Expl.
[Fisher et al. 2011] Scene Labeled obj. Tens Struct. No Relevance feedback Supervised Contextual obj. simi. Classification
[Fisher et al. 2012] Scene Labeled obj. Hundreds Struct. No Bayesian Network Supervised Mixture models Synthesis
[Xu et al. 2013a] Scene Labeled obj. Hundreds Struct. No Frequent subgraph mining Unsupervised Frequent obj. groups Modeling
[Xu et al. 2014a] Scene Labeled obj. Hundreds Struct. No Weighted subgraph mining Unsupervised Distinct obj. groups Org. / Expl.
[Liu et al. 2014] Scene Labeled hier. Tens Struct. No Probabilistic learning Supervised Probabilistic grammar Seg. / Corr.

Table 5: Comparison of various works on data-driven shape analysis and processing. For each work, we summarize over the criterion
set defined for data-driven methods: training data (encompassing data representation, preprocessing and scale), feature (including feature
type and whether feature selection is involved), learning model or approach, learning type (supervised, semi-supervised, and unsupervised),
learning outcome (e.g., a classifier or a distance metric), as well as its typical application scenario. See the text for detailed explanation of
the criteria. Some works employ another work as a pre-processing stage (e.g., [Chaudhuri et al. 2013] requires the labeled segmentation
produced by [Kalogerakis et al. 2010]). There are four types of features including local geometric features (Local), global shape descriptors
(Global), both local and global shape features (L.&G.), structural features (Struct.) as well as 2D visual features (Visual).
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BENHABILES, H., LAVOUÉ, G., VANDEBORRE, J.-P., AND
DAOUDI, M. 2011. Learning boundary edges for 3d-mesh seg-
mentation. Computer Graphics Forum 30, 8.

BERNER, A., BOKELOH, M., WAND, M., SCHILLING, A., AND
SEIDEL, H.-P. 2008. A graph-based approach to symmetry
detection. In Proceedings of the Eurographics / IEEE VGTC
Workshop on Volume Graphics 2008, Los Angeles, California,
USA, 2008, 1–8.

BESL, P. J., AND MCKAY, N. D. 1992. A method for registration
of 3-d shapes. IEEE Trans. Pattern Anal. Mach. Intell. 14, 2.

BESL, P. J., AND MCKAY, N. D. 1992. A method for registration
of 3-d shapes. IEEE Trans. Pat. Ana. & Mach. Int. 14, 2, 239–
256.

BEZDEK, J. C., AND HATHAWAY, R. J. 2003. Convergence of
alternating optimization. Neural, Parallel Sci. Comput. 11, 351–
368.

BIEDERMAN, I. 1987. Recognition-by-components: A theory of
human image understanding. Psychological Review 94, 115–
147.

BISHOP, C. M. 2006. Pattern Recognition and Machine Learning.
Springer.

BLANZ, V., AND VETTER, T. 1999. A morphable model for the
synthesis of 3D faces. In Proc. of SIGGRAPH, 187–194.

BLUM, M., SPRINGENBERG, J. T., WULFING, J., AND RIED-
MILLER, M. 2012. A learned feature descriptor for object
recognition in RGB-D data. In Proc. IEEE Int. Conf. on Rob.
and Auto., 1298–1303.

BO, L., REN, X., AND FOX, D. 2014. Learning hierarchical sparse
features for RGB-(D) object recognition. International Journal
of Robotics Research, to appear.

BOGO, F., ROMERO, J., LOPER, M., AND BLACK, M. J. 2014.
FAUST: Dataset and evaluation for 3D mesh registration. In Pro-
ceedings IEEE Conf. on Computer Vision and Pattern Recogni-
tion (CVPR), 3794 –3801.

BOKELOH, M., BERNER, A., WAND, M., SEIDEL, H.-P., AND
SCHILLING, A. 2009. Symmetry detection using line features.
Computer Graphics Forum 28, 2, 697–706.

BOKELOH, M., WAND, M., AND SEIDEL, H.-P. 2010. A con-
nection between partial symmetry and inverse procedural mod-
eling. In ACM SIGGRAPH 2010 papers, ACM, SIGGRAPH ’10,
104:1–104:10.

BOMMES, D., ZIMMER, H., AND KOBBELT, L. 2009. Mixed-
integer quadrangulation. In ACM SIGGRAPH 2009 papers,
ACM, SIGGRAPH ’09, 77:1–77:10.

BOSCAINI, D., MASCI, J., MELZI, S., BRONSTEIN, M. M.,
CASTELLANI, U., AND VANDERGHEYNST, P. 2015. Learning
class-specific descriptors for deformable shapes using localized
spectral convolutional networks. Computer Graphics Forum 34,
5.

BOYD, S., AND VANDENBERGHE, L. 2004. Convex Optimization.
Cambridge University Press.



BOYD, S., PARIKH, N., CHU, E., PELEATO, B., AND ECKSTEIN,
J. 2011. Distributed optimization and statistical learning via the
alternating direction method of multipliers. Found. Trends Mach.
Learn. 3, 1, 1–122.

BOYD, S., PARIKH, N., CHU, E., PELEATO, B., AND ECKSTEIN,
J. 2011. Distributed optimization and statistical learning via the
alternating direction method of multipliers. Found. Trends Mach.
Learn. 3, 1, 1–122.

BRONSTEIN, M. M., AND BRONSTEIN, A. M. 2011. Shape recog-
nition with spectral distances. IEEE Trans. Pattern Analysis and
Machine Intelligence (PAMI) 33, 5, 1065–1071.

BRONSTEIN, M. M., BRONSTEIN, A. M., AND KIMMEL, R.
2006. Generalized multidimensional scaling: a framework for
isometry-invariant partial surface matching. 1168–1172.

BRONSTEIN, A., BRONSTEIN, M., AND KIMMEL, R. 2008. Nu-
merical Geometry of Non-Rigid Shapes, 1 ed. Springer Publish-
ing Company, Incorporated.

BRONSTEIN, A. M., BRONSTEIN, M. M., OVSJANIKOV, M.,
AND GUIBAS, L. J. 2011. Shape google: geometric words and
expressions for invariant shape retrieval. ACM Trans. Graphics
30, 1, 1–20.

BRONSTEIN, M. M., GLASHOFF, K., AND LORING, T. A. 2014.
Making Laplacians commute: multimodal spectral geometry us-
ing closest commuting operators. SIAM Journal on Imaging Sci-
ences (SIIS), submitted.

BROWN, B., AND RUSINKIEWICZ, S. 2007. Global non-rigid
alignment of 3-D scans. ACM Trans. Graph. 26, 3.

CAMPEN, M., ATTENE, M., AND KOBBELT, L. 2012. A Practical
Guide to Polygon Mesh Repairing. In Eurographics tutorials.
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LJUPČO TODOROVSKI, S. D. 2006. Integrating knowledge-driven
and data-driven approaches to modeling. Ecological Modelling
194, 1–3, 3—13.

LLOYD, S. P. 1982. Least squares quantization in pcm. IEEE
Transactions on Information Theory 28, 129–137.

LOEFF, N., FARHADI, A., ENDRES, I., AND FORSYTH, D. 2009.
Unlabeled data improves word prediction. In ICCV’09, 956–962.

LOPER, M. M., MAHMOOD, N., AND BLACK, M. J. 2014. MoSh:
Motion and shape capture from sparse markers. ACM Trans.
Graph. 33, 6, 220:1–220:13.

LUENBERGER, D. G., AND YE, Y. 2008. Linear and Nonlinear
Programming, Third Edition. Springer.

LUN, Z., KALOGERAKIS, E., AND SHEFFER, A. 2015. Elements
of style: Learning perceptual shape style similarity. ACM Trans.
Graph. 34, 4, 84:1–84:14.

LV, J., CHEN, X., HUANG, J., AND BAO, H. 2012. Semi-
supervised mesh segmentation and labeling. Comp. Graph. Fo-
rum 31, 7-2.

MA, C., HUANG, H., SHEFFER, A., KALOGERAKIS, E., AND
WANG, R. 2014. Analogy-driven 3d style transfer. Computer
Graphics Forum 33, 2, 175–184.

MANGAN, A. P., AND WHITAKER, R. T. 1999. Partitioning 3d
surface meshes using watershed segmentation. IEEE Trans. Vis.
Comput. Graph. 5, 308–321.

MANNING, C. D., RAGHAVAN, P., AND SCHÜTZE, H. 2008.
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