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Figure 1: We use our method to create detailed per-point labeling of 31963 models in 16 shape categories in ShapeNetCore.

Abstract

Large repositories of 3D shapes provide valuable input for data-
driven analysis and modeling tools. They are especially powerful
once annotated with semantic information such as salient regions
and functional parts. We propose a novel active learning method
capable of enriching massive geometric datasets with accurate se-
mantic region annotations. Given a shape collection and a user-
specified region label our goal is to correctly demarcate the corre-
sponding regions with minimal manual work. Our active frame-
work achieves this goal by cycling between manually annotating
the regions, automatically propagating these annotations across the
rest of the shapes, manually verifying both human and automatic
annotations, and learning from the verification results to improve
the automatic propagation algorithm. We use a unified utility func-
tion that explicitly models the time cost of human input across
all steps of our method. This allows us to jointly optimize for
the set of models to annotate and for the set of models to verify
based on the predicted impact of these actions on the human effi-
ciency. We demonstrate that incorporating verification of all pro-
duced labelings within this unified objective improves both accu-
racy and efficiency of the active learning procedure. We automati-
cally propagate human labels across a dynamic shape network us-
ing a conditional random field (CRF) framework, taking advantage
of global shape-to-shape similarities, local feature similarities, and
point-to-point correspondences. By combining these diverse cues
we achieve higher accuracy than existing alternatives. We validate
our framework on existing benchmarks demonstrating it to be sig-
nificantly more efficient at using human input compared to previous
techniques. We further validate its efficiency and robustness by an-
notating a massive shape dataset, labeling over 93,000 shape parts,
across multiple model classes, and providing a labeled part collec-
tion more than one order of magnitude larger than existing ones.
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1 Introduction

In recent years, large and growing online repositories of 3D shapes
have proved to be a rich resource for data-driven techniques in com-
puter graphics, vision, and robotics. Recent 3D modeling inter-
faces, e.g. [Chaudhuri et al. 2011], and advances in text and image
understanding [Lin et al. 2014] demonstrate that data-driven tools
become especially effective when they rely on big, curated datasets
with detailed semantic annotations. However, existing annotated
datasets for 3D shapes [Chen et al. 2009] contain only a few of
hundreds of models and are also largely composed of manifold,
watertight meshes that are not representative of the data available
in public repositories such as 3D Warehouse or ShapeNet [Chang
et al. 2015]. This significantly limits their practical applications
in real-world scenarios. Filling this void requires an efficient tool
for reliably annotating massive, diverse and growing datasets of
polygon soup 3D models. Automatic annotation can never be per-
fectly reliable as such annotation requires knowledge of detailed
shape semantics, yet the size and constant evolution of 3D model
databases renders fully manual annotation impractical. We view
accuracy as the most critical metric, as all subsequent processing
breaks down with inaccurate solutions. Consequently we provide a
middle-ground approach: an active-learning method that combines
human annotation, algorithmic annotation propagation, and human
verification of every generated annotation.

We focus on generating semantic per-point region labels, such as
object parts and salient regions, since they have proved to be ex-
tremely useful for various downstream applications. Given a collec-
tion of 3D shapes and a user-prescribed label of interest, our system
produces human-verified per-point labels for each shape, indicating
which points belong to the region of interest (see Figure 1).

While one can clearly add verification as a post-process for any
active learning method, such naive addition would lead to a sig-
nificant increase in human work. Instead, we integrate verification
into the active learning framework, by using verification output as
part of our feedback loop. This integration ensures accurate annota-
tions, allows to identify human errors, andresults in substantial time
savings compared to an equivalent verification-less approach (see
Figure 2a and 2b). The number of human annotations required to
reliably label the input data goes down dramatically, replaced by a
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combination of automatic annotation and positive verification. This
substitution leads to x100 time saving per each avoided annotation
without any loss in quality, as substantially less time is required by
a human to verify a region than to annotate it.

Our method alternates between four main steps: annotation, prop-
agation, verification, and learning. It obtains manual region anno-
tations for a selected set of models; then automatically propagates
these annotations across the input shape database; acquires human
verification of both human and automatic annotations for selected
models; and finally uses the verification result to improve the auto-
matic propagation algorithm.

When choosing the shapes to present to human workers for anno-
tation and verification we seek to maximize annotation efficiency.
We define it as the ratio between the number of annotations verified
to be correct and the total time spent by human workers. Differ-
ent from existing work on semi-supervised shape annotation [Wang
et al. 2012], we explicitly model the cost of human input, i.e. se-
mantic region demarcation and verification. We use this model to
define the annotation efficiency as a utility function, and repeatedly
optimize its expected value as we select the next batch of shapes
for manual annotation or labeling verification. Our studies show
that human verification is as accurate as human annotation (see Sec-
tion 9), so to detect both human errors and ambiguous models we
verify both automatic and manual annotations.

Our algorithm propagates labels from the annotated shapes to un-
labeled ones by exploiting both local geometric features and global
shape structure. We combine feature-based classifiers, point-to-
point correspondences, and shape-to-shape similarities into a sin-
gle CRF optimization over the network of shapes. Previous tech-
niques that only rely on point-wise shape features [Wu et al. 2014]
are sensitive to outliers and large shape variations often observed
in massive datasets. By taking advantage of higher-level structural
similarities between shapes in addition to low-level point-wise ge-
ometric cues, our method achieves superior performance on large
and heterogenous datasets (see Figure 2a and 2c).

Our learning step leverages the verified annotation results to update
our shape network and improve the performance of the propagation
technique in subsequent iterations. In particular we learn a better
shape-to-shape similarity metric, and learn better weights for CRF
terms, enabling our network of shapes to adapt dynamically to the
analyzed category and the label of interest (see Figure 13).

We compare our method to existing alternatives and demonstrate
that it can reach the same accuracy with half the human input
and scales to much bigger datasets. We test our annotation tool
on ShapeNetCore [Chang et al. 2015], a massive and challenging
dataset obtained from online repositories. We annotate 16 different
shape categories containing 31963 shapes, and produce 93625 ver-
ified annotations with only an estimated 110 hours worth of crowd-
sourced work, which would have taken 780 hours without our tool.

Contribution. Our key contribution is the development of a novel
scalable method for efficient and accurate geometric annotation of
massive 3D shape collections. Our approach explicitly models and
minimizes the human cost of the annotation effort. This contribu-
tion is made possible due to two main technical innovations. First,
by embedding the verification step as part of our unified throughput
maximization framework, we ensure result accuracy and dramat-
ically improve annotation speed. Second we develop and exploit
a versatile annotation propagation algorithm that leverages both
global inter-shape and local point-wise features over a dynamic
shape network, evolving under user feedback. Jointly these con-
tributions significantly reduce the cost of labeling, and allow col-
lecting verified annotations on a massive dataset that is 30 times
larger than existing curated 3D shape datasets.
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Figure 2: This figure illustrates the number of correctly-labeled
models (y-axis) as people spend more time providing input (x-
axis) for a representative collection. Our result corresponds to the
highest-performing curve (a), and we provide two variants of our
method, one that does not include verification (b), and one that only
uses local geometric features to train a single classifier for the en-
tire dataset (c). We also show baseline cost of manually labeling
every model (d). Note that all variants take substantially longer to
annotate the entire dataset.

2 Previous Work

Our work builds on previous techniques for analyzing collections of
3D shapes, as well as methods that utilize active learning to address
problems such as object detection and classification.

Semantic shape labels. Many existing methods in geometry pro-
cessing require semantic shape labels as part of their input. For ex-
ample, libraries of 3D models with annotated semantic parts have
been used for modeling-by-example [Chaudhuri et al. 2011], to syn-
thesize shape variations [Kalogerakis et al. 2012], and to complete
geometry from partial scans [Sung et al. 2015]. These methods re-
quire accurate part annotations, and currently rely on manually an-
notated databases. Existing work on non-expert annotation of 3D
models using a crowdsourcing interface reports processing times of
3 minutes per worker to segment a shape into unlabeled parts [Chen
et al. 2009], similarly, our region annotation interface requires 30
seconds per worker per region label (see Section 9). These tim-
ings render full manual annotation of large and growing collections
impractical. Our active learning approach that incorporates verifi-
cation allows generating massive collections of labeled region data
with the same accuracy as full manual annotation (see Table 3).

Unsupervised shape segmentation. Previous work on unsuper-
vised shape analysis has largely focused on segmenting models
into compatible and geometrically separable parts. While earlier
approaches segmented individual shapes [Shamir 2008], several re-
cent works have shown that joint analysis of a group of related ob-
jects provides better geometric cues for what constitutes a semanti-
cally meaningful part [Sidi et al. 2011; Huang et al. 2011; Hu et al.
2012; Huang et al. 2014; Shu et al. 2016]. These methods typi-
cally do not associate the resulting segments with semantic labels,
making their as-is outputs less useful for semantics driven appli-
cations. In contrast, we seek to identify semantic regions, which
may contain multiple parts, or a fraction of a part, and may have
boundaries that do not align with sharp geometric features. More
importantly, it is typically not possible to generate perfectly accu-
rate segmentations automatically, whereas our goal is to produce
accurate annotations by including a human verification step.

Supervised shape analysis. Supervised learning is frequently used
to obtain semantic annotations of 3D shapes [Kalogerakis et al.
2010; Lv et al. 2012; Xie et al. 2014; Makadia and Yumer 2014;
Guo et al. 2015]. These methods employ traditional machine learn-



ing techniques and construct classifiers based on geometric fea-
tures. Since any classifier can generate erroneous labels we provide
an efficient technique that allows humans to verify every output.
The performance of supervised techniques greatly depends on the
availability of annotated training data that covers all shape vari-
ations. Currently, such datasets are assembled manually and are
limited in scale. We develop an efficient tool to reliably annotate
massive and diverse datasets from scratch, providing valuable data
for future supervised analysis research.

Active and interactive image analysis. Active methods have been
widely explored in image analysis. Their main advantage is that
they acquire training data incrementally, enabling a classifier to pre-
dict which samples need to be labeled next to improve their perfor-
mance [Vijayanarasimhan and Grauman 2008; Branson et al. 2011;
Vezhnevets et al. 2012; Branson et al. 2014]. While these methods
focus on improving classifiers, we focus on the end-goal of gener-
ating accurate, verified results, within a fixed human-effort budget.
To achieve this goal, unlike previous active learning techniques we
explicitly model human behavior in our annotation and verification
phases through an integrated objective.

Recently, Russakovsky et al. [2015] proposed using a mixture of
verification and refinement tasks for manually fixing failures of au-
tomatic image tagging algorithms. They use human input to detect
and correct errors, but do not take advantage of this input to im-
prove automatic labeling. In contrast, our approach utilizes both
types of human input to improve label propagation. Our ability to
harness verification output within an active learning framework is
particularly useful for geometry processing where human verifica-
tion is two orders of magnitude faster than annotation and where
each annotation takes 30s to complete (see Section 9). For com-
parison, for images Russakovsky et al. [2015] cite a ratio of two
between these tasks (10s for annotation and 5s for verification).

Active learning for shape analysis. There are very few methods
that leverage active learning to annotate or classify 3D models, and,
as pointed out in these works, 3D raises very different challenges
from images and other 2D data. Wang et al. [2012] use active learn-
ing to segment shapes into labeled parts. They iteratively ask users
to select pairs of patches and indicate whether they have the same
label to actively co-segment 3D shapes. In contrast to their frame-
work where many models are segmented with no direct human in-
put we verify each result, confirming accuracy. We further show
that even when using verification in-the-loop our method can anno-
tate same-scale datasets using about half the human input time (see
Section 9 for detailed comparison). Wu et al. [2014] offer a sim-
pler painting interface to query the users, using a similar setup and
yielding similar accuracy and efficiency to Wang et al. Boyko et
al. [2014] use group verification to speed up object classification in
urban point clouds. Their approach is not applicable in our setting,
since their input is pre-segmented into objects, and they focus on
classifying these segments.

Correspondence networks. Our automatic label propagation tech-
nique builds on recent advances in correspondence networks that
enable establishing semantic relations in collections of 3D mod-
els [Kim et al. 2012] and images [Rubinstein et al. 2012] via pair-
wise matching and various notions of cycle consistency [Huang
et al. 2014]. These works focus on designing static networks that
remain fixed throughout the subsequent processing. In contrast, we
develop and employ a dynamic network that changes as we acquire
more human input, gradually improving our shape-to-shape simi-
larity and relative weighting of point-wise shape features and global
correspondences. At the end we learn a network that works the best
for the label of interest on the input shape collection.

3 Active Learning Framework Overview

Our active learning framework produces human-verified per-point
annotations of collections of 3D shapes while minimizing user su-
pervision. The input to our system is a set of shapes in the same
category (e.g., chairs) and a label of interest (e.g., “back”), and the
output is a per-point boolean value that indicates whether the point
belongs to the label of interest. To generate these labels for polygon
soup inputs, we uniformly sample 3000 points on each shape and
project per-point labels to per-face labels in a post-processing step.

Our approach reduces annotation effort by automatically propagat-
ing acquired annotations to unlabeled shapes. To achieve accurate
results all labels are further verified by a human. For each automat-
ically computed labeling that is verified to be correct we avoid an
expensive human annotation, replacing it by a cheaper verification
task. We use human input to improve the automatic propagation,
and use the propagation algorithm to guide the decision of what
human input to obtain next. Our approach iteratively alternates be-
tween these two steps, until all models are positively verified or the
human-work budget is spent.

At each iteration we address four critical problems: issuing most
budget-effective human tasks, quickly obtaining human input, ef-
fectively propagating the input to unlabeled shapes, and leveraging
automatic propagation results and human input to improve the prop-
agation in the next iteration. Below we provide an overview of the
methods that we use to address each of these problems; Figure 3
depicts our pipeline.

Our system optimizes for two types of human tasks, annotation
and verification, with the goal of maximizing framework efficiency,
measured as a ratio between verified correct annotations and in-
vested human time. To enable crowd-sourcing we execute the hu-
man tasks in batches, and thus at each iterationmwe separately op-
timize for an annotation setAm and a verification set Vm. Since we
do not have a-priori knowledge of which annotations will be sup-
plied or verified as correct, we model the propagation of annotated
or verified labels using a probabilistic formulation, and maximize
the expected efficiency of the framework. This approach enables us
to unify both tasks within a single utility function, which we opti-
mize twice in our pipeline: first to decide which shapes to annotate
for and second, after annotations are collected and automatically-
propagated, to decide which shapes to verify (see Section 4).

To obtain human input we devise a web-based interface for each
task. We designed our interface to be suitable for non-expert users
and issued simple tasks to facilitate crowd-sourcing. For the anno-
tation task, our interface presents workers with shapes in the an-
notation set Am one-by-one and asks the user to highlight the part
of interest, producing per-point labels hm. For verification tasks
we expect the majority of models in verification set Vm to have
correct labels, and thus, to save worker time, we show viewers the
entire set of models to verify at once and only ask them to select
the incorrectly labeled ones. For each shape in the verification set
our interface produces a value indicating whether its prediction is
correct Qm. See supplemental video and Section 5 for details.

We propagate human annotations to unlabeled shapes over a simi-
larity network between shapes by leveraging multiple cues. First,
we train classifiers for each human annotated shape that utilize lo-
cal geometric feature similarities. Second, we incorporate point-
to-point correspondences estimated among shapes connected in the
shape network to provide global structural and contextual informa-
tion. Finally, we leverage smoothness priors to favor regions of
interest that are compact and continuous. We learn which of these
cues are more trustworthy for a particular label as we acquire more
human input. This novel combination is made possible with an
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Figure 3: This figure summarizes our pipeline. Given the input dataset we select annotation set and use our UI to obtain human labels. We
automatically propagate these labels to the rest of the shapes and then query the users to verify most confident propagations. We then use
these verifications to improve our propagation technique.

efficient CRF formulation where the nodes are the shape points.
Our CRF data term is defined based on the output of the feature-
based classifier trained on the most similar annotated shape, and
the pairwise term is derived from (i) point-to-point correspondences
weighted by network-based shape similarity and (ii) spatial prox-
imity. Our propagation procedure leverages per-point human labels
hm obtained via the annotation interface to predict labels for all
points fm that have no annotations. The setup and the optimization
are described in details in Section 6.

We dynamically adapt our shape network depending on type of la-
bel that is being propagated and shape category. In particular, after
each verification stage, shape similarities and the network are up-
dated to reflect this human input. We similarly learn the relative
weighting of the different terms in our CRF to ensure that it adapts
well to new data. We start with empirically-chosen initial parameter
values and then update them at every iteration (see Section 7).

Pipeline. We combine these four fundamental modules into a joint
pipeline. At each iteration m we first construct an annotation set
Am and obtain human input hm for each shape in the set. We then
propagate these annotations to the remaining models and get auto-
matic predictions fm. We select a subset of these predictions and
all unverified human annotations to be verified Vm and obtain hu-
man verifications for those predictions Qm (qmk = 1 if shape sk is
positively verified by the current iteration m). Finally, we compare
automatic predictions fm and human verifications Qm to update
shape-to-shape similarities ωm+1

i,j and CRF weights λm+1. Once a
model is positively-verified, we do not select it for subsequent an-
notation or verification. If a shape was manually annotated, but not
verified, we mark it as ambiguous and exclude from analysis. Our
pipeline terminates once all models are positively verified.

4 Selecting Annotation and Verification Sets

The goal of our active learning optimization is to select shapes for
annotation and verification to maximize the human work efficiency
at each iteration. We measure this efficiency as the ratio between
positively verified shapes Nm

good and time investment Tm at the end
of the iteration. Our challenge is that Nm

good is a function of ver-
ification result Qm, which cannot be obtained before we compute
the optimal human tasks and collect human annotations. To address
this challenge we treat human input Qm as random variables that
depend on annotation and verification sets Am,Vm. Hence both
Nm

good and Tm are also random variables with respect to Am,Vm,
and we define our utility function based on their expected values:

EmU (Am,Vm) =
E[Nm

good|Am,Vm]

E[Tm|Am,Vm]
. (1)

We observe that all variables at the previous iteration m − 1 are
known at iteration m, and thus we only need to compute the ex-

pected value of the change from the previous iteration:

E[Nm
good|Am,Vm] = Nm−1

good +
∑
k

(1− qm−1
k )E[qmk |Am,Vm].

Here we write Qm = {qmk }, where qmk = 1 if the shape sk is
verified as correct by iteration m and 0 otherwise. The summa-
tion term adds the expectation over whether a shape will be verified
E[qmk |Am,Vm] for each previously unverified shape.

We compute the change in total time spent by humans as:

E[Tm|Am,Vm]=Tm−1+τann|Am|+
∑
k

tver(E[qmk |Am,Vm])vmk .

We define the verification set V m as V m = {vmk }, where vmk = 1
if the shape sk is selected to be verified in iteration m. We use
τann =30s as a constant time to annotate a shape, as estimated via
our user study. For every verified shape, we model the cost of ver-
ification by observing that a person can quickly skim through the
list of correct results, but would need to spend extra effort to click
on an incorrect one:

tver(q
m
k ) = τident + (1− qmk )τclick, (2)

We use τident = 0.3s as the time required to identify whether the
annotation is correct (as the crowd worker scans through a sequence
of results) and τclick = 1.1s denoting the time required to select the
incorrectly annotated shape by a click action. Both constants are
average values estimated via user studies.

Our remaining challenge for evaluating the utility function in Equa-
tion 1 is to compute the expected verification E[Qm|Am,Vm]. We
approximate this value based on the confidence of our automatic
propagation procedure Cm[k] defined for every shape sk. Note
that estimating this confidence when selecting the annotation set
is challenging since we have not yet executed the propagation al-
gorithm but a more reliable value can be computed when we op-
timize for verification set. Thus, we use two different approxi-
mations for our confidence value, pre-propagation confidence Cmann
when we optimize for the annotation set, and post-propagation con-
fidence Cmver when we optimize for the verification set. We then use
isotonic regression [Zadrozny and Elkan 2002], denoted by func-
tion r(·) to calibrate the confidences and obtain expected values:
E[Qm|Am,Vm] = r(Cm). We utilize positively-verified models
as training data for this regression using F1 scores (harmonic mean
of precision and recall) as true prediction confidences.

Next, we provide details for estimating confidences and selecting
the annotation and verification sets (see Figure 4 for examples).

4.1 Selecting the Annotation Set

We optimize for an annotation set that maximizes the utility func-
tion: Am = argmaxA E

m
U (A,Vm).
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Figure 4: At each iteration our method selects an annotation set (in
orange) and a verification set (in blue) from the shape network (in
gray). The models selected for annotation are distributed over the
network to provide good coverage of shape variations. In contrast,
models selected for verification tend to cluster close to annotated
models since labels can be more reliably propagated between them.

Pre-propagation confidence. In order to optimize our utility func-
tion we need to compute the expected verification outcome for each
shape. This value depends on how confidently the automatic pre-
dictions are made for each shape. Our method leverages two terms
to propagate annotations between shapes: (i) feature-based prop-
agations from the most similar annotated shape, and (ii) point-to-
point correspondences weighted by global shape similarity. Intu-
itively, in our first term the confidence of the predictions, ck, for
each shape sk is likely to increase as the similarity, ωk,x, between
this shape, sk, and its most similar annotated shape, sx, increases.
The second term, on the other hand, is more global, enforcing sim-
ilar predictions, and thus similar prediction confidences, for shapes
that share correspondences. Combining these two intuitions, we es-
timate, Cmann = {ck}, the prediction confidence for each shape as:

Cmann = arg min
c

∑
k

‖ max
x∈Am

ωmk,x− ck‖22 + λm1
∑
k,j

ωmk,j‖ck − cj‖22,

We weight the second term by λ1, the same weight that is used for
correspondence term in the CRF optimization. Figure 5a demon-
strates the correlation between our estimateCmann and true qm values
obtained from ground truth at iteration m = 0 for a representative
dataset. Please note that no human input was collected at this stage
to produce this confidence estimation.

Given any candidate annotation set, we can use this confidence esti-
mate to compute the optimal verification set as described in Section
4.2 and compute the utility. Annotation set optimization thus can
be performed by generating multiple candidate sets and choosing
the one with maximum utility, as described next.

Annotation set optimization. Our goal is to select an annotation
set Am that will maximize the utility function, i.e. we choose Am
to consist of models that are expected to confidently annotate their
unlabeled neighbors. We select a fixed number of shapes at each
iteration |Am| = nann (where nann = 0.01N ). To perform such
a selection we use a variant of beam search, where at any time we
keep a set of sub-optimal solutions represented by N = |{sk}|
candidate subsets Ωk. Initially, the subsets just include one shape
(Ω0
k = {sk}). At every iteration i > 0, we evaluate every possible

kth subset that includes the shape sk and any set Ωi−1
l from the
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Figure 5: Given a dataset of models with ground-truth human ver-
ifications Qm, we demonstrate the distribution of our prediction
confidences,Cm (x-axis) (blue bars for incorrectly propagated pre-
dictions and brown for correct). A good confidence predictor is ex-
pected to place higher blue bars closer to 0 on the x-axis, correctly
identifying the bad predictions, and higher yellow bars closer to 1
on the x-axis, correctly identifying the good predictions. (a) While
the estimates used to select the annotation set in the beginning, i.e.
with no human input yet, are less accurate, they are sufficient to
bootstrap our algorithm. (b) These estimates significantly improve
after a single iteration of annotation propagation enabling to opti-
mize for a more reliable verification set.

previous iteration, and pick the one that maximizes utility function:

Ωik = argmax
Am=Ωi−1

l
∪{sk},l=1...N

EU (A,V),

where EU (A,V) is defined by Equation 1. When the cardinality of
Ωik reaches nann we greedily pick a shape to remove (maximizing
the utility function for a subset with cardinality nann−1), thus at
next iteration when we add a new element our cardinality remains
constant |Ωi≥nann

k | = nann. This element removal allows us to refine
our subsets and we terminate either once subsets Ω stop changing or
after 10nann iterations. We set Am to be the subset that maximizes
the utility function.

4.2 Selecting the Verification Set

After we obtain user input for our annotation set and propagate the
labels, we compute our verification set by maximizing the same
utility function: Vm = argmaxV E

m
U (Am,V); this time usingAm

as a fixed constant.

Post-propagation confidence. We now refine our confidences by
leveraging the results of label propagation. In particular, we use the
per-point label probability ρp = Pr(fm(p) = 1|hm) computed by
our propagation step (see Section 6). We denote prediction entropy:
J(p) = ρplogρp + (1− ρp)log(1− ρp), a value that increases for
more confident predictions as ρp gets closer to 0 or 1, and we further
normalize it to be a positive value in a range [0, 1]: J̃(p)=1+ J(p)

log(2)
.

We now use this normalized entropy to get refined confidences:

Cmver[k]=
1

|sk|
∑
p∈sk

J̃(p)·Cmann[k],

where |sk| is the number of points sampled on a shape sk. Note
that the correlation between the ground truth confidences and our
estimations improves when optimizing for the verification set since
we have more input obtained from the annotation propagation step
(see Figure 5). We use these confidence estimates when optimizing
for the verification set.

Verification set optimization. Since our approach directly bene-
fits from positive verification and does not benefit from a negative
one, we select a verification set Vm to contain annotations that are
most likely to be positively-verified. We consequently initialize the



set with all the human annotated models in the current iteration.
To compute the rest of the optimal verification set we sort the re-
maining shapes with respect to their expected verification values
E(Qm|Am,Vm)) (highest to lowest), and iteratively add models to
the verification set Vm in that order until the utility function stops
increasing. This strategy is guaranteed to generate the optimal so-
lution with respect to our utility function and we refer the reader to
the supplemental material for justification. Figure 4 demonstrates
an example verification subset (blue points), note how verified mod-
els are located near the annotated ones. If a human annotated model
fails verification it is marked as ambiguous and not processed fur-
ther (see Section 8 for more details). Other models that fail verifi-
cation are returned to the pool for further processing.

5 Obtaining Human Input

Once we find the sets of models to be annotated or verified, we
interface with workers to obtain the data. Our interfaces are sim-
ple, not requiring any special expertise, and thus suitable to be dis-
tributed over the web (and crowd-sourced if necessary). We have
developed two interfaces targeted at obtaining per-point labels hm

and per-shape verifications Qm.

5.1 Annotation interface

The input to our annotation interface is a set of 3D models and a
user instruction to highlight model regions corresponding to a spe-
cific label of interest; the output is the manually generated labels
hm ∈ {0, 1}, where h(p ∈ sk) = 1 iff point p on shape sk belongs
to the region of interest. To avoid requiring users to perform com-
plicated 3D manipulation we show them only 2D images of shapes
they need to annotate. We generate the images by selecting two
views that cover the largest surface area for each model. The user is
then asked to highlight a particular region (e.g. “bag handle”). This
interface is very simple, since for every task we only show a single
model from a single viewpoint at a time and only ask the viewer to
label a single semantic region. We provide the users with a painting
interface where they use a resizable brush to highlight the region of
interest (see Figure 6). We use the underlying depth image to en-
sure that the brush (regardless of its size) does not spill over depth
discontinuities. This facilitates quick and accurate labeling of large
and small areas (see supplemental video for an example). Note that
the annotator can also specify that part does not exist or indicate
that the part is not visible from the current view. We propagate
the labels to hidden areas on the models and to other models, as
explained in the next section.

5.2 Verification interface

The input to our verification interface is a set of shapes and their
predicted annotations fm, and our goal is to acquire the per-shape
quality Qm of these predictions. We expect the set to consist of
largely correctly labeled models. To minimize the effort in scan-
ning through multiple models, we render a group of models at a
time and ask viewers to select all models with incorrect labels. The
size of the verification set is determined by our optimization and we
possibly split this set into multiple verification tasks with at most
100 models at a time to ensure consistent amount of effort for each
crowd task. In order to ensure verification quality, we insert a small
set of models (2 models for each labeling task in our case) with
incorrect labels as a gold standard [Su et al. 2012] into each veri-
fication task. Verification results from the users who fail to reject
these incorrectly labeled models are not used in analysis, and their
tasks get re-assigned to other workers.

user-painted 
region

select tool: 
brush or eraser

erase all 
annotations

switch between shapes

Indicate if image
cannot be labeled

Figure 6: User interface for acquiring semantic labeling. Our
interface is designed for crowdsourcing and is therefore very
lightweight and simple; the user only annotates a single label, on a
single shape, from a single viewpoint.

6 Propagating Labels

At each iteration of our pipeline we propagate manual per-point
annotations hm to the entire dataset, computing predicted per-point
labels fm on all the input models. The annotations are propagated
both to unlabeled shapes and to those points on labeled shapes that
were hidden from view in the annotation interface. To simplify
notation we will not use the iteration superscript for cases when all
variables are given at a single iteration m.

Energy Function. We optimize all labels simultaneously by mini-
mizing an energy function that accounts for three criteria: local ge-
ometry; global correspondence; and label continuity or smoothness.
The first criterion evaluates at each point a local feature based la-
beling metric, learned on similar, user-annotated models. The sec-
ond incorporates point-to-point correspondences that are estimated
with global shape matching techniques. Correspondences provide
additional global structural and contextual cues (e.g., chair legs typ-
ically share the same relative location), which cannot be captured
with feature-based point classifiers. Lastly, our smoothness term
encodes the expectation for regions of interest to be compact and
continuous. We encode these criteria using a CRF-based energy
function E(f) = − log(Pr(fm|hm)), maximizing the likelihood
of overall prediction fm given human labels hm. We decompose
our objective as follows:

E(f)=
∑
p∈S

ψf(p)+
∑

p1,p2∈S×S

λ1ψc(p1, p2)+
∑

p1,p2∈S

λ2ψs(p1, p2),

(3)
where p ∈ S is the set of all points on all shapes (we sample
|sk| = 3000 points per shape). The feature-based term, ψf(p),
encourages the label of each point p to be similar to the classifi-
cation result obtained by an ensemble of feature-based classifiers
built from the annotated shapes; ψc promotes corresponding points
across different shapes to have similar labels, whereas ψs promotes
nearby points on the same shape to have similar labels. The weight
λi are learned from the annotation output as discussed in Section 7.
For estimating per-point label probabilities Pr(fm(p) = 1|hm) in
Section 4 we use marginal inference over the CRF.

Feature-based Classification. In general, one can expect points
with similar local geometric features to have a similar label (e.g.,
a chair seat is typically flat). However, this correlation between la-
bel similarity and local geometric feature similarity holds only for
overall relatively similar objects (see Figure 7). Motivated by this
observation we use our already annotated models to learn a feature
based per-point classifier, which assigns each point a likelihood of
being associated with our label of interest. To prioritize label prop-
agation between more similar shapes, instead of building a single



(a) feature term only
(using a uni�ed classier)

(b) feature term only
(using ensemble of classi�ers)

(c) all terms combined

human annotations 

feature-based classi�er    f feat f feat f feat f feat f feat

hm hm hm

Figure 7: Given a set of human annotated models (top) and two un-
labeled shapes (bottom), the labels can be propagated by (a) using
only the feature-based classifier trained on all annotated models,
(b) using only the most similar model to train the classifier, and (c)
using correspondences and smoothness terms. Incorporating both
(b) and (c) significantly improves the result in comparison to cur-
rently used alternatives (a).

feature-based classifier for the entire dataset, we build a separate
classifier from each annotated shape sk. We use the ensemble of
these classifiers to annotate the unlabeled shapes and hidden points
on labeled shapes. For each shape to be processed, we use the clas-
sifier built from its nearest annotated shape. Figure 7 demonstrates
how building a single classifier that takes all training data into ac-
count (a) is inferior to using the nearest shape (b).

To build a classifier, we view sk as a composition of positive ex-
amples {p ∈ sk : h(p) = 1}, negative examples h(p) = 0, and
hidden points h(p) = ∅ (not used in training) that were not visible
from any of the annotated views. We compute the following local
geometric features for each point: shape diameter function (SDF),
absolute curvature, height, and spectral features in fixed-size Eu-
clidean ball (we use the publicly available implementation of Kim
et al. [2014] to compute these features). We then train a per-point
classifier, f feat

sk on negative and positive samples using logistic re-
gression. Each such classifier generates a probability distribution
function Pr(f feat

sk (p) = l), where l ∈ {0, 1}.

To propagate the labels reliably in a diverse collection, for each
unlabeled shape si we pick the most similar annotated shape sk.
This choice is based on a shape similarity measure ω, discussed in
Section 7, indicating how reliably each pair of shapes can exchange
labels. We set:

ψf(p ∈ si) = − log(Pr(f feat
sk (p) = f(p))),where (4)

k = argmax
j

ωj,i.

Cross-Shape Correspondence. We encourage corresponding
points on similar shapes to have similar labels. While our method
can work with any shape matching algorithm we use a simple
and efficient co-alignment technique suitable for meshes, polygon
soups, and point clouds, well suited for our setup. Similar to pre-
vious work, we construct a shape network N where we connect
each shape to its nnhd = 30 most similar shapes based on global
shape descriptors ω0

i,j (Section 7). We jointly deform all shapes so
that the neighbors in the network are aligned. In particular, we use
the hierarchical joint alignment algorithm of Chang et al. [2015],
and then refine the alignments with free-form deformations [Huang
et al. 2013]. We define the weighted correspondence for a pair of
points as:

corr(p1 ∈ si, p2 ∈ sj) = ωmi,je
−||posp1−posp2 ||

2
2 (5)

(a) query model (b) before similarity learning (c) after similarity learning

Figure 8: We illustrate the effectiveness of learning shape similar-
ity on the “vases” dataset. Given a query model (a), we show its
three most similar models with respect to the metric ω0 (b). As we
get more human input our metric ω1 becomes more part-aware (c).

iff there is an edge between si and sj in N , and p1 and p2 are mu-
tually closest points after the alignment, and set corr(p1, p2) = 0
otherwise. The point coordinates posp1 , posp2 are computed on the
co-deformed shapes, with their common bounding box normalized
to a unit cube. Our correspondence term penalizes corresponding
points that have different labels:

ψc(p1, p2) = δ (f(p1) 6= f(p2)) · corr(p1, p2) (6)

Figure 7 demonstrates that adding the correspondence term (c)
leads to superior performance.

Smoothness Term. Our smoothness term encourages adjacent
points on the same shape to have similar labels. For each point p on
a shape si we find nsmooth = 5 nearest points, and define smooth-
ness analogously to correspondence:

ψs(p1, p2) = δ (f(p1) 6= f(p2)) · e−||posp1−posp2 ||
2
2 (7)

iff p2 is among nsmooth nearest neighbors of a point p1. Note that
adding the smoothness term leads to a marginal quality improve-
ment in comparison to correspondence term which significantly
boosts performance (see Figure 13).

Optimization. We solve Equation 3 using a spectral optimization
method [Leordeanu and Hebert 2005], obtaining per-point labels f
for all shapes. To scale the optimization to big datasets, we perform
k-means clustering using global shape descriptors, breaking the op-
timization into several subproblems, aiming for average cluster size
of about 300 shapes. Note that our optimization does not require
each cluster to contain annotated models since the feature-based
classifiers can be applied across clusters.

Per-face Segmentation. While all our processing is performed on
points, our initial models are typically either polygon soups. We
project per-point labels to per-face labels using a graph-cut based
solution similar to Sidi et al. [2011]. Specifically, we assign a con-
stant data cost of 1 if the label of a face is not consistent with the
label of its closest point, and a constant smoothness cost of 0.2 for
each pair of neighboring faces that are assigned different labels. We
refine coarse meshes by iteratively splitting the longest edges until
all the edge lengths are at most 0.02 of the mesh radius.

7 Learning Similarities and Weights

The shape-to-shape similarity metric, ωi,j , and the weights λi of
the terms in Equation 3 play an important role in our system and
are learned incrementally, as more user input becomes available.



At each iteration of our method, we update these parameters after
annotations have been propagated and verified, since we then pos-
sess additional information about which propagations succeeded.
We improve our similarity metric ωi,j by learning how to best
map global shape features to similarities. We also learn better
weights λi that help us to identify which cues (i.e. feature-based
or correspondence-based) should be given more weight for a par-
ticular shape category and label.

Learning Shape Similarity. Estimating accurate shape similar-
ity is the key to successfully propagating annotations. Before col-
lecting any human input (at iteration m = 0) we simply define
the shape-to-shape distance in the space of global shape descrip-
tors. We set ωm=0

i,j = e−(d(xi,xj)/σ)2 where xi and xj are light
field descriptors of shapes si and sj [Chen et al. 2003], d(·, ·) is
the cosine distance between vectors, and σ = 0.2. Once we col-
lect human annotations and verification results we refine our es-
timate of pairwise shape similarity based on the success of au-
tomatic predictions Qm. We use this data to learn a better dis-
tance metric for global shape descriptors using large margin nearest
neighbor (LMNN) [Weinberger et al. 2005] as our metric learn-
ing algorithm. We first build feature based classifiers for every
shape with verified labels, and compute pairwise prediction F1
scores among them. The computed F1 scores serve as true pair-
wise similarity score and we use 3 shapes with the best F1 score
as target neighbors in LMNN. We constrain the transformation
matrix optimized in LMNN to be a diagonal matrix (this is done
since light field descriptors yield big feature vectors, so we want
to avoid overfitting). We update the shape similarity measure as
ωmi,j = (1 − α)ωm−1

i,j + αe−(d(Mmxi,M
mxj)/σ)2 , where α = 0.3

is the learning rate. Figure 8 illustrates how nearest neighbors are
refined as we learn a better metric for a collection of shapes.

Learning Weights. The weighting between feature, correspon-
dence, and smoothness based terms in the objective function (Equa-
tion 3) plays a significant role in the quality of final predictions; the
optimal weight values λ1 and λ2 can differ drastically depending
on the shapes and regions of interests. To ensure reasonable perfor-
mance at iterationm = 0 we empirically initialize λm=0

1 = 10 and
λm=0

2 = 2, and then update the weights at each iteration, setting:

λmi = (1− α)λm−1
i + αλ∗mi , i = 1, 2. (8)

Here λ∗mi is the optimal parameter estimated via cross validation
and α = 0.3 is the learning rate. To estimate λ∗mi we take the set
of correctly labeled shapes: Ωverified = {k : qmk = 1}, and sam-
ple 10 subsets of Ωverified each containing b|Ωverified| shapes, where
b =

∑
k a

m
k

N
(we want these subsets to be proportional in size to

the number of annotated shapes). We run our joint optimization on
each subset multiple times with 21 different values λi sampled uni-
formly on a log scale in the range [0.1λm−1

i ...10λm−1
i ], we then

set λ∗mi to the value that gives the best average performance.

8 Annotation in the Wild

To test the robustness and effectiveness of our method we aim to
test it on a massive and diverse dataset of typical real-life models.
Since existing benchmarks are too small and have limited data va-
riety, we use ShapeNetCore [Chang et al. 2015] as a source of data.
This database contains shapes from real public repositories such as
3D Warehouse [Trimble 2015] and all models are classified into
several categories. Our allocated budget for this experiment was
roughly 100 human hours, thus we selected a subset of categories
from ShapeNetCore which we estimated could be processed in this
time frame. We consequently fully annotate 16 diverse categories
(see Table 1) containing 31963 models. We specify 1-5 salient re-
gions per object category identifying parts that are shared among
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Figure 9: We use our method to get part labels for more than
30,000 models in 16 shape categories in ShapeNetCore. We denote
the number of models in each category in parentheses.

Category N L Ann Ver T FMF
Guitar 793 3 270 2380 2.8 7
Knife 420 2 149 828 1.5 4.6
Pistol 307 3 176 893 1.7 4.5
Lamp 2308 3 696 6783 7.4 7.6
Chair 6742 4 2112 26152 26.2 8.3
Table 8420 2 999 16022 14.6 9.1
Mug 213 1 33 207 0.4 3.9
Airplane 4027 4 2142 15757 22.6 5.8
Bag 83 2 18 160 0.2 7.7
Cap 56 2 18 109 0.2 5.4
Earphone 73 2 25 143 0.2 5
Laptop 452 1 18 444 0.2 14.8
Skateboard 152 2 24 304 0.3 8.6
Rocket 85 3 35 240 0.5 4.2
Motorbike 336 5 264 1568 2.9 4.5
Car 7496 3 2215 21635 27.8 6.5
Total 31963 42 9194 93625 109.6 7.1

Table 1: Annotation statistics: For each category we report number
of models (N ), number of labels (L) (to label the entire dataset one
needsN·L annotations), number of human-annotated labels (Ann),
number of human-verified correct labels (Ver), estimated total hu-
man work in hours (Time), and force-multiplication factor (FMF).

multiple models (see Figures 1, 9 for some examples). Note that
our labeling does not partition the surface; we can process overlap-
ping labels or labels that do not jointly cover the shape, detecting
only “interesting” regions.

Statistics and FMF. We present our results in Table 1 demonstrat-
ing for each category the number of shapes, labels, acquired anno-
tations, positively-verified annotations, and estimated human work
time (in hours). Our method is estimated to utilize 110 hours of
worker time, while naive baseline would have taken 780 hours.
Since collecting exact timings for crowdsourced tasks is problem-



atic, due to potential user interruptions, the time above is computed
based on the number of different tasks performed and their esti-
mated completion times evaluated in our user study (Section 9). In
total we obtained 93625 verified correct annotations (out of those
9564 are confirmation that part does not exist on an object). Fig-
ure 10 demonstrates how the number of positively-verified anno-
tations grows as our system acquires more user input for several
representative labels. We use force-multiplication factor (FMF) to
measure how much our system amplifies user efficiency. We com-
pute FMF as the ratio between total one-by-one annotation time
and our annotation time. Our method results in average FMF=7.1
across all categories. This factor naturally drops as larger fraction of
data is annotated: initial propagations are usually successful among
similar models, and more diverse models have to be annotated one-
by-one. We depict this behavior in Figure 11 where x-axis is the
fraction of annotated data and y-axis is the FMF. Note that we re-
compute FMF after each iteration of our algorithm.

Our system is remarkably efficient in the context of similar sys-
tems designed for other types of data. For a reference, Boyko et
al. [2014] have FMF=1.7 for classification of point clouds, and Rus-
sakovsky et al. [2015] report FMF=2.8 for object detection in im-
ages. While both of these tasks are not directly comparable to ours,
these factors highlight the complexity of obtaining verified results
on data obtained “from the wild,” and suggest that the shape label-
ing problem greatly benefits from appropriate active supervision.

Verification. We evaluate the quality of the obtained data by ask-
ing an expert to re-verify a subset of the final results (see next sec-
tion for details). We find that that false positive rate for crowd-
verifications is very small (less than 4%) which suggests that our
dataset can be used for various downstream applications. The ex-
pert re-verified results can also be used as a reliable benchmark for
future shape analysis algorithms.

We also found that various categories have 2-7% ambiguous geom-
etry, i.e., cases when none of the human annotations passed verifi-
cation. Most often these are shapes that have a degenerate version
of the queried feature region, which some may consider as non-
existent. The overall percentage of such labels across all the pro-
cessed models was 3%. Please refer to the supplementary material
for an example set of such ambiguous shapes.

Applications. The created dataset is more than an order of magni-
tude larger than existing segmented geometric datasets (e.g., com-
pare to PSB with 380 segmented shapes [Chen et al. 2009] and
COSEG with 1090 [Wang et al. 2012]), drastically expanding the
capabilities of downstream applications. It can serve as a bench-
mark, a training dataset, or as a source for data-driven modeling
and semantics-aware reconstruction techniques.

9 Evaluation and Comparison

We validate our method by comparing it against previous work and
evaluating significance of various design choices.

Dataset. We evaluate our method on the COSEG benchmark used
by previous techniques [Wang et al. 2012]. It contains several
collections of co-segmented manifold meshes with ground truth
per-face labels. In addition, we have created a ShapeNetCore-
benchmark dataset by randomly selecting a subset of 12000 models
for 4 categories (chair, lamp, airplane, table) from ShapeNetCore.
We ensure the ground truth labelings for these datasets by asking
an expert to re-verify the results collected with our method and ex-
clude incorrect labelings (less than 4% of the examples).

Evaluation Metrics. There are two relevant dimensions to evaluat-
ing a semi-supervised method: amount of supervision and accuracy.
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Figure 10: Number of positively-verified labeled shapes (y-axis) as
a function of human input time (x-axis) for representative labels in
our data. As expected the graph is monotonically increasing, and
flattens out as time progresses and the algorithm encounters more
diverse models. Note the relative inefficiency of manual labeling.
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Figure 11: Force-multiplication factor (FMF, y-axis) over time.
Predictably FMF drops as the system annotates a higher fraction
of the model collection (x-axis).

We measure the amount of user supervision based on invested time.
Since this time varies between different users we use estimated av-
erage times for annotation and verification to obtain a single time
estimate. We also use force-multiplication factor, FMF, to estimate
the efficiency of different methods. Accuracy is commonly com-
puted as a fraction of correctly labeled faces, and we use this metric
when comparing to previous work. It is worth noting that achiev-
ing 100% accuracy is not possible even with full manual annotation
since some parts have fuzzy boundaries allowing for many equally
plausible solutions, e.g. where exactly does a nose of a rocket end
and its body begins? This fuzziness is acknowledged in previous
work, as Wang et al. [2012] report timings for achieving “close to
error-free” results allowing some deviation from ground truth.

Annotating COSEG. We use our system to annotate the COSEG
benchmark by running it for each part label independently and us-
ing graph-cuts at each iteration to project per-point labels to per-
face labels. Since segmentation partitions a surface, we only collect
(#parts-1) labels, and the missing part is estimated after the graph-
cut. We report average human input time (in minutes) and FMF to
reach about 95% average accuracy in Table 2, the timing is com-
puted from a user study conducted on Candelabra, Big Chairs and
Big Vases datasets. We also run our system on other categories and
compute the number of annotation and verification tasks required



to annotate all models, and then estimate total timing based on the
average timings from the user study. These estimated timings are
denoted with a (*) in the table. We annotate all categories of this
dataset in 74 minutes; this would have taken 12 times longer with
manual annotation.

Comparison to ACA. Active co-analysis (ACA) [Wang et al. 2012]
is the state-of-the-art active learning technique for 3D segmentation
of manifold meshes into a known, small number of components.
Knowing the number of labels that they have to partition the sur-
face allows them to do a warm start by running an unsupervised co-
segmentation algorithm first. For efficiency they pre-segment their
meshes to super-patches such that each such patch is assigned to
only a single part (resulting in about 7 patches per shape) and use
active-learning to classify these patches. Our framework is more
general – it is not limited to manifold meshes, supports labels that
do not partition the input shape, and extends to any labeling gran-
ularity (e.g. it can be used to detect regions that do not conform to
geometric patch boundaries such as the hood of the car in Figure 1).
Below we focus on measurable comparisons between the methods
and their components.

Wang et al. [2012] report measured timing with a user study on
only two datasets: candelabras and vases. Our method is faster on
these two datasets (Table 2). ACA iteratively queries users to pro-
vide “must-link” and “cannot-link” relationships between patches.
These interactions require users to find good exemplar pairs among
multiple choices selected based on active learning criteria. It then
uses similarity in local geometric features of patches to propagate
labels across the dataset. Since Wang et al. [2012] report the num-
ber of pairwise constraints and total number of patches on their
models, we can extrapolate additional times as well as FMF from
their numbers. We compute average time for a user to provide a
constraint from the given two time measurements, and estimate ap-
proximate timing on other datasets based on the reported number
of constraints, denoting these timings with a (*) in Table 2. We
estimate the FMF of their method, measured as 2∗#constraints

#patches , since
one needs to click on two patches to specify constraints (assuming
that one could provide all labels by clicking on every patch). Note
that we do not account for the fact that specifying patch-to-patch
constraints takes longer than naive one-by-one patch labeling, and
thus our estimate is biased towards higher-than-true FMF for the
ACA method. While we make some assumptions to project both
approaches to comparable metric, we believe that these statistics
are representative of the performance of the two methods, indicat-
ing that our framework is twice more efficient in using human-time.

Note that ACA performed better on two categories: guitars and
lamps. This is because the initial patches obtained by ACA can
substantially boost the performance on some manifold meshes. We
decided not to modify our method for the the manifold meshes, and
thus we do not take advantage of a closed manifold assumption.

Another critical difference between the two methods is the time
efficiency of the methods they use for propagating human input.
ACA propagates labels between patches using a spring-based em-
bedding model; this approach takes 15s per optimization on the
largest dataset that contains 3000 patches. In contrast, our CRF-
based optimization takes 10s for optimization with 750,000 points.
Applying the mass-spring model to our data would slow the pro-
cessing down by two orders of magnitude. On the other hand, pre-
segmentation into patches would restrict the granularity of our la-
beling, and may be challenging on polygon soups.

Comparison to supervised labeling. We compare the performance
of our automatic propagation algorithm to the supervised label-
ing methods of Kalogerakis et al. [2010] and Wu et al. [2014].
We test these methods on lamps and chairs in the ShapeNetCore-

Dataset Meshes
FMF
ACA

Time
ACA

FMF
Ours

Time
Ours

Candelabra 20 3.4 7.0 8.8 1.4
Chairs 20 3.3 10.5* 35.5 0.9*

Four-legged 20 1.9 20.1* 3.5 11.5*
Goblets 12 6.1 1.2* 21 0.7*
Guitar 44 27.5 1.8* 28 1.9*
Lamps 20 24.3 0.6* 10.6 2.3*
Vases 28 2.5 9.9* 5.4 8.3*
Irons 18 2.7 7.6* 3.0 7.2*

Big Chairs 400 8.7 73.6* 22.3 21.4
Big Vases 300 17.4 20.0 10.4 18.1

Cumulative 882 7.1 152.3* 12.3 73.6*

Table 2: We compare to Wang et al.[2012] (ACA). Higher FMF
and smaller times indicate more efficient performance and are high-
lighted in bold. We use (*) to denote estimated timing (see text).
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Figure 12: Our automatic label propagation tool demonstrates
a superior performance in comparison to previous techniques
(adapted to handle ShapeNetCore data).

benchmark dataset. Some of the point-wise features used by previ-
ous techniques can only be computed for manifold, well-tessellated
surfaces that form a single connected component, and thus cannot
be used to analyze our data. Thus, in this comparison we use our
point-wise features for all three methods. While these previous
methods do not leverage correspondences, to make the compari-
son more fair we also provide 3D positions of points after shape
co-alignment step as additional features. A random subset of 500
models is chosen from ShapeNetCore for each category during the
comparison. For each plot sample, we generate 10 random train/test
splits and report the average performance. Figure 12 shows that our
propagation method outperforms existing alternatives even in a tra-
ditional supervised labeling setup.

User Study. We conduct an in-lab user study to (i) obtain timing
for comparisons to ACA, and (ii) estimate timing constants used in
our utility function. We selected 5 users with at least basic com-
puter literacy. We provided them the same tools and instructions as
we used for online crowdsourcing tasks. We issued them the tasks
required to annotate chairs, vases, and candelabra categories from
the COSEG dataset and report total timing in Table 2. We also used
bigger datasets and some examples from ShapeNetCore categories
to estimate average timing for constants used in our human model:
average per-model annotation time τann (labeling two views), time
to identify whether labeling is correct τident, and time to click on
incorrect labeling τclick. Since the later two come from the same
verification task, we estimate them using the best fit to our human
model tver (Equation 2). We use conservatively rounded averages
τann =30s, τident =0.3s, τclick =1.1s.

Quality of verification. To evaluate the quality of crowd-sourced
verifications we asked an expert (i.e., a geometry processing re-
searcher) to re-verify results for a subset of categories. Table 3 re-
ports the accuracy of crowd workers on both annotation and verifi-
cation tasks. We measure annotation accuracy (fraction of models
that were annotated correctly), verification precision (the fraction



Dataset Part
hm Qm Qm

Acc Pr Rc

Plane SN

body 96.04 96.82 92.31
wing 97.47 97.36 95.01
engine 98.25 97.73 88.87
tail 97.17 97.23 93.20

Chair SN

back 95.23 98.98 98.51
seat 95.11 95.51 98.66
leg 97.53 92.78 99.14
arm 99.10 97.80 96.35

Table SN
top 96.74 98.57 96.86
leg 97.08 92.02 99.10

Lamp SN
base 96.91 98.17 92.59
canopy 89.72 97.29 86.42
lampshade 95.71 95.20 99.46

Average 96.29 96.56 95.36

Table 3: This table presents the annotation (hm) and verification
(Pr and Rc) accuracies of crowd workers.

of labels identified by workers as correct which are indeed correct),
and verification recall (the fraction of correct labels identified by
workers as such). We observe that annotation accuracy is close to
verification precision and recall, suggesting that verifying whether
a labeling is correct is as reliable as labeling the region.

Evaluating design choices. We run several studies demonstrating
the significance of different design decisions and contributions we
have made. We report average per-part F1 score (harmonic mean
of precision and recall) for Big Vases and Chairs as a function of
user time in Figure 13. We chose average per-part F1 score since
it up-plays the role of small salient parts in comparison to average
per-face accuracy. In this evaluation we compare our method (red
solid line) and alternatives with one of our features disabled. We
run the following variants:
– No correspondence term - We exclude cross-shape correspon-
dence term from our per-point CRF (λ1 = 0).
– No active selection - We disable annotation set optimization and
instead select a random set of shapes of the same size to be labeled.
– No verification step - We only annotate models and do not query
users for verification. Interestingly, the performance does not
necessarily increase monotonically since we have no mechanism
to understand which propagations worked well.
– No feature-based term - We exclude feature-based classifiers
from our per-point CRF, thus excluding local shape cues.
– No ensemble learning - We build a single feature-based
classifier instead of ensemble of classifiers, thus excluding global
shape-to-shape similarity cues.
– No learning of weights - We do not update our weights
ω, λ1, λ2, which makes our method less adaptable to novel data
(e.g., new categories and labels of interest).
– No smoothness term - We exclude smoothness term from our
per-point CRF (λ2 = 0).

As we can see from this evaluation all our features yield significant
performance boost, while incorporating a verification step and the
correspondence terms plays the most significant role.

Segmentation vs labeling. Our method is designed for labeling
semantic regions. This is a different problem from segmentation
which focuses on detecting boundaries between segments [Chen
et al. 2009]. We focus on labeling because most applications re-
quire segments to have consistent labels across the dataset (e.g.,
modeling-by-parts interfaces need to swap compatible parts with
the same label), and not all applications require partitioning of the
surface (e.g., affordances of a bicycle can be predicted by detect-
ing seats, pedals, and handles, while the rest of the shape is irrele-
vant). While we provide a simple procedure for converting labels to
segments (see end of Section 6), a more elaborate technique could
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Figure 13: Comparison of different variants of our method where
each curve corresponds to a result obtained without some feature,
and x-axis is human input time and y-axis is average per-part F1-
score. See text for details.

be used that takes pairwise features into account to create better
boundaries (e.g., see Kalogerakis et al. [2010]). To validate the
quality of our boundaries we tested our method on PSB [Chen et al.
2009] using a leave-one-out setup. We found that our method pro-
duces reasonable boundaries, as confirmed by low Rand Index (see
supplemental material for details).

Computation Time. We estimate computation times on a repre-
sentative dataset of 400 chairs. We expect timings to scale linearly
for bigger datasets since we use a divide-and-conquer strategy. Our
pre-processing time is about 45s per shape (10s for point sampling
and feature computation and 35s for shape alignment). Our active
subset selection takes 5s. Label propagation takes 10s for 750,000
points. Learning λi requires re-optimizing CRF multiple times and
thus takes about 2 min. All timings are reported on an 8-core 2.6
GHz Intel Core i7 machine with 8GB RAM.

10 Conclusion

We provide an efficient active learning framework for annotating
massive geometric datasets, based on two key elements. By in-
corporating human verification of automatically-generated results
in our optimization we simultaneously improve the efficiency of
our tool and obtain accurate, human-verified results. By leveraging
global shape-to-shape similarities in an evolving network, as well
as point-to-point correspondences and local geometric features, we
were able to achieve reliable and accurate automatic inference of
per-point labels in shape collections. Jointly these contributions
lead to an annotation tool that is more efficient than state-of-the art
techniques and is suitable for annotating massive and diverse shape
collections from public repositories. We have demonstrated this by
annotating a dataset that is more than an order of magnitude larger
than what was available before.

Limitations and Future Work. There are many remaining chal-
lenges and opportunities for future research on detailed shape an-
notation. While our 2D annotation and verification interfaces en-
able quick and easy processing by non-expert crowd-workers and
provide a good accuracy vs efficiency tradeoff, there may be areas
that are hidden in all provided views resulting in minor labeling
inaccuracies. Designing efficient interfaces for visualizing com-
plex shapes is an interesting future work. When labeling complex
scenes, the presence of small parts and clutter make it infeasible to
select views independently from the label of interest. Future work
might consider optimizing for a viewpoint trying to focus annota-
tor attention on interesting regions. Our current pipeline labels one
region at a time. Interactions and inter-relations between the labels
can be exploited in a more joint framework. Finally, our current
method is designed to acquire surface labels; a different approach



may be required for richer annotations such as computing human-
object interaction poses as in Kim et al. [2014], or for labeling the
mechanical structure of an object (e.g., joints and their parameters).
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