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Fig. 1. Large online model repositories contain abundant additional data beyond 3D geometry, such as part labels and artist’s part decompositions, flat or
hierarchical. We tap into this trove of sparse and noisy noisy data to train a network for simultaneous hierarchical shape structure decomposition and labeling.
Our method learns to take new geometry, and segment it into parts, label the parts, and place them in a hierarchy. In this paper, we visualize scene graphs
with a circular visualization, in which the root node is near the center. Blue lines indicate parent-child relationships, and red dashed arcs connect siblings. The
input geometry in online databases are broken as connected components, visualized in the input as random colors.

We propose a method for converting geometric shapes into hierarchically
segmented parts with part labels. Our key idea is to train category-speci�c
models from the scene graphs and part names that accompany 3D shapes in
public repositories. �ese freely-available annotations represent an enor-
mous, untapped source of information on geometry. However, because the
models and corresponding scene graphs are created by a wide range of mod-
elers with di�erent levels of expertise, modeling tools, and objectives, these
models have very inconsistent segmentations and hierarchies with sparse
and noisy textual tags. Our method involves two analysis steps. First, we
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perform a joint optimization to simultaneously cluster and label parts in the
database while also inferring a canonical tag dictionary and part hierarchy.
We then use this labeled data to train a method for hierarchical segmentation
and labeling of new 3D shapes. We demonstrate that our method can mine
complex information, detecting hierarchies in man-made objects and their
constituent parts, obtaining �ner scale details than existing alternatives. We
also show that, by performing domain transfer using a few supervised ex-
amples, our technique outperforms fully-supervised techniques that require
hundreds of manually-labeled models.
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1 INTRODUCTION
Segmentation and labeling of 3D shapes is an important problem in
geometry processing. �ese structural annotations are critical for
many applications, such as animation, geometric modeling, manu-
facturing, and search (Mitra et al. 2013). Recent methods have shown
that, by supervised training from labeled shape databases, state-of-
the-art performance can be achieved on mesh segmentation and
part labeling (Kalogerakis et al. 2010; Yi et al. 2016). However, such
methods rely on carefully-annotated databases of shape segmen-
tations, which is an extremely labor-intensive process. Moreover,
these methods have used coarse segmentations into just a few parts
each, and do not capture the �ne-grained, hierarchical structure of
many real-world objects. Capturing �ne-scale part structure is very
di�cult with non-expert manual annotation; it is di�cult even to
determine the set of parts and labels to separate. Another option
is to use unsupervised methods that work without annotations by
analyzing geometric pa�erns (van Kaick et al. 2013). Unfortunately,
these methods do not have access to the full semantics of shapes
and as a result o�en do not identity parts that are meaningful to
humans, nor can they apply language labels to models or their parts.
Additionally, typical co-analysis techniques do not easily scale to
large datasets.

We observe that, when creating 3D shapes, artists o�en provide a
considerable amount of extra structure with the model. In particular,
they separate parts into hierarchies represented as scene graphs, and
annotate individual parts with textual names. In surveying the
online geometry repositories, we �nd that most shapes are provided
with these kinds of user annotations. Furthermore, there are o�en
thousands of models per category available to train from. Hence,
we ask: can we exploit this abundant and freely-available metadata
to analyze and annotate new geometry?

Using these user-provided annotations comes with many chal-
lenges. For instance, Figure 1(a) shows four typical scene graphs in
the car category, created by four di�erent authors. Each one has a
di�erent part hierarchy and set of parts, e.g., only two of the scene
graphs have the steering wheel of the car as a separate node. �e
hierarchies have di�erent depths; some are nearly-�at hierarchies
and some are more complex. Only a few parts are given names in
each model. Despite this variability, inspecting these models reveal
common trends, such as certain parts that are frequently segmented,
parts that are frequently given consistent names, and pairs of parts
that frequently occur in parent-child relationships with each other.
For example, the tire is o�en a separate part, it is usually the child
of the wheel, and usually has a name like tire or RightTire. Our goal
is to exploit these trends, while being robust to the many variations
in names and hierarchies that di�erent model creators use.

�is paper proposes to learn shape analysis from these messy,
user-created datasets, thus leveraging the freely-available anno-
tations provided by modelers. Our main goal is to automatically
discover common trends in part segmentation, labeling, and hier-
archy. Once learned, our method can be applied to new shapes
that consist of geometry alone: the new shape is automatically seg-
mented into parts, which are labeled and placed in a hierarchy. Our
method can also be used to clean-up the existing databases. Our
method is designed to work with large training sets, learning from
thousands of models in a category. Because the annotations are

uncurated, sparse (within each shape) and irregular, this problem is
an instance of weakly-supervised learning.

Our approach handles each shape category (e.g., cars, airplanes,
etc.) in a dataset separately. For a given shape category, we �rst
identify the commonly-occurring part names within that class, and
manually condense this set, combining synonyms, and removing
uninformative names. We then perform an optimization that si-
multaneously (a) learns a metric for classifying parts, (b) assigns
names to unnamed parts where possible, (c) clusters other unnamed
parts, (d) learns a canonical hierarchy for parts in the class, and (e)
provides a consistent labeling to all parts in the database. Given
this annotation of the training data, we then learn to hierarchically
segment new models, using a Markov Random Field (MRF) segmen-
tation algorithm. Our algorithms are designed to scale to training
on large datasets by mini-batch processing. We use these outputs
to train a hierarchical segmentation model. �en, given a new, un-
segmented mesh, we can apply this learned model to segment the
mesh, transfer the tags, and infer the part hierarchy.

We use our method to analyze shapes from ShapeNet (Chang et al.
2015), a large-scale dataset of 3D models and part graphs obtained
from online repositories. We demonstrate that our method can mine
complex information detecting hierarchies in man-made objects and
their constituent parts, obtaining �ner scale details than existing
alternatives. While our problem is di�erent from what has been
explored in previous research, we perform two types of quantitative
evaluations. First, we evaluate di�erent variants of our method by
holding some tags out, and show that all terms in our objective
function are important to obtain the �nal result. Second, we show
that supervised learning techniques require hundreds of manually
labeled models until they reach the quality of segmentation that we
get without any explicit supervision. We publicly share our code
and the processed datasets in order to encourage further research.1

2 RELATED WORK
Recent shape analysis techniques focus on extracting structure from
large collections of 3D models (Xu et al. 2016). In this section we
discuss recent work on detecting labeled parts and hierarchies in
shape collections.
Shape Segmentation and Labeling. Given a su�cient number of
training examples, it is possible to learn to segment and label novel
geometries (Guo et al. 2015; Kalogerakis et al. 2010; Yumer et al.
2014). While supervised techniques achieve impressive accuracy,
they require dense training data for each new shape category, which
signi�cantly limits their applicability. To decrease the cost of data
collection, researchers have developed methods that rely on crowd-
sourcing (Chen et al. 2009), active learning (Wang et al. 2012), or
both (Yi et al. 2016). However, this only decreases the cost of data col-
lection, but does not eliminate it. Moreover, these methods have not
demonstrated the ability to identify �ne-grained model structure, or
hierarchies. One can rely solely on consistency in part geometry to
extract meaningful segments without supervision (Golovinskiy and
Funkhouser 2009; Hu et al. 2012; Huang et al. 2011, 2014; Kim et al.
2013; Sidi et al. 2011). However, since these methods do not take any
human input into account, they typically only detect coarse parts,

1h�p://cs.stanford.edu/∼ericyi/project page/hier seg/index.html
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and do not discover semantically salient regions where geometric
cues fail to encapsulate the necessary discriminative information.

In contrast, we use the part graphs that accompany 3D models
to weakly supervise the shape segmentation and labeling. �is is
similar in spirit to existing unsupervised approaches, but it mines se-
mantic guidance from ambient data that accompanies most available
3D models.

Our method is an instance of weakly-supervised learning from
data on the web. A number of related problems have been explored
in computer vision, including learning classi�ers and captions from
user-provided images on the web, e.g., (Izadinia et al. 2015; Li et al.
2016; Ordonez et al. 2011), or image searches, e.g., (Chen and Gupta
2015).
ShapeHierarchies. Previous work a�empted to infer scene graphs
based on symmetry (Wang et al. 2011) or geometric matching (van
Kaick et al. 2013). However, as with unsupervised segmentation
techniques, these methods only succeed in a presence of strong
geometric cues. To address this limitation, Liu et al. (2014) proposed
a method that learns a probabilistic grammar from examples, and
then uses it to create consistent scene graphs for unlabeled input.
However, their method requires accurately labeled example scene
graphs. Fisher et al. (2011) use scene graphs from online repositories,
focusing on arrangements of objects in scenes, whereas we focus
on �ne-scale analysis of individual shapes.

In contrast, we leverage the scene graphs that exist for most
shapes created by humans. Even though these scene graphs are
noisy and contain few meaningful node names (Figure 1(a)), we
show that it is possible to learn a consistent hierarchy by combining
cues from corresponding sparse labels and similar geometric entities
in a joint framework. Such label correspondences not only help
our clusters be semantically meaningful, but also help us discover
additional common nodes in the hierarchy.

3 OVERVIEW
Our goal is to learn an algorithm that, given a shape from a speci�c
class (e.g., cars or airplanes), can segment the shape, label the parts,
and place the parts into a hierarchy. Our approach is to train based
on geometry downloaded from online model repositories. Each
shape is composed of 3D geometry segmented into distinct parts;
each part has an optional textual name, and the parts are placed in
a hierarchy. �e hierarchy for a single model is called a scene graph.
As discussed above, di�erent training models may be segmented in
di�erent hierarchies; our goal is to learn from trends in the data as
to which parts are o�en segmented, how they are typically labeled,
and which parts are typically children of other parts.

We break the analysis into two sub-tasks:

• Part-Based Analysis (Section 4). Given a set of meshes in
a speci�c category and their original messy scene graphs,
we identify the dictionary of distinct parts for a category,
and place them into a canonical hierarchy. �is dictionary
includes both parts with user-provided names (e.g., wheel)
and a clustering of unnamed parts. All parts on the training
meshes are labeled according to the part dictionary.

Fig. 2. A visualization of connected components in ShapeNet cars, illus-
trating that each connected component is usually a sub-region of a single
part.

• Hierarchical Mesh Segmentation (Section 5). We train
a method to segment a new mesh into a hierarchical seg-
mentation, using the labels and hierarchy provided by the
previous step. For parts with textual names, these labels
are also transferred to the new parts.

We evaluate with testing on hold-out data, and qualitative evalu-
ation. In addition, we show how to adapt our model to a benchmark
dataset.

Our method makes two additional assumptions. First, our fea-
ture vector representations assume consistently-oriented meshes,
following the representation in ShapeNetCore (Chang et al. 2015).
Second, the canonical hierarchy requires that every type of part has
only one possible parent label, e.g., our algorithm might infer that
the parent of a headlight is always the body, if this is frequently
the case in the training data.

In our segmentation algorithm, we usually assume that each
connected component in the mesh belongs to a single part. �is can
be viewed as a form of over-segmentation assumption (e.g., (van
Kaick et al. 2013)), and we found it to be generally true for our
input data, e.g., see Figure 1(b) and 2. We show results both with
and without this assumption in Section 6 and in the Supplemental
Material.

4 PART-BASED ANALYSIS
�e �rst step of our process takes the shapes in one category as
input, and identi�es a dictionary of parts for that category, a canon-
ical hierarchy for the parts, and a labeling of the training meshes
according to this part dictionary. Each input shape i is represented
by a scene graph: a rooted directed tree Hi = {Xi ,Ei }, where nodes
are parts with geometric features Xi = {xi j |j = 1, ..., |Xi |} and each
edge (j,k ) ∈ Ei indicates that part (i,k ) is a child of part (i, j ). We
manually pre-process the user-provided part names into a tag dictio-
nary T , which is a list of part names relevant for the input category
(Table 1). One could imagine discovering these names automati-
cally. We opted for the manual processing, since the vocabulary
of words that appear in ShapeNet part labels is fairly limited, and
there are many irregularities in the label usage, e.g., synonyms and
mispellings. �e parts with a label from the dictionary are then
assigned corresponding tags ti j . Note that many parts are untagged,
either because no names were provided with the model, or the user-
provided names did not map onto names in the dictionary. Note also
that j is indexes parts within a shape independent of tags; e.g., there
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is no necessary relation between (i, j ) and part (k, j ). Each graph
has a root node, which has a special root tag, and no parent. For
non-leaf nodes, the geometry of any node is the union of geometries
of its children.

To produce a dictionary of parts, we could directly use the user-
provided tags, and then cluster the untagged parts. However, this
naive approach would have several intertwined problems. First,
the user-provided tags may be incorrect in various ways: missing
tags for known parts (e.g., a wheel not tagged at all), tags given
only at a high-level of the hierarchy (e.g., the rim and the tire are
not segmented from the wheel, and they are all tagged as wheel),
and tags that are simply wrong. �e clustering itself depends on
a distance metric, which must be learned from labels. We would
like to have tags be applied as broadly and accurately as possible,
to provide as much clean training data as possible for labeling and
clustering, and to correctly transfer tags when possible. Finally, we
would also like to use a parent-child relationships to constrain the
part labeling (so that a wheel is not the child of a door), but plausible
parent-child relationships are not known a priori.

We address these problems by jointly optimizing for all unknowns:
the distance metric, a dictionary of D parts, a labeling of parts
according to this dictionary, and a probability distribution over
parent-child relationships. �e labeling of model parts is also done
probabilistically, by the Expectation-Maximization (EM) algorithm
(Neal and Hinton 1998), where the hidden variables are the part
labels. �e distance metric is encoded in a embedding function
f : RS → RF , which maps a part represented by a shape descriptor
x (Appendix A) to a lower-dimensional feature space. �e function
f is represented as a neural network (Figure 12). Each canonical
part k has a representative cluster center ck in the feature space,
so that a new part can be classi�ed by nearest-neighbors distance
in the feature space. Note that the clusters do not have an explicit
association with tags: our energy function only encourages parts
with the same tag to fall in the same cluster. As a post-process, we
match tag names to clusters where possible.

We model parent-child relationships with a matrix M ∈ RD×D ,
where Muv is, for a part in cluster v , the probability that its parent
has label u. A�er the learning stage, M is converted to a determinis-
tic canonical hierarchy over all of the parts.

Our method is inspired in part by the semi-supervised clustering
method of Basu et al. (2004). In contrast to their linear embedding of
initial features for metric learning, we incorporate a neural network
embedding procedure to allow non-linear embedding in the presence
of constraints, and use an EM so� clustering. In addition, Basu et
al. (2004) do not take hierarchical representations into consideration,
whereas our data is inherently a hierarchical part tree.

4.1 Objective function
�e EM objective function is:

E (θ , p, c,M) = λcEc + λsEs + λdEd + λmEm − H (1)

where θ are the parameters of the embedding f , p are the label
probabilities such that pi jk represents the probability of the jth

part of ith shape be assigned to kth label cluster, and c1:D are the
unknown cluster centers. We set λc = 0.1, λs = 1, λd = 1, λm = 0.05
throughout all experiments.

�e �rst two terms, Ec and Es , encourage the concentration of
clusters in the embedding space; Ed encourages the separation of
visually dissimilar parts in embedding space; Em is introduced to
estimate the parent-child relationship matrix M; the entropy term
H = −

∑
p lnp is a consequence of the derivation of the EM objective

(Appendix �) and is required for correct estimation of probabilities.
We next describe the energy terms one by one.

Our �rst term favors part embeddings to be near their correspond-
ing cluster centroids:

Ec =
∑
(i, j )

∑
k ∈1:D

pi jk | | f (xi j ) − ck | |1 (2)

where f is the embedding function f (·), represented as a neural
network and parametrized by a vector θ . �e network is described
in Appendix A.

Second, our objective function constrains the embedding, by
favoring small distances for parts that share the same input tag, and
for parts that have very similar geometry:

Es =
∑

(xi j ,xkl )∈S

| | f (xi j ) − f (xkl ) | |1, where (3)

(xi j ,xkl ) ∈ S i� ti j = tkl or ‖xi j − xkl ‖22 ≤ δ

We extract all tagged parts and sample pairs from them for the
constraint. We set δ = 0.1 to a small constant to account for near-
perfect repetitions of parts, and ensure that these parts are assigned
to the same cluster.

�ird, our objective favors separation in the embedded space by
a margin σd between parts on the same shape that are not expected
to have the same label:

Ed =
∑

(xi j ,xil )∈D

max(0,σd − || f (xi j ) − f (xil ) | |1), where (4)

(xi j ,xil ) ∈ D if (xi j ,xil ) < S.

We only use parts from the same shape in D, since we believe it is
generally reasonable to assume that parts on the same shape with
distinct tags or distinct geometry have distinct labels.

Finally, we score the labels of parent-child pairs by how well they
match the overall parent-child label statistics in the data, using the
negative log-likelhood of a multinomial:

Em = −
∑

`1, `2∈1:D×1:D

∑
i

∑
(j,k )∈Ei

pi j`1pik`2 lnM`1`2 (5)

4.2 Generalized EM algorithm
We optimize the objective function (Equation 1) by alternating be-
tween E and M steps. We solve for the so� labeling p in the E-step,
and the other parameters, Θ = {θ , c,M}, in the M-step, where θ are
the parameters of the embedding f .
E-step. Holding the model parameters Θ �xed, we optimize for the
label probabilities p:

minimize
p

λcEc + λmEm − H (6)

We optimize this via coordinate descent, by iterating 5 times over
all coordinates. �e update is given in Appendix C.
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M-step. Next, we hold the so� clustering p �xed and optimize the
model parameters Θ by solving the following subproblem:

minimize
Θ

λcEc + λsEs + λdEd + λmEm (7)

We use stochastic gradient descent updates for θ and c1:D , as is
standard for neural networks, while keeping p,M �xed. �e parent-
child probabilities M are then computed as:

M← normc *.
,

∑
i

∑
(j,k )∈Ei

pi jpTik
+/
-
+ ϵ (8)

where normc(·) is a column-wise normalization function to guar-
antee ∑

i Mi j = 1. pi j and pik are the cluster probability vectors
that correspond to parts xi j and xik of the same shape, respectively.
ϵ = 1 × 10−6 in our experiments, to prevent cluster centers from
stalling at zero. Since each column of M is a separate multinomial
distribution, the update in Eq. 8 is the standard multinomial estima-
tor.
Mini-batch training. �e dataset for any category is far too large
to �t in memory, and so, in practice, we break the learning process
into mini-batches. Each mini-batch includes 50 geometric models
at a time. For the set S, 20,000 random pairs of parts are sampled
across models in the mini-batch. 30 epochs (passes over the whole
dataset) are used.

For each mini-batch, the E-step is computed as above. In the mini-
batch M-step, the embedding parameters θ and cluster centers c
are updated by standard stochastic gradient descent (SGD) updates,
using Adam updates (Kingma and Ba 2015). For the hierarchy M,
we use Stochastic EM updates (Cappé and Moulines 2009), which
are more stable and e�cient than gradient updates. �e su�cient
statistics are computed for the minibatch:

M̄mb =
∑
i

∑
(j,k )∈Ei

pipTj (9)

Running averages for the su�cient statistics are updated a�er each
mini-batch:

M̄← (1 − η)M̄ + ηM̄mb (10)
where η = 0.5 in our experiments. �en, the estimates for M are

computed from the current su�cient statistics by:
M← normc(M̄) + ϵ (11)

Initialization. Our objective, like many EM algorithms, requires
good initialization. We �rst initialize the neural network embedding
f (·) with normalized initialization (Glorot and Bengio 2010). For
each named tag ti , we specify an initial cluster center ci as the aver-
age of the embeddings of all the parts with that tag. �e remaining
D cluster centroids c |T |+1:D are randomly sampled from a normal
distribution in the embedding space. �e cluster label probabiilities
p are initialized by a nearest-neighbor hard-clustering, and then M
is initialized by Eq. 8.

4.3 Outputs
Once the optimization is complete, we compute a canonical hier-
archy TM from M by solving a Directed Minimum Spanning Tree
problem, with the root constrained to the entire object. �en, we
assign tags to parts in the hierarchy by solving a linear assignment
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Fig. 3. Typical output of our part based analysis. Le�: Part labeling for a
training shape. Black labels indicate labels given with the input, and red
labels were applied by our algorithm. Right: Canonical hierarchy. Generic
cluster labels indicate newly discovered parts. Multiple generic clusters are
grouped in the visualization, for brevity.

problem that maximizes the number of input tags in each cluster that
agree with the tag assigned to their cluster. As a result, some parts
in the canonical hierarchy receive textual names from assigned tags.
Unmatched clusters are denoted with generic names cluster N. We
then label each input part (i, j ) with its most likely node in TM by
selecting arg maxk pi jk . �is gives a part labeling of each node in
each input scene graph. An example of the canonical hierarchy with
part names, and a labeled shape, is shown in Figure 3.

�is canonical hierarchy, part dictionary, and part labels for the
input scene graphs are then used to train the segmentation algorithm
as described in the next section.

5 HIERARCHICAL MESH SEGMENTATION
Given the part dictionary, canonical hierarchy, and per-part labels
from the previous section, we next learn to hierarchically segment
and label new shapes. We formulate the problem as labeling each
mesh face with one of the leaf labels from the canonical hierarchy.
Because each part label has only one possible parent, all of a leaf
node’s ancestors are unambiguous. In other words, once the leaf
nodes are speci�ed, it is straightforward to completely convert the
shape into a scene graph, with all the nodes in the graph labeled.
In order to demonstrate our approach in full generality, we assume
the input shape includes only geometry, and no scene graph or
part annotations. However, it should be possible to augment our
procedure when such information is available.

5.1 Unary classifier
We begin by describing a technique for training a classi�er for
individual faces. �is classi�er can also be used to classify connected
components. In the next section, we build an MRF labeler from this.
Our approach is based on the method of Kalogerakis et al. (2010), but
generalized to handle missing leaf labels and connected components,
and to use neural network classi�ers.

�e face classi�er is formulated as a neural network that takes
geometric features of a face as input, and assigns scores to the leaf
node labels for the face. �e feature vector y for a face consists of
several standard geometric features. �e neural network speci�es a
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score function wT
i д(y), where wi is a weight vector for label Li , and

д(·) is a sequence of fully-connected layers and non-linear activation
units, applied to y. �e score function is normalized by a so�max
function to produce an output probability:

Pface (Li |y) =
exp

(
wT
i д(y)

)
∑
j ∈D exp

(
wT
j д(y)

) (12)

where D is the set of possible leaf node labels. See Appendix B for
details of the feature vector and neural network.

To train this classi�er, we can apply the per-part labels from
the previous section to the individual faces. However, there is one
problem with doing so: many training meshes are not segmented
to the �nest possible detail. For example, a car wheel might not be
segmented into tire and rim, or the windows may not be segmented
from the body. In this case, the leaf node labels are not given for each
face, but only ancestor nodes are known: we do not know which
wheel faces are tire faces. In order to handle this, we introduce a
probability table A(a,b). A(a,b) is the probability of a face taking
leaf label a ∈ D if the deepest label given for this training face
is b ∈ L. For example, A(tire,wheel) is the probability that the
correct leaf label for a face labeled as a wheel is tire. To estimate
A(a,b), we �rst compute the unnormalized Â(a,b) by counting the
number of faces assigned to both label a and label b, except that
Â(a,b) = 0 if b is not an ancestor of a in the canonical hierarchy.
�en A is determined by normalizing the columns to A to sum to 1:
A = normc(Â).

We then train the classi�er by minimizing the following loss
function for w1: |D | and θд , the parameters of д(·):

E (θд ,w1: |D | ) = −
∑
k

log *.
,

∑
i ∈D

A(i,bk )P (Li |yk )
+/
-

(13)

where k sums over all faces in the training shapes and bk is the
deepest label assigned to face k as discussed above. �is loss is the
negative log-likelihood of the training data, marginalizing over the
hidden true leaf label for each training face, generalizing (Izadinia
et al. 2015). We use Stochastic Gradient Descent to minimize this
objective.

We have also observed that meshes in online repositories are com-
prised of connected components, and these connected components
almost always have the same label for the entire component. For
most results presented in this paper, we use connected components
as the basic labeling units instead of faces, in order to improve re-
sults and speed. We de�ne the connected component classi�er by
aggregating the trained face classi�er over all the faces F of the
connected component as follows:

PCC (Li |F ) =
1
|F |

∑
k ∈F

Pface (Li |yk ) (14)

5.2 MRF labeler
Let D be the set of leaf node of the canonical hierarchy. In the case
of classifying each connected component, we want to specify one
leaf node Lc ∈ D for each connected component c . We de�ne the

MRF over connected component labels as:

E (L) =
∑
c
ψunary (Lc ) + λ

∑
u,v ∈E

ψedge (Lu ,Lv ) (15)

with weight λ is set by cross-validation separately for each shape
category and held constant across all experiments. �e unary term
ψunary assesses the likelihood of component c having a given leaf
label, based on geometric features of the component, and is given
by the classi�er:

ψunary (L) = − ln PCC (L|F ) (16)

�e edge term prefers adjacent components to have the same label.
It is de�ned as ψedge (Lu ,Lv ) = td(u,v ), where td(Lu ,Lv ) is tree
distance between labels Lu and Lv in the canonical hierarchy. �is
encourages adjacent labels to be as close in the canonical hierarchy
as possible. For example,ψ is 0 when the two labels are the same,
whereas ψ is 2 if they are di�erent but share a common parent.
To generate the edge set E in 15, we connect K nearest connected
components with this edge, where K = min(30, d0.01Ncce) where
Ncc is the number of connected components in the mesh.

Once the classi�ers and λ are trained, the model can be applied
to a new mesh as follows. First, the leaf labels are determined by
optimizing Equation 15 using the α-β swap algorithm (Boykov et al.
2001). �en, the scene graph is computed by bo�om-up grouping.
In particular, adjacent components with same leaf label are �rst
grouped together. �en, adjacent groups with the same parent are
grouped at the next level of the hierarchy, and so on.

For the case where connected components are not available, the
MRF algorithm is applied for each face. �e unary term is given
by the face classi�er ψunary (L) = − ln Pface (L|F ). We still need to
handle the case where the object is not topologically connected,
and so the pairwise termψedge (Lu ,Lv ) applies to all faces u and v
whose centroids fall into the K-nearest neighborhood of each other,
and is given by:

ψedge (Lu ,Lv ) = λt exp*
,
−κ1

2ϕu,v
π
−

d2
u,v

2(κ2dr )2
+
-

td(Lu ,Lv ) (17)

where ϕu,v is the angle between the faces, du,v is the distance
between the face centroids, dr is the average distance between a
face’s centroid and it’s nearest face’s centroid, and κ1 = 5,κ2 = 2.5
in all our experiments. λt is a scale factor to promote faces sharing

an edge: λt =
{

10 if faces (u,v ) share an edge,
1 otherwise.

6 RESULTS
In this section we evaluate our method on “in the wild” data from
public online repositories and on a standard benchmark. We per-
form the evaluation by comparing with part-based analysis and
segmentation techniques using novel metrics.
InputData. We run our method on 9 shape categories from ShapeNet-
Core dataset (Chang et al. 2015), a collection of 3D models obtained
from various online repositories. We use this dataset for conve-
nience, because the data has been preprocessed, cleaned, categorized,
and put into common formats; at present, it is the only known cur-
rent dataset that satis�es our low-level preprocessing requirements.
We excluded most categories (∼40) because they only have a few
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Fig. 4. Histogram of number of scene nodes for each shape in the raw
datasets.

hundred shapes or less, which is inadequate for our approach. We
assume that a tag is su�ciently represented if it appears in at least 25
shapes, and we only analyze categories that have more than 2 such
tags. Some categories have trivial geometry (e.g., mobile phones).
Some categories do not provide enough parts with common labels
(e.g., watercra� are very heterogeneous to the point of being dis-
joint sets of objects). �e ShapeNetCore dataset currently contains
a small subset of the available online repositories, which limits the
data that we have immediately at hand. However, ShapeNetCore is
growing; applying our method to much larger datasets is limited
only by the nuisance of preprocessing heterogeneous datasets.

Typical scene graphs in such online repositories are very diverse,
including between one and thousands of nodes (Figure 4), and rang-
ing from �at to deep hierarchies (Figure 5). For each category, we
also prescribe a list of relevant tags and possible synonyms. We
automatically create a list of most-used tags for the entire category,
and then manually pick relevant English nouns as the tag dictionary.
Note that only a fraction of shapes have any parts with the chosen
tags, and the frequency distribution over tag names is very uneven
(Table 1, Init column).

For a categories with ∼2000 shapes, the part-based analysis takes
approximately one hour, and the segmentation training takes ap-
proximately 10 hours, each on a single Titan X GPU. Once trained,
analysis of a new shape typically takes about 25 seconds, of which
about 15 seconds is extracting face features with non-optimized
Matlab code.
HierarchicalMesh Segmentation andLabeling. Figure 10 demon-
strates some representative results produced by our hierarchical
segmentation based on connected components (Section 5). �e
resulting hierarchical segmentation vary in depth from �at (e.g.,
chairs) to deep (e.g., cars, airplanes), re�ecting complexity of the
corresponding object. We also o�en extract consistent part clusters,
even if they do not have textual tags. We found that analyzing
shapes at the granularity of connected components is usually suf-
�cient: the mean number of connected components per object in
ShapeNet is 4169, and the largest connected component in shapes
covers only 9.58% of the total surface area on average: connected
components tend to be small. �ese components are o�en aligned
to part boundaries, for example, if one was to annotate ShapeNet
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Fig. 5. Histogram of number of levels in hierarchy for each shape in the raw
datasets.

Segmentation benchmark (Yi et al. 2016) by assigning a majority
label to each connected component they would get 94% of faces
correct.
Segmentation without Connected Components. In the case
of applying per-face labeling, when connected components are
not available, we observe similar results with this method as to
those where the connected components are used. However, a few
segments do not come out as cleanly-segmented on more complex
models (see Figure 11). Please refer to our supplementary material
for qualitative results of this experiment. We tested our method on
other datasets (�ingi10k (Zhou and Jacobson 2016), COSEG (Wang
et al. 2012)), but were only able to test on a limited set of models,
since only a few models in these datasets come from our training
categories.
Tag prediction. Table 1, Final column shows what fraction of
training shapes received a particular tag a�er our part-based analysis
(Section 4). Note that an object may be missing a tag for several
possible reasons: it could be misclassi�ed, or because the object
does not have that part, or does not have it segmented as a separate
scene graph node. As evident from this quantitative analysis, the
amount of training data we can use in subsequent analysis has
drastically increased. Please refer to supplementary material for
visual examples from labeling results.

To evaluate tag prediction accuracy, we perform the following
experiment. We hold out 30% of the tagged parts during training,
and evaluate labeling accuracy on these parts. As our method is
based on nearest-neighbors (NN) classi�cation, we compare against
NN on features computed in the following ways: (1) clustering with
LFD, (2) clustering with x, (3) our method with no Ec term, and (4)
No Em term. Results are reported in Table 3. As shown in the table,
our method signi�cantly improves tag classi�cation performance
over the baselines. �is experiment also demonstrates the value of
our clustering and hierarchy terms Ec and Em .
Cluster evaluation. Figure 6 (bo�om) demonstrates some parts
grouped by our method in the part-based analysis (Section 4). We
also note that some clusters combine unrelated parts, and we believe
that they serve as null clusters for outliers.
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Table 1. Tags and their frequency (percent of shapes that have a scene
node (i.e., part) labeled with the corresponding tag) in the raw datasets and
a�er our part based processing.

Part Init Final Part Init Final Part Init Final
Category: Car (2287 shapes)

Wheel 17.4 96.4 Mirror 6.9 68.2 Window 9.5 71.8
Fender 1.1 40.4 Bumper 15.2 63.0 Roof 2.4 48.2
Exhaust 7.2 57.5 Floor 2.6 49.9 Trunk 4.5 60.6

Door 19.9 67.8 Spoiler 2.8 41.3 Rim 4.1 74.1
Headlight 14.6 61.9 Hood 12.2 68.7 Tire 5.3 33.5

Category: Airplane (2574 shapes)
Wing 5.9 86.9 Engine 5.5 81.6 Body 2.3 86.8
Tail 1.5 90.5 Missile 0.4 66.7

Category: Chair (2401 shapes)
Arm 1.5 62.4 Leg 3.6 71.0 Back 0.9 50.8
Seat 2.4 83.1 Wheel 1.4 34.6

Category: Table (2355 shapes)
Top 1.9 81.5 Leg 6.4 85.8

Category: Sofa (1243 shapes)
BackPillow 4.7 79.3 Seat 2.7 63.0 Feet 3.1 41.5

Category: Ri�e (994 shapes)
Barrel 1.2 62.9 Bipod 1.7 47.6 Scope 3.2 66.7
Stock 3.2 56.0

Category: Bus (713 shapes)
Seat 4.8 47.0 Wheel 8.3 88.9 Mirror 1.7 42.4

Category: Guitar (491 shapes)
Neck 3.1 75.8 Body 0.8 67.6

Category: Motorbike (281 shapes)
Seat 23.5 49.2 Engine 21.7 84.0 Gastank 14.6 73.7

Exhaust 1.8 71.5 Handle 8.9 75.8 Wheel 41.6 98.9

As we do not have ground truth for the unlabeled clusters, we
instead evaluate the ability of our learned embedding to cluster parts,
with the user-provided labels can serve as ground truth. We split
the dataset for a category into training tags and test tags. We run
the part-based analysis on all shapes, but provide only the training
subset of tags to the algorithm. �is gives an embedding f , and we
can evaluate how good f is for clustering. �is is done by running
k-means clustering on the parts that correspond to the test tags,
with k set to the number of test tags. �e clustering result is then
compared to the test tag labeling by normalized Mutual Information.
�is process is repeated in a 3-fold cross-validation. �e baseline
scores are especially low on categories with few parts, like Bus and
Table. Table 2 shows quantitative results; our method performs
signi�cantly be�er than the baselines, including using k-means on
Light Field Descriptors (LFD), and omi�ing the clustering term Ec
from the objective.
Comparison to Unsupervised Co-Hierarchy. Van Kaick et al.
(2013) propose an unsupervised approach for establishing consistent
hierarchies within an object category. �eir method was developed
for small shape collections and requires hours of computation for 20
models, which makes it unsuitable for ShapeNet data. On the other
hand, since we assume that some segments have textual tags, we
also cannot run our method on their data. Given these constraints,
we show a qualitative comparison to their method. In particular, we
picked the �rst car and �rst airplane in their dataset, and retrieved

tail

engine

cluster1

cluster2

cluster3

cluster4

Fig. 6. Visualization of typical clusters. Note that some clusters have labels
that were propagated from the tags, whereas some have generic labels
indicating that they were discovered without any tag information.
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Fig. 7. Comparison with (van Kaick et al. 2013). We show a hierarchy
produced by their approach (le�) and a hierarchy of the most similar model
in our database (right). Our hierarchies have labels and provide finer details.

the most similar models in ShapeNet using light�eld descriptors. Fig-
ure 7 demonstrates their and our hierarchies side-by-side. Note that
our method generates more detailed hierarchies and also provides
textual tags for parts.
Comparison to Supervised Segmentation. Since there are no
large-scale hierarchical segmentation benchmarks, we test our method
on the segmentation dataset provided by Yi et al. (2016). We em-
phasize that the benchmark contains much coarser segmentations
than those we can produce, and does not include hierarchies. We
take the intersection of our 9 categories and the benchmark, which
yields the following six categories for quantitative evaluation: car,
airplane, motorbike, guitar, chair, table.
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Since other techniques do not leverage connected components, we
evaluate per-face classi�cation from unary terms only, comparing
the per-face classi�cation prediction (Eq. 14) to results from Yi et
al. (2016) trained only on benchmark data.

Our training data is sampled from a di�erent data distribution
than the benchmark; repurposing a model from one training set
to another is a problem known as domain adaptation. �e �rst
approach we test is to directly map the labels predicted by our
classi�er to benchmark labels. �e second approach is to obtain 5
training examples from the benchmark, and train a Support Vector
Machine classi�er to predict benchmark labels from our learned
features {д(x)} (Sec. 4). �e resulting classi�er is the so�max of
{ηiд(x)}, where ηi are the SVM parameters for ith label. As baseline
features, we also test k-means clustering with LFD features over all
input parts, where k is the same as the number of clusters used by
our method.

Results of supervised segmentation comparison experiments are
shown in Figure 8. Without training on our features, the method
of Yi et al. (2016) requires 50-100 benchmark training examples in
order to match the results we get with only 5 benchmark examples.
Although our method is trained on many ShapeNet meshes, these
meshes did not require any manual labeling. �is illustrates how
our method, trained on freely-available data, can be cheaply adapted
to a new task.

Figure 9 shows qualitative results from comparison with Yi et
al. (2016), where we use 10 models for training in (Yi et al. 2016) fol-
lowed by the domain adaptation through using the same 10 models
in our approach.

7 DISCUSSIONS AND CONCLUSION
We have proposed a novel method for mining consistent hierarchi-
cal shape models from massive but sparsely annotated scene graphs
“in the wild.” As we analyze the input data, we jointly embed parts
to a low-dimensional feature space, cluster corresponding parts,
and build a probabilistic model for hierarchical relationships among
them. We demonstrated that our model can facilitate hierarchical
mesh segmentation and were able to extract complex hierarchies
and identify small segments in 3D models from various shape cate-
gories. Our method can also provide a valuable boost for supervised
segmentation algorithms. �e goal of our current framework is
to extract as much structure as possible from raw noisy, sparsely
tagged scene graphs that exist in online repositories. In the future,
we believe that using such freely-available information will provide
enormous opportunities for shape analysis.

Developing Convolutional Neural Networks for surfaces is a very
active area right now, e.g., (Guo et al. 2015). Our segmentation train-
ing loss functions are largely agnostic to the model representation,
and it ought to be straightforward to train a ConvNet on our training
loss, for any ConvNet that handles disconnected components.

�ough e�ective as evidenced by experimental evaluations, sev-
eral issues are not completely addressed yet. Our model currently
relies on heuristic selection of the number of clusters k , and this
could be chosen automatically. We could also relax the assumption
that each part with a given label may have only one possible parent
label, to allow more general shape grammars (Talton et al. 2012).
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Fig. 8. Comparison with (Yi et al. 2016). Segmentation accuracy scores are
shown; higher is be�er. The blue curves show the results of Yi et al. as a
function of training set size. The red dashed lines show the result of our
method without applying domain adaption, and the red solid lines show
our method with domain adaptation by training on 5 benchmark models.
For the more complex classes, Yi et al.’s method requires 50-100 training
meshes to match our performance with only 5 benchmark training meshes.

Yi et al. 2016 Ours Yi et al. 2016 Ours
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Table 
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Car 
Roof

Fig. 9. �alitative comparison with (Yi et al. 2016). For a fair comparison,
we use 10 models for training in (Yi et al. 2016) and we use the same 10
models for domain adaptation in our approach.

Our method has obtained about 13K 3D training models with
roughly consistent segmentation, but these have not been human-
veri�ed. We also believe that our approach could be leveraged
together with crowdsourcing techniques (Yi et al. 2016) to e�ciently
yield very large, detailed, segmented, and veri�ed shape databases.
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Fig. 10. Hierarchical segmentation results. In each case, the input is a geometric shape. Our method automatically determines the segmentation into parts,
the part labels and the hierarchy.
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Table 2. Clustering evaluation with di�erent embedding/features. Scores shown are Normalized Mutual Information between the estimated clusters and the
user-provided tags. A perfect score corresponds to NMI of 1. Note that the user-provided tags may themselves be noisy, so perfect scores are very unlikely.

Category Mean Car Airplane Chair Table Motorbike Bus Guitar Ri�e Sofa
Chance 0.034 0.019 0.010 0.040 0.005 0.020 0.026 0.018 0.176 0.032
LFD 0.336 0.521 0.315 0.350 0.238 0.576 0.292 0.034 0.379 0.297
x (part features - App. A) 0.348 0.551 0.264 0.352 0.238 0.607 0.313 0.101 0.405 0.297
No Ec term 0.406 0.626 0.377 0.346 0.124 0.564 0.260 0.498 0.445 0.408
No Em term 0.561 0.695 0.568 0.622 0.445 0.659 0.367 0.655 0.514 0.566
Ours 0.573 0.712 0.575 0.619 0.448 0.678 0.371 0.655 0.526 0.571

Table 3. Part tagging accuracy comparison. We hold out tags for 30% originally tagged parts in the input data, and report testing accuracy on the held out set.

Category Mean Car Airplane Chair Table Motorbike Bus Guitar Ri�e Sofa
Chance 0.139 0.044 0.136 0.172 0.148 0.149 0.100 0.252 0.092 0.162
LFD 0.790 0.530 0.823 0.775 0.745 0.829 0.813 0.976 0.723 0.892
x (part features - App. A) 0.823 0.584 0.832 0.812 0.772 0.874 0.822 0.976 0.818 0.920
No Ec term 0.840 0.694 0.821 0.749 0.910 0.860 0.911 0.982 0.772 0.864
No Em term 0.899 0.701 0.934 0.902 0.926 0.865 0.884 0.991 0.936 0.953
Ours 0.910 0.709 0.97 0.905 0.921 0.878 0.884 0.994 0.951 0.979
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Fig. 11. Hierarchical segmentation results with and without the connected
components assumption. Even without connected components, our method
estimates complex hierarchical structures. For some models, the boundaries
are less precise (see red higlights). We provide a full comparison to Figure 10
in supplemental material.

It would also be interesting to explore how well the informa-
tion learned from one object category may transfer to other object
categories. For example, “wheel” can be found in “cars” and “mo-
torbikes”, sharing similar geometry and sub-structures. �e obser-
vation provides the opportunity for not only the transfer of part
embeddings but also the part relationships. With the growth of
online model repositories, such transfer learning ability would be
more important and relevant towards more e�cient expanding of
our current dataset.
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A PART FEATURES AND EMBEDDING NETWORK
We compute per-part geometric features which are further used
for joint part embedding and clustering (Section 4). �e feature
vector xi j includes 3-view light�eld descriptor (Chen et al. 2003)
(with HOG features for each view), center-of-mass, bounding box
diameter, approximate surface area (fraction of voxels occupied in
30x30x30 object grid), and local frame in PCA coordinate system
(represented by 3 × 3 matrix M). To mitigate re�ection ambiguities
for local frame we constraint all frame axes to have positive dot
product with z-axis (typically up) of the global frame. For light�eld
descriptor we normalize the part to be centered at origin and have
bounding box diameter 1, for all other descriptors we normalize

Table 4. Embedding network f output dimensionalities a�er each layer.

feature fc1 fc2 fc3 concat fc4 fc5 fc6
LFD 128 256 256

512 256 128 64
PCA Frame 16 32 64
CoM 16 64 64
Diameter 8 32 64
Area 8 32 64

Table 5. Face classification network parameters.

feature fc1 fc2 fc3 concat fc4 fc5 fc6
Curvature 32 64 64

640 256 128 128

LPCA 64 64 64
LVar 32 64 64
SI 128 128 128
SC 128 128 128
DD 32 64 64
PP 16 32 64
PN 16 32 64

the mesh in the same way. We mitigate re�ection ambiguities by
constraining all frame axes to have positive dot product with the
z-axis of the global frame. �e neural network embedding f is
visualized in Figure 12, and, in Table 4, we show the embedding
network parameters, where we alter �rst few fully connected layers
to allocate more neurons for richer features such as LFD.

B FACE FEATURES AND CLASSIFIER NETWORK
We compute per-face geometric features ywhich are further used for
hierarchical mesh segmentation (Section 5). �ese features include
spin images (SI) (Johnson and Hebert 1999), shape context (SC) (Be-
longie et al. 2002), distance distribution (DD) (Osada et al. 2002), local
PCA (LPCA) (where λi are eigenvalues of local coordinate system,
and features are λ1/

∑
λi , λ2/

∑
λi , λ3/

∑
λi , λ2/λ1, λ3/λ1, λ3/λ2), lo-

cal point position variance (LVar), curvature, point position (PP)
and normal (PN). To compute local radius for the feature computa-
tion we sample 10000 points on the entire shape and use 50 nearest
neighbors. We use the same architecture as part embedding network
f (Fig. 12) for face classi�cation, but with di�erent loss function
(Eq. 13) and network parameters, which are summarized in Table 5.

C E-STEP UPDATE
In the E-step, the assignment probabilities are iteratively updated.
For each node (i, j ), the probability that it is assigned to label k is
updated as:

p∗i jk ← exp *.
,
λm

∑
a∈C (i, j ), `

pia` lnMk` + λm
∑

b=P (i, j ), `

pib` lnM`k

−λc | | f (xi j − ck | |1
)

(18)

pi jk ←
p∗i jk∑
` p
∗
i j`

(19)

where C (i, j ) is set of children of node (i, j ) and P (i, j ) is the par-
ent node. A joint closed-form update to all assignments could be
computed using Belief Propagation, but we did not try this.
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