
Convolutional Neural Networks on Surfaces via Seamless Toric Covers

HAGGAI MARON, Weizmann Institute of Science
MEIRAV GALUN, NOAM AIGERMAN, MIRI TROPE, NADAV DYM, Weizmann Institute of Science
ERSIN YUMER, VLADIMIR G. KIM, Adobe Research
YARON LIPMAN, Weizmann Institute of Science

The recent success of convolutional neural networks (CNNs) for image
processing tasks is inspiring research efforts attempting to achieve similar
success for geometric tasks. One of the main challenges in applying CNNs
to surfaces is defining a natural convolution operator on surfaces.

In this paper we present a method for applying deep learning to sphere-
type shapes using a global seamless parameterization to a planar flat-torus,
for which the convolution operator is well defined. As a result, the standard
deep learning framework can be readily applied for learning semantic, high-
level properties of the shape. An indication of our success in bridging the
gap between images and surfaces is the fact that our algorithm succeeds
in learning semantic information from an input of raw low-dimensional
feature vectors.

We demonstrate the usefulness of our approach by presenting two ap-
plications: human body segmentation, and automatic landmark detection
on anatomical surfaces. We show that our algorithm compares favorably
with competing geometric deep-learning algorithms for segmentation tasks,
and is able to produce meaningful correspondences on anatomical surfaces
where hand-crafted features are bound to fail.

CCSConcepts: •Computingmethodologies→Neural networks; Shape
analysis;

Additional Key Words and Phrases: Geometric deep learning, Convolutional
neural network, Shape analysis, shape segmentation

ACM Reference format:
Haggai Maron, Meirav Galun, Noam Aigerman, Miri Trope, Nadav Dym,
Ersin Yumer, Vladimir G. Kim, and Yaron Lipman. 2017. Convolutional Neural
Networks on Surfaces via Seamless Toric Covers. ACM Trans. Graph. 36, 4,
Article 71 (July 2017), 10 pages.
DOI: http://dx.doi.org/10.1145/3072959.3073616

1 INTRODUCTION
A recent research effort in the geometry processing and vision com-
munities is to translate the incredible success of deep convolutional
neural networks (CNN) to geometric settings. One particularly in-
teresting scenario is applying CNNs for supervised learning of func-
tions or labels over curved two dimensional sphere-like surfaces.
This is a common problem in analyzing human bodies, anatomical,
and medical data.

Applying CNNs to extrinsic surface representation such as volu-
metric grids [Qi et al. 2016b] or depth map projections on extrinsic
2D cameras [Wei et al. 2016] requires working with 3D grids, or
dealing with many camera and lighting parameters, and is very sen-
sitive to deformations (e.g., human pose changes). While it might be

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
© 2017 ACM. 0730-0301/2017/7-ART71 $15.00
DOI: http://dx.doi.org/10.1145/3072959.3073616

a

a

b

b
a

a

b

b
a

a

b

b
a

a

b

b

a

a

b

b

a

a b

b

a

a

b

b

a

ab

b

Fig. 1. Defining convolutional neural networks on sphere-like surfaces: we
construct a torus (top-right) from four exact copies of the surface (top-left)
and map it to the flat-torus (bottom-right) to define a local, translation
invariant convolution (bottom-left). This construction is unique up to a
choice of three points on the surface (colored disks).

possible to learn a representation that is invariant to these deforma-
tions, this requires substantial amount of training data. In contrast,
the goal of our paper is to provide an intrinsic representation that
would enable applying CNNs directly to the surfaces.

One of the main challenges in applying CNN to curved surfaces
is that there is no clear generalization of the convolution opera-
tor. In particular, two properties of the convolution operator that
are considered pivotal in the success of the CNN architectures are
locality and translation invariance. It is possible to parameterize a
surface locally on a geodesic patch around a point [Masci et al. 2015],
however, this representation lacks global context. Sinha et al. [2016]
proposed geometry images to globally parameterize sphere-like
surface into an image, however, although continuous, their repre-
sentation is not seamless (the parameterization is dependent on the
cuts made for its computation), their space of parameterizations,
namely area-preserving maps has a very high number of degrees of
freedom (i.e., it requires an infinite number of point constraints to
uniquely define a mapping) and therefore can represent the same
shape in many different arbitrary ways in the image (see Figure 2
for an example). Lastly, the convolution on the geometry image is
not translation invariant.

ACM Transactions on Graphics, Vol. 36, No. 4, Article 71. Publication date: July 2017.

71:2 • H. Maron et. al.

Defining a local translation invariant convolution operator on
surfaces is not trivial. The first hurdle is topological: the only surface
type for which a translation invariant convolution is well defined is
the torus (this will be explained in Section 4). However, clearly it is
not possible to map sphere-like surfaces to a torus without introduc-
ing discontinuities, that is, mapping some neighboring points on
the surface to distant ones on the torus. Information will propagate
differently through discontinuities and locality of the convolution
would be lost. The second difficulty is geometric: We want mappings
to be consistent enough across different surfaces, so that mapped
test surfaces look similar to training surfaces. This is related to the
space of mappings, or in other words, the number of degrees of free-
dom that are needed to prescribe a unique map, up to translation of
the torus. The more parameters one needs the harder it is to learn
from these mappings (e.g., in the worst case, target position of every
source point could be a degree of freedom).
We tackle these challenges with a topological construction: in-

stead of dealing with the original sphere-like surface we construct
a cover of the surface that is made out of four exact copies of the
surface and has the topology of the torus, see Figure 1 - top row.
Furthermore, we show that this torus can be mapped conformally
(preserving orthogonal directions) to the flat torus using a very
efficient algorithm. This defines a local translation invariant convo-
lution on the 4-cover, see example of a single convolution stencil in
Figure 1 - bottom row. This construction is unique up to a choice
of three points on the surface; the convolution depicted in Figure
1 is created by the three points (shown as colored disks) in the
bottom-left inset.
This construction provides a six dimensional space of seamless

convolutions on a sphere-like surface: Every choice of a triplet of
points corresponds to a unique conformal map which in turn de-
fines a convolution operator, or equivalently, a conformal flat-torus
structure on the 4-cover of the surface. Since isometries are in partic-
ular conformal maps this construction is also invariant to isometric
deformations of the shapes. The relatively low dimension of the con-
volution space allows efficient sampling of this space in the context
of data augmentation. The conformality preserves the direction-
ality of the translation directions on the flat-torus but introduces
scale changes; in that sense the triplet acts as a magnifying glass -
zooming into different parts of the surface.

We employ the above constructions for supervised learning over
surfaces. Our goal is to learn a non-linear relation between “easy”
vector valued functions over surfaces (e.g., coordinate functions,
normals, curvature or other commonly used geometric features)
and target “hard” vector valued functions (e.g., semantic segmen-
tation or landmark labeling). The conformal map from the 4-cover
to the flat-torus will be used to seamlessly transfer these functions
to the flat-torus which will be used as our domain for training. To
leverage existing image-based CNN architecture and optimization
algorithms on the flat-torus domain, we provide three novel tech-
nical components: (i) A cyclic-padding layer replaces zero padding
to achieve fully-translational invariance over the flat-torus; (ii) a
projection layer on the function space of the surface to properly
map functions between the original surface and its 4-cover, and (iii)
an aggregation procedure to infer prediction from multiple triplets.

Experiments show that our method is able to learn and generalize
semantic functions better than state of the art geometric learning
approaches in segmentation tasks. Furthermore, it can use only basic
local data (Euclidean coordinates, curvature, normals) to achieve
high success rate, demonstrating ability to learn high-level features
from a low-level signal. This is the key advantage of defining a
local translation invariant convolution operator. Finally, it is easy
to implement and is fully compatible with current standard CNN
implementations for images.

2 PREVIOUS WORK
Recent advances in convolutional neural networks (CNNs) moti-
vated many researchers to apply these methods to geometric data.
Extrinsic representations, such as 3D volumetric grid [Qi et al. 2016b;
Wu et al. 2015], 2D projections [Kalogerakis et al. 2016; Su et al. 2015;
Wei et al. 2016], or point coordinates [Qi et al. 2016a], have many
shortcomings when analyzing non-rigid 2D manifolds: they are sen-
sitive to articulations, they do not leverage the intrinsic structure of
the geometry, and only allow very coarse representations. While
these limitations can be addressed by analyzing the manifolds di-
rectly, applying CNNs to surfaces is challenging because they do
not come with a planar parameterization, and thus are not directly
suitable for deep learning. One possible way to address this limita-
tion is to represent a surface as a graph of triangles and use spectral
convolutions [Bruna et al. 2013; Defferrard et al. 2016; Henaff et al.
2015]. However, this representation does not take advantage of the
fact that we are analyzing 2-manifold that can be parameterized in
2D domain. Another disadvantage of spectral methods (which is
targeted by [Yi et al. 2016]) is their difficulty with cross-shape learn-
ing which stems from the fact that the spectral decomposition of
each shape can be inconsistent. We next discuss existing techniques
which preform deep learning on 2-manifolds and parameterization
methods they use.
For segmentation task, Guo et al. [2015] proposed to lay out

per-triangle features to a single 2D grid, and used CNN to classify
each triangle. This approach cannot use contextual information on
relationships between different triangles on the same surface unless
this relationships are encoded in the input features.
The first paper adapting neural networks to surfaces, Masci et

al. [2015], use local geodesic polar coordinates to parameterize a
surface patch around a point; and map features to this patch. This
parameterization requires modifying the traditional convolution
filter to account for angular coordinate ambiguity, essentially ignor-
ing patch orientation. In a follow up work, [Boscaini et al. 2016] use
anisotropic heat kernels in order to generate a local description of
the input function and incorporate orientation.

For classification tasks, Sinha et al. [2016] parameterize the entire
surface using geometry images [Praun and Hoppe 2003] combined
with spherical area-preserving parameterizations. As mentioned
briefly above, geometry images are not seamless and introduce a
direction jump at the cut, see Figure 2. Additionally, the convolution
over the geometry image is not translation invariant since it rep-
resents a sphere-like topology. Finally, since geometry images are
computed using area-preserving mappings, which have an infinite
number of degrees of freedom, they can produce a wide variability
of different planar realizations which will make the learning process

ACM Transactions on Graphics, Vol. 36, No. 4, Article 71. Publication date: July 2017.

Convolutional Neural Networks on Surfaces via Seamless Toric Covers • 71:3

Fig. 2. Parameterization produced by the geometry image method of [Sinha
et al. 2016]; the parameterization is not seamless as the isolines break at the
dashed image boundary (right); although the parameterization preserves
area it produces large variability in shape.

more challenging. See, for example, how one of the hands (green)
and one of the legs (blue) are strongly sheared in Figure 2 (one copy
of the surface is marked with dashed square; all four corners corre-
spond to one of the legs). Lastly, their parameterization algorithm
is not guaranteed to produce a bijective embedding and can cause
different parts of the surface to overlap in the geometry image, e.g.,
only one of the hands is visible in the geometry image in Figure 2.

In contrast to themethods described above, we propose a seamless
parameterization technique that maps the surface to a flat torus,
thus providing a well-defined convolution everywhere. Our map is
uniquely defined by selection of 3 points on the surface, providing
a relatively small space of possible parameterizations which makes
learning easier. Our map computation routine is very effective, as
we only need to solve a sparse system of linear equations per triplet
of points.

3 METHOD
Convolutional neural networks (CNN) is a specific family of neural
networks that leverages the spatial relationships of local regions
using mostly convolutional layers. Deep CNN’s with multiple con-
secutive convolutions followed by nonlinear functions have shown
to be immensely successful in image understanding [Krizhevsky
et al. 2012]. Our goal is to adapt CNN architectures to geometric
surfaces.

3.1 Overview
Problem definition. Our training data consists of a set of triplets

{(Si ,xi ,yi)}i ∈I of sphere-like surface meshes Si ⊂ R3, “easy” d-
vector valued functions over the surfaceSi , denoted xi ∈ F (Si ,R

d),
and ground-truth “hard” functions yi ∈ F (Si ,L), where L =

{1, . . . ,L} is a label set. By “easy” functions we mean functions
that can be computed efficiently over the surfaces, such as coor-
dinate functions, curvature, normals or shape features; by “hard”
we mean functions for which no simple algorithm exists, such as a
semantic label (e.g., object part) that has to be prescribed manually.

Our goal is to find a non-linear mapping relating the “easy” and
“hard” functions on surfaces. Mathematically we are looking for a
function F ,

F : F (Si ,R
d) → F (Si ,R

L) (1)

that takes as input a d-vector valued (“easy”) function over a surface
Si and produces a confidence L-vector valued (“hard”) function
over the same surface. That is, it produces a vector of confidences
F (xi)[p] ∈ R

L
+ per point p ∈ Si that correctly predicts its ground-

truth label yi [p] ∈ L (i.e., the maximal value in F (xi)[p] is achieved
at its yi [p]-th coordinate).

CNN on the flat-torus T . While CNN is a powerful tool for map-
ping “easy” to “hard” functions, existing architectures cannot run
directly over S. Therefore we propose to transfer functions to a
flat torus1, denoted T , and train CNN over that domain. The flat
torus space is favorable since we can use a traditional CNN with 2D
convolutions directly to solve the problem over T , by discretizing
the flat torus space as anm × n grid (we usedm = n = 512).
Mapping S to T is not trivial because these two domains have

different topologies. We address this issue by considering a new
topological construction S4 (Section 3.2). The domain S4 consists
of four copies of the surface cut in the same way to a disk topology
and stitched together to one (boundaryless) torus-like surface. We
map S4 conformally to the plane, where these 4 surface copies
seamlessly tile the flat-torus. Note that this mapping is not unique,
and is defined by a triplet of points on S. Each triplet provides a
different image over T where resolution (surface area scaling) is
non-uniform, and varies over S.
We address the mapping ambiguity by modifying network ar-

chitecture, training data, and the way we interpret the network
output (Section 3.3). First, we add a new cyclic-padding layer en-
abling translation-invariant convolutions (i.e., invariance to torus
symmetry). Second, we incorporate a projection operator layer that
ensures that our network’s output is invariant to symmetries of S4

(i.e., multiple copies of the input surface). Both of these layers are
differentiable and support end-to-end training. Third, we sample
multiple triplets to produce multiple training images over T , sub-
stantially augmenting our training data. And finally, as we analyze
a surface at test time, we aggregate several predictions over the
surface (produced with different triplets).

3.2 Transferring functions between S and T

A key component of our approach is transferring functions between
the surface S and flat torus T . That is, given a function xi over the
surface Si we want to transfer it to the flat-torus in a seamless way
that preserves locality and topological (i.e., neighboring) relations.
We also want this transfer to be as-unique-as-possible and invariant
to isometric deformations of Si to avoid the need for unnecessary
data augmentation. We next show that there is a unique transfer
operator for a given triplet of points P = {p1,p2,p3} ⊂ Si .

Since S and T have different topologies, to create a desired seam-
less map between these two domains we define an intermediate
surface, S4, a torus-type 4-cover of S (branched cover, similarly to
[Kälberer et al. 2007]). To create S4 we first make four copies of the

1The flat-torus is the planar square [0, 1]2 with its opposite sides identified.

ACM Transactions on Graphics, Vol. 36, No. 4, Article 71. Publication date: July 2017.

71:4 • H. Maron et. al.

Fig. 3. Computing the flat-torus structure (middle) on a 4-cover of a sphere-
type surface (left) defined by prescribing three points (colored disks). The
right inset shows the flat-torus resulted from a different triplet choice.

surface and cut each one along the path

p1
a
→ p2

b
→ p3

to obtain disk-like surfaces (Figure 3, left). Next, we stitch the four
surfaces according to the instructions shown in Figure 1, top-right, to
get a torus-like surface, S4. Note that this construction is indifferent
to the actual cuts used (e.g., a,b in Figure 3) and different cuts
would produce the same surface S4. Lastly, we compute a map
ΦP : S4 → T taking S4 conformally to T (see Figure 3, middle). In
practice, we compute this map by first mapping a single disk-like
copy of S in S4 (e.g., Figure 3, left) to the plane using the method in
[Aigerman and Lipman 2015] (we used the {π/2,π ,π/2} orbifold)
followed by duplicating the resulting planar mesh until we cover
the representative square tile of the flat torus, namely [0, 1]2. For
weights we used cotan weights with negative values clamped to
10−2 to ensure positivity and hence bijective mapping. Per triplet P,
this approximately-conformal map can be computed very efficiently
by solving a sparse system of linear equations, where the resulting
map defines a 2D position for each vertex of the disk-like S.
We use ΦP to transfer functions between the surface S and the

flat-torus T . Given a function x ∈ F (S,Rd) we define its push-
forward to the flat-torus, pushP (x) ∈ Rm×n×d , by

pushP (x) = x ◦ Ψ ◦ Φ−1
P
, (2)

where Ψ : S4 → S is the projection map taking each point in
S4 to its corresponding point in S. That is, given a cell (i.e., pixel)
on the discretized torus, we map its centroid to S4 via the map
Φ−1
P
, and then to S via the map Ψ. We evaluate x at that point

and assign the corresponding d-dimensional vector value to the
cell. In practice, we use Matlab’s “patch” command to generate each
channel of pushP (x). Figure 4 visualizes "easy" functions x and their
push-forward to T .
An interesting alternative to the above construction of S4 and

the mapping to the flat torus S4 7→ T would be to use a single copy
of the surface, S, and a mapping to a sphere-type flat representation
(Euclidean orbifold) S 7→ O. This corresponds to taking one quarter
of the flat torus (e.g., upper left quarter of the squares in Figure
4). Although this representation is more compact it will not be
topologically correct as the convolution kernels will be applied in
different orientations to points on different sides of the cut.

(a) (c)(b)
Fig. 4. Visualization of “easy” functions on the surface (top-row) and their
pushed version on the flat-torus (bottom-row). We show three examples of
functions we use as input to the network: (a) average geodesic distance (left),
(b) the x component of the surface normal (middle), and (c) Wave Kernel
Signature [Aubry et al. 2011]. The blowup shows the face area, illustrating
that the input functions capture relevant information in the shape.

3.3 Neural Networks on the flat-torus T
Now that we are able to map functions between S and T we explain
how we train CNN over the flat torus. A CNN over the flat-torus is
defined as a non-linear function taking d-vector valued functions
over the torus to L-vector valued function over the torus. Therefore
we denote:

f (·,w) : Rm×n×d → Rm×n×L , (3)
wherew denotes the network parameters.

We first describe the appropriate architecture for f on T that
takes into account translational symmetries of T and the fact it is
covered by four copies of the surface (i.e.,S4). To train f , we usemul-
tiple triplets Pk to push training examples on the surface (Si ,xi ,yi)
to the flat-torus, augmenting our training data by mapping the same
surface in different ways. We use these training examples to op-
timize for w , parameters of the CNN. Lastly, we explain how our
trained network can be used to analyze an input test shape.

Network architecture for CNN on T . The input and output of
the network f (·,w) is represented in the form of discrete two di-
mensional images, and there are many state-of-the-art network
architectures that have proven highly successful for this type of
data. In this work, we used the FCN32 CNN architecture of [Long
et al. 2015] with two main differences: First, since we need f to
be fully-translation invariant and well-defined on the flat-torus we
employ a cyclic padding instead of the standard zero padding used
for images. This is crucial for seamless learning (as demonstrated
by experiments in Section 5). Second, since there are 4 copies of
S in S4, several predictions over the flat-torus might correspond
to the same point on S. Thus, for the final output of the network
f (·,w) ∈ Rm×n×L to be well-defined on S (so that we can use
push−1) we incorporate a projection operator that considers values
in them×n grid that correspond to the same point in S and replaces
them with their max. Similar to standard pooling layers, averaging
corresponding values resulted in inferior results. We implemented
two differentiable layers that correspond to these modifications,
enabling end-to-end learning for f (·,w). Figure 5 shows the new
layers and their incorporation in the network’s architecture.

ACM Transactions on Graphics, Vol. 36, No. 4, Article 71. Publication date: July 2017.

Convolutional Neural Networks on Surfaces via Seamless Toric Covers • 71:5

Fig. 5. Top: Segmentation network architecture where CB denotes a con-
volutional block, and PB denotes a projection block. Bottom: Breakdown of
the convolutional and projection blocks. Our network has two new layer
types: the cyclic padding layer in each convolutional block, and the final
projection layer.

We note that the max-projection layer mentioned above has cer-
tain resemblance to the TI-pooling operator introduced in [Laptev
et al. 2016] which pools over corresponding pixels of multiple trans-
formed versions of the input image and aim at learning transforma-
tion invariant features. In contrast, our layer pools over correspond-
ing points on the surface in order to get a single prediction at every
point on the surface.

Data generation. To train the network, we first need to push
the training data to images defined over the flat-torus T . Given
training data {(Si ,xi ,yi)}i ∈I , for each i we sample ρ triplets P =
(p1,p2,p3) ⊂ Si from Si × Si × Si . Then for each P we create a
pair

(Xk ,Yk) = (pushP (xi), pushP (yi)), (4)

where each pair corresponds to training input Xk ∈ Rm×n×d and
output Yk ∈ Rm×n×L directly compatible with f (·,w), and k is an
index for |I |×ρ such pairs. The choice of triplets follow the rationale
of well-covering the surface to allow each point to be represented
with a reasonable (=not too low) scale factor at-least in one map.
Hence, we sampled a small number (5-20) of uniformly spread points
(including the AGD local maxima [Kim et al. 2011]) on the surface
and randomly sampled triplets from this set.

Training CNN on T . We use this data to train CNN by finding
locally optimal parameters w with respect to the following loss
function:

E(w) =
∑
k

σ
(
f (Xk ,w),Yk

)
, (5)

where σ is the standard softmax loss per pixel, weighted by 1/(δ +
c); c is the size of the pixel’s ground-truth class, and δ = 4000 is
a regularizer. We used Matconvnet [Vedaldi and Lenc 2015] for
training using its SGD (Stochastic gradient descent) with learning
rate of 0.0001 as in the original implementation of [Long et al. 2015].

(a) (b)
Fig. 6. Aggregating predictions from different triplets (four models on the
left; triplets shown as orange disks) to produce final prediction (right). Each
triplet serves as a magnifying glass for some local or global part of the
surface. Note that on the third shape the third point is on the back side of
the model.

We initialized the network with the parameters of FCN32, removing
and/or duplicating channels to fit our data dimension.

Aggregating CNN output on S. Given a new surface S and cor-
responding vector valued function x , we use the trained CNN to
define the final predictor F via:

F (x) =
∑
P

S(P) ⊙ push−1
P

(
f (pushP (x),w)

)
, (6)

where P is a triplet from a set of ρ random triplets, S(P) is a weight
function chosen to compensate for the scale changes induced by the
mapping ΦP , and ⊙ is pointwise multiplication of functions. The
weight function S(P) is taken to be the scale factor of the mapping
ΦP . It is defined at every vertex of the surface using a triangle-area
weighted average of the adjacent triangles’ scale. Our aggregation
method is motivated by the observation that the scale factor can
serve as a confidence measure for the CNN prediction at each point
of the surface.

Figure 6 depicts an aggregation example where the four left mod-
els show the contribution of four different triplets P visualized
using orange disks (gray color corresponds to points with low scale
factor), and the model on the right is the final result.

4 PROPERTIES
In this section we justify the choice of the flat torus as the target do-
main and explain the translation invariance of the new convolution
operators. Specifically, we show that the convolution operator onS4

is invariant to a two dimensional group of conformal translations.

Convolution on the flat torus. We start by considering the Eu-
clidean case, namely the flat torus T . A translation is an isometry
τv : T → T defined by τv (x) = x −v . Translations act on functions
over the torus τv : F (T ,R) → F (T ,R) via τv (f)(x) = f (τv (x)) =
f (x −v). Translation invariance of the convolution operator means
it commutes with the translation operator as was just defined:

τv (f ∗ д) = τv (f) ∗ д

Conversely, under certain conditions, one can show that a linear and
translation invariant operator is a convolution with some fixed func-
tion д [Davies 2007]. Therefore, linearity and translation invariance
are defining properties of convolution.

ACM Transactions on Graphics, Vol. 36, No. 4, Article 71. Publication date: July 2017.

71:6 • H. Maron et. al.

Translations on surfaces. To define a convolution operator on
a surface S, a natural requirement is that it would be linear and
translation invariant. But what is a translation τ : S → S? In
tune with the definition of a surface, a translation on a surface
should locally be a Euclidean translation. That is, a flow along a non-
vanishing vector field. According to the Poincaré-Hopf Theorem
[Milnor 1965] the only surfaces with non-vanishing vector fields are
of Euler characteristic zero - in case of closed orientable surfaces,
the torus. This implies that the only surfaces on which we can define
translations in the above mentioned way are toric.

The pullback convolution. Given two toric (not necessarily flat)
surfaces T1,T2 and a homeomorphism Φ : T1 → T2 one can define
a convolution operator ∗1 on T1 from a convolution operator ∗2
defined on T2 via

f ∗1 д =
((
f ◦ Φ−1

)
∗2

(
д ◦ Φ−1

))
◦ Φ,

The pullback convolution ∗1 is linear and translation invariant w.r.t.
the pullback translations Φ−1 ◦τ ◦Φ, where τ represents translations
in T2 for which ∗2 is invariant to. This is proved in the appendix.

In our case T1 = S4, T2 = T the flat-torus with the Euclidean
convolution and translations (modulo 1), and the mapping Φ : S4 →
T is a conformal homeomorphism. As the convolution on the flat-
torus is invariant to Euclidean translations τ of the type x 7→ x −

v(mod 1), the pullback convolution onS4 is invariant to the pullback
translations Φ−1◦τ ◦Φ. Since Φ,Φ−1,τ are all conformal maps, these
pullback translations are conformal maps as well. To visualize an
example of these translations consider Figure 1 (bottom left) and
imagine that each square on the David surface moves to a well-
defined "right" neighbor.

5 EVALUATION
In this section, we compare our method to alternative approaches
for surface parameterization and network architecture. We com-
pare to three other methods: The first two methods focus on the
parameterization component of our algorithm, the last one on the
architecture:

(i) GIM - where we used the geometry images parameterization
method of [Sinha et al. 2016] followed by application of the
FCN32 network [Long et al. 2015]. To the best of our knowledge
this is the only parameterization method used with CNNs.

(ii) Tutte - we consider parameterization using Tutte’s embed-
ding [Tutte 1963] to the unit square followed by application
of the FCN32 network [Long et al. 2015]. To generate the em-
bedding, we use the same cut as in our method and map the
boundary in a length-preserving manner (up to global scale)
to the boundary of the unit square. This is a natural selection
for comparison, since Tutte’s embedding can be computed as-
efficiently as our method by solving a sparse system of linear
equations.

(iii) Seamless+FCN - where we use our parameterization technique
but without the two additional layers of cyclic padding and
projection. This is equivalent to considering the flat-torus as a
disk with its opposite sides disconnected.

Tutte GIM Seamless Ours
Fig. 7. Head segmentation on two test surfaces by the four algorithms in
Table 1. Our algorithm produces accurate segmentation, while competing
methods provide suboptimal results.

We perform the evaluation on the task of segmenting the head
in human models. Our training set for this task is composed of
370 models from the SCAPE [Anguelov et al. 2005], FAUST [Bogo
et al. 2014] and MIT animation datasets [Vlasic et al. 2008]. The
ground truth labels are head indicator functions that are manually
labeled. Our test data are the 18 sphere-like human models from the
SHREC dataset [Giorgi et al. 2007]. We use intersection-over-union as
our evaluation metric: Denoting by GTHead the set of faces labeled
"head" and by AlgHead the faces labeled "head" by the algorithm,
this metric as defined as

|GTHead ∩ AlgHead |
|GTHead ∪ AlgHead |

weighted by triangle areas. In all experiments, as input features
(“easy” functions over the surfaces), we use a set of 26 basic shape
features: 21 WKS features (equally spaced), 4 curvature features
(max, min, arithmetic mean and geometric mean of the principal
curvatures) and average geodesic distance (AGD) as input.We initial-
ize training with the parameters obtained by the FCN32 net [Long
et al. 2015]. We trained all networks with the same parameters and
same number of epochs.

For all methods we considered ρ = 10 different parameterizations
per mesh, resulting in a dataset with 3700 segmented images of

ACM Transactions on Graphics, Vol. 36, No. 4, Article 71. Publication date: July 2017.

Convolutional Neural Networks on Surfaces via Seamless Toric Covers • 71:7

intersection-over-union
1. Geometry images + FCN 0.625
2. Tutte + FCN 0.567
3. Seamless + FCN 0.503
4. Ours 0.710

Table 1. Evaluation of CNN on surfaces with different parameterization
methods and network architectures.

Training set

Test set

Fig. 8. Examples from the semantic segmentation training set.

size 512 × 512. For all methods excluding GIM, the different pa-
rameterizations correspond to ρ = 10 choices of triplets. For GIM
the different parameterizations correspond to 10 uniform rotations
around the polar axis of the sphere as suggested in [Sinha et al.
2016]. All networks converged after 20 epochs. For GIM we tried
applying aggregation like in Eq. (6) with two choices of param-
eterization weighting: scale dependent (like in our method), and
uniform (all predictions get the same weight). The rationale in the
second version is that GIM uses area preserving parameterizations
so theoretically no scaling is introduced. Both aggregation methods
produced the same results.
Table 1 summarizes the results. Our method achieves superior

results with respect to all alternatives. The results indicate that the
layers added to the network to account for the flat-torus topology
indeed play an important role.

Figure 7 shows results of the head segmentation task of the four
algorithms on two different models from the test set. The first two
rows show the first model from two viewing directions, and the
third and fourth rows show the second model. For both models
our segmentation was satisfactory while the segmentation of the
remaining methods was suboptimal. The small variability in the
head shape in our parametric space, as well invariance to cuts that
could pass through the head, allow our method to learn the head
function to a greater accuracy.
In an additional experiment we replaced the weighted aggrega-

tion method described in (6) with maximal aggregation method
and found that the performance of all methods degraded, with our
algorithm still providing superior results to the alternative methods.

6 APPLICATIONS
In this section we demonstrate the usefulness of our method for
two applications: semantic segmentation and automatic landmark
detection on anatomical surfaces.

method # feat features used accuracy
Ours 10 normals, Euclidean, curv. 81.6%
Guo 10 normals, Euclidean, curv. 43.6%
Ours 26 WKS, AGD, curv. 88.0%
Guo 26 WKS, AGD, curv. 76.0%
Guo 600 HKS, WKS, AGD, curv. 87.8%

Table 2. Semantic segmentation results.

Fig. 9. Results of our method for human body segmentation. Bottom right:
Failure case where part of the thigh was incorrectly identified.

6.1 Semantic segmentation of surfaces
We applied our algorithm to the task of semantic segmentation of
human models. As training data we used 370 models from SCAPE,
FAUST, MIT (excluding two classes which are not suitable for full-
body segmentation), and Adobe Fuse [fus 2016]. All models are
manually segmented into eight labels according to the labels in
[Kalogerakis et al. 2010]. Our test set is again the 18 models from
the SHREC07 dataset in human category (all sphere-like models).
Note that, in contrast with previous works, the training set does not
include any models from the SHREC07 dataset which we use solely
for testing. Figure 8 shows examples from the training set.
We generated data from 300 triplets per model in the training

set which resulted in approximately 110K segmented images. The
networks converged after 30-50 epoches. We compared our method
to the state-of-the-art CNN method for mesh segmentation [Guo
et al. 2015]. Both methods were trained on the same training data.
Gou et al. also use convolutional nets, but on per-triangle features
reshaped to a square grid. These convolutions do not enable ag-
gregating information from nearby regions on the surface, so to
get global context Guo et al. need to leverage global features. The
training set for Guo et al. was created by randomly sampling ∼ 360k
triangles from the set of training models. We applied their method
with different sets of training features (ranging from 10 to 600) and
as shown in Table 2 their performance drops considerably as the
number of training features decreases; accuracy is measured as ratio
of correctly labeled triangles, weighted by triangle areas. In contrast,
our method can learn features by leveraging convolution defined

ACM Transactions on Graphics, Vol. 36, No. 4, Article 71. Publication date: July 2017.

71:8 • H. Maron et. al.

0 100 200 300

Number of triplets

0

50

100

Se
gm

en
ta

tio
n

ac
cu

ra
cy

 [%
]

ρ=1 ρ=5 ρ=10 ρ=50
Fig. 10. Average result of human body segmentation as a function of the
number of triplets used in the prediction (using 26 features on the SHREC07
dataset).

Fig. 11. Results of our algorithm trained solely on human body semantic
segmentation applied to surfaces from other classes. Note that the method
still produces semantic plausible results, which demonstrates the strong
generalization power of the method.

over the surface, demonstrating consistently better performance
with the same number of features. In fact, our method, using only
26 features, modestly outperforms the method of Guo et al. with 600
features, see Table 2 (for evaluation we used ρ = 260/480 triplets for
26/10 features, respectively). Figure 9 shows several results obtained
with our algorithm.

Figure 10 shows the segmentation accuracy for the above 26
feature experiment as a function of the number of triplets ρ used for
aggregation. Using 5 triplets already provides meaningful results,
while 10 triplets are almost identical to the final result with ∼ 300
triplets.
Figure 11 shows successful application of the human segmen-

tation method to shapes from other classes: robot [Yob 2016], ar-
madillo and four-legged [Giorgi et al. 2007]. Note that although the
training set contains only standard human segmentation data (see
Figure 8), the network still produces plausible segmentations on
this very different set of models. This demonstrates the robustness
and generalization power of our method.
The robot example also demonstrates a possible way to bypass

the sphere topology restriction of our method: In this case the input
surface contains multiple connected components and non-manifold
edges. We approximated the input with a genus-0 surface using a
simple reconstruction algorithm [Zhao et al. 2000] and applied our
method to it. The result (shown on the approximated surface) is
plausible.

Fig. 12. Landmark detection in anatomical surfaces. Results on the test set
are shown; in dashed rectangle we show ground-truth for the tooth in the
middle of the first row.

6.2 Landmark detection on anatomical surfaces
Our algorithm can be applied to automatic landmark detection on
3D shapes in general and on biological data in particular. Here we
show results of an experiment we conducted on models of animal
teeth from the [Boyer et al. 2011] dataset. On each tooth 6 biologi-
cally significant landmarks where manually marked by experts. Our
task here is to detect these landmarks on an unseen tooth. For this
purpose we took 81 teeth from this dataset, converted them to sphere
topology using [Ju 2004] and marked each landmark area using a
geodesic disk of constant radius. We trained on a random subset
of 73 teeth and tested on 8 models. For each tooth we generated
125 triplets, resulting in a training set of approximately 9K images.
For the input "easy" function we only used curvature and (the loga-
rithm of) the conformal scale factor. The network converged after
50 epoches.

Figure 12 shows the results we obtained on all eight test models.
In a dashed rectangle we show the ground-truth labeling for the
tooth in the middle of the first row. Although we used only a five-
dimensional vector of basic features our method was successful in
identifying most of the landmarks despite the local as-well as global
variability in the data.

This dataset contains both right-side as-well as left-side teeth.
The landmarks are therefore reflected when comparing right- and
left-side teeth. Remarkably, our algorithm is able to correctly label
landmarks on both right- and left-side teeth according to their bi-
ological meaning and is not "fooled" by their orientation (see the
first tooth in the second row).

ACM Transactions on Graphics, Vol. 36, No. 4, Article 71. Publication date: July 2017.

Convolutional Neural Networks on Surfaces via Seamless Toric Covers • 71:9

GT
Ours

0 0.2 0.4 0.6 0.8
Geodesic error

0

50

100

%
 c

or
re

sp
on

de
nc

es

Ours
Random forest 1
Random forest 2

Fig. 13. Quantitative evaluation of the landmarks extracted by our method.

In the bottom row of Figure 12, one of the landmark areas in the
first tooth from the left is small, but is still detected. In the middle
tooth 5/6 landmarks were detected successfully and one is missing
(possibly due to the lack of the ridge on which the missing landmark
is usually marked). In the last tooth on the right only one landmark
was detected successfully. The failure in this case may be related
to the fact that both the genus of the animal and the specific peak
structure are not represented in the training set [Maier 1984]. This
experiment further demonstrates the ability of our method to learn
high-level semantic data from low-level information on the surface.

Using the output of our algorithm, we extract the point landmarks
by computing the geodesic centroid of each label. Figure 13 shows
a quantitative evaluation of the keypoints we extracted using the
above method compared to ground truth. We plot the fraction of
the predicted points (y-axis) that are within a certain geodesic error
threshold of their true position (x-axis). We compared our algorithm
to a baseline random forest classifier [Breiman 2001] (using maltab’s
implementation) which was recently shown to be a successful clas-
sifier for shape analysis problems [Rodolà et al. 2014]. The input
per-face feature vectors consisted of the 600 WKS, HKS, curvature
and AGD as before, with additional (logarithm of) the conformal
scale factor generate with 125 triplet (generated as above). We tried
two versions - the first with 50 trees and 73K sampled faces and the
second with 100 trees and 292K sampled faces. Our algorithm was
able to extract more accurate landmarks despite the large number
and expressive power of the features fed to the baseline.
In Figure 14 we show a smooth bijective map between a pair of

teeth obtained by interpolating the 6 landmarks identified by our
method. The map was obtained using the method of [Aigerman and
Lipman 2016]. This provides a fully automatic pipeline for producing
semantically correct mappings between biological surfaces.

6.3 Timing
We present average running times. Computing the parameterization
on a mesh with 12.5K vertices takes 0.862 seconds for a given triplet
of cones. Computing the scale factor of the parametrization (used
for aggregation) takes 0.534 seconds. The training can process about
one image with 5-26 channels per second for a single GPU in Nvidia
K80. We used three such dual GPUs which made the training 6
times faster. For a dataset containing 110k images (as in the full
segmentation experiment) a single epoch takes about 5 hours. Feed-
forward calculation in the network (using a single GPU of Nvidia
K80) takes 0.35 seconds on average for a single image with 5-26
channels. Full prediction for a single triplet (feed-forward and pull-
back of functions to the surface) takes about 2.94 seconds, and this
process can be parallelized for multiple triplets. Consequently, in

Fig. 14. A visualization of a map between teeth obtained by interpolating
the correspondence between the 6 landmarks found automatically by our
method.

case of sequential runs, a prediction on a single model with 1/10/50
triples takes 3/30/150 seconds. Using 50 triples, it takes 45 minutes
to calculate predictions on the human class of SHREC07 and 20
minutes on the teeth dataset. These experiments were done on an
Intel Xeon E5 CPU with 64GB of RAM.

7 CONCLUSION
We presented a methodology and an algorithm for applying deep
convolutional neural networks to geometric surfaces. The algorithm
is based on seamless, conformal mapping of surfaces to the flat-torus
on which convolution is well defined. Standard CNN architecture
can then be used with minor modifications to perform supervised
learning on the flat-torus. We demonstrated the usefulness of our
approach for semantic segmentation and automatic landmark de-
tection on anatomical surfaces, and showed it compares favorably
to competing methods.
A limitation of our technique is that it assumes the input shape

is a mesh with a sphere-like topology. An interesting direction
for future work is extending our method to meshes with arbitrary
topologies. This problem is especially interesting since in certain
cases shapes from the same semantic class may have different genus.
Another limitation is that currently aggregation is done as a sepa-
rate post-process step and not as a part of the CNN optimization.
An interesting future work in this regard is to incorporate the ag-
gregation in the learning stage and produce end-to-end learning
framework.

8 ACKNOWLEDGEMENTS
This research was supported in part by the European Research Coun-
cil (ERC Starting Grant "Surf-Comp", Grant No. 307754), I-CORE
program of the Israel PBC and ISF (Grant No. 4/11). The authors
would like to thank Ayan Sinha and Karthik Ramani for sharing
their code, Shahar Kovalsky and Julia Winchester for providing
biological insights, and the anonymous reviewers for their useful
comments and suggestions.

REFERENCES
2016. Adobe Fuse 3D Characters. https://www.mixamo.com. (2016). Accessed: 2016-

10-15.
2016. Yobi3d - free 3d model search engine. https://www.yobi3d.com. (2016). Accessed:

2016-10-15.

ACM Transactions on Graphics, Vol. 36, No. 4, Article 71. Publication date: July 2017.

https://www.mixamo.com
https://www.yobi3d.com

71:10 • H. Maron et. al.

Noam Aigerman and Yaron Lipman. 2015. Orbifold tutte embeddings. ACM Trans.
Graph 34, 6 (2015), 190.

Noam Aigerman and Yaron Lipman. 2016. Hyperbolic orbifold tutte embeddings. ACM
Transactions on Graphics (TOG) 35, 6 (2016), 217.

Dragomir Anguelov, Praveen Srinivasan, Daphne Koller, Sebastian Thrun, Jim Rodgers,
and James Davis. 2005. SCAPE: shape completion and animation of people. In ACM
Transactions on Graphics (TOG), Vol. 24. ACM, 408–416.

Mathieu Aubry, Ulrich Schlickewei, and Daniel Cremers. 2011. The wave kernel signa-
ture: A quantum mechanical approach to shape analysis.. In ICCV Workshops. IEEE,
1626–1633. http://dblp.uni-trier.de/db/conf/iccvw/iccvw2011.html#AubrySC11

Federica Bogo, Javier Romero, Matthew Loper, and Michael J. Black. 2014. FAUST:
Dataset and evaluation for 3D mesh registration. In Proceedings IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR). IEEE, Piscataway, NJ, USA.

Davide Boscaini, Jonathan Masci, Simone Melzi, Michael M Bronstein, Umberto Castel-
lani, and Pierre Vandergheynst. 2015. Learning class-specific descriptors for de-
formable shapes using localized spectral convolutional networks. In Computer
Graphics Forum, Vol. 34. Wiley Online Library, 13–23.

Davide Boscaini, Jonathan Masci, Emanuele Rodolà, and Michael M. Bronstein. 2016.
Learning shape correspondence with anisotropic convolutional neural networks. In
NIPS.

Doug M Boyer, Yaron Lipman, Elizabeth St Clair, Jesus Puente, Biren A Patel, Thomas
Funkhouser, Jukka Jernvall, and Ingrid Daubechies. 2011. Algorithms to automati-
cally quantify the geometric similarity of anatomical surfaces. Proceedings of the
National Academy of Sciences 108, 45 (2011), 18221–18226.

Leo Breiman. 2001. Random forests. Machine learning 45, 1 (2001), 5–32.
Joan Bruna,Wojciech Zaremba, Arthur Szlam, and Yann LeCun. 2013. Spectral networks

and locally connected networks on graphs. arXiv preprint arXiv:1312.6203 (2013).
Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and Alan L

Yuille. 2014. Semantic image segmentation with deep convolutional nets and fully
connected crfs. arXiv preprint arXiv:1412.7062 (2014).

E Brian Davies. 2007. Linear operators and their spectra. Vol. 106. Cambridge University
Press.

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. 2016. Convolutional
neural networks on graphs with fast localized spectral filtering. In Advances in
Neural Information Processing Systems. 3837–3845.

Daniela Giorgi, Silvia Biasotti, and Laura Paraboschi. 2007. Shape retrieval contest
2007: Watertight models track. SHREC competition 8 (2007).

Xianfeng Gu, Steven Gortler, and Hugues Hoppe. 2002. Geometry Images. In SIG-
GRAPH.

Kan Guo, Dongqing Zou, and Xiaowu Chen. 2015. 3D Mesh Labeling via Deep Convo-
lutional Neural Networks. ACM Trans. Graph. 35, 1 (2015).

Mikael Henaff, Joan Bruna, and Yann LeCun. 2015. Deep convolutional networks on
graph-structured data. arXiv preprint arXiv:1506.05163 (2015).

Tao Ju. 2004. Robust repair of polygonal models. ACM Transactions on Graphics (TOG)
23, 3 (2004), 888–895.

Felix Kälberer, Matthias Nieser, and Konrad Polthier. 2007. QuadCover-Surface Param-
eterization using Branched Coverings. In Computer Graphics Forum, Vol. 26. Wiley
Online Library, 375–384.

Evangelos Kalogerakis, Melinos Averkiou, Subhransu Maji, and Siddhartha Chaudhuri.
2016. 3D Shape Segmentation with Projective Convolutional Networks. arXiv
preprint arXiv:1612.02808 (2016).

Evangelos Kalogerakis, Aaron Hertzmann, and Karan Singh. 2010. Learning 3D mesh
segmentation and labeling. ACM Transactions on Graphics (TOG) 29, 4 (2010), 102.

Vladimir G Kim, Yaron Lipman, and Thomas Funkhouser. 2011. Blended intrinsic maps.
In ACM Transactions on Graphics (TOG), Vol. 30. ACM, 79.

Thomas N Kipf and Max Welling. 2016. Semi-supervised classification with graph
convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classifica-
tion with deep convolutional neural networks. In Advances in neural information
processing systems. 1097–1105.

Dmitry Laptev, Nikolay Savinov, Joachim M Buhmann, and Marc Pollefeys. 2016. TI-
POOLING: transformation-invariant pooling for feature learning in Convolutional
Neural Networks. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. 289–297.

Roee Litman and Alexander M Bronstein. 2014. Learning spectral descriptors for
deformable shape correspondence. IEEE transactions on pattern analysis and machine
intelligence 36, 1 (2014), 171–180.

Jonathan Long, Evan Shelhamer, and Trevor Darrell. 2015. Fully convolutional networks
for semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. 3431–3440.

Wolfgang Maier. 1984. Tooth morphology and dietary specialization. In Food acquisition
and processing in primates. Springer, 303–330.

Jonathan Masci, Davide Boscaini, Michael Bronstein, and Pierre Vandergheynst. 2015.
Geodesic convolutional neural networks on riemannian manifolds. In Proceedings
of the IEEE International Conference on Computer Vision Workshops. 37–45.

J Milnor. 1965. Topology from a differentiable viewpoint(University of Virginia Press,
Charlottesville, VA). (1965).

Emil Praun and Hugues Hoppe. 2003. Spherical parametrization and remeshing. In
ACM Transactions on Graphics (TOG), Vol. 22. ACM, 340–349.

Charles R. Qi, Hao Su, Kaichun Mo, and Leonidas J. Guibas. 2016a. PointNet: Deep
Learning on Point Sets for 3D Classification and Segmentation. arXiv preprint
arXiv:1612.00593 (2016).

Charles Ruizhongtai Qi, Hao Su, Matthias Nießner, Angela Dai, Mengyuan Yan, and
Leonidas Guibas. 2016b. Volumetric and Multi-View CNNs for Object Classification
on 3D Data. In Proc. Computer Vision and Pattern Recognition (CVPR), IEEE.

Emanuele Rodolà, Samuel Rota Bulo, ThomasWindheuser, Matthias Vestner, and Daniel
Cremers. 2014. Dense non-rigid shape correspondence using random forests. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
4177–4184.

Ayan Sinha, Jing Bai, and Karthik Ramani. 2016. Deep learning 3D shape surfaces using
geometry images. In European Conference on Computer Vision. Springer, 223–240.

Hang Su, Subhransu Maji, Evangelos Kalogerakis, and Erik Learned-Miller. 2015. Multi-
view convolutional neural networks for 3d shape recognition. In Proceedings of the
IEEE International Conference on Computer Vision. 945–953.

Jian Sun, Maks Ovsjanikov, and Leonidas Guibas. 2009. A Concise and Provably
Informative Multi-scale Signature Based on Heat Diffusion. In Proceedings of the
Symposium onGeometry Processing (SGP ’09). Eurographics Association, Aire-la-Ville,
Switzerland, Switzerland, 1383–1392. http://dl.acm.org/citation.cfm?id=1735603.
1735621

Federico Tombari, Samuele Salti, and Luigi Di Stefano. 2010. Unique signatures of
histograms for local surface description. In European Conference on Computer Vision.
Springer, 356–369.

W. T. Tutte. 1963. How to draw a graph. Proc. London Math. Soc. 13, 3 (1963), 743–768.
Andrea Vedaldi and Karel Lenc. 2015. Matconvnet: Convolutional neural networks for

matlab. In Proceedings of the 23rd ACM international conference on Multimedia. ACM,
689–692.

Daniel Vlasic, Ilya Baran, Wojciech Matusik, and Jovan Popović. 2008. Articulated mesh
animation from multi-view silhouettes. In ACM Transactions on Graphics (TOG),
Vol. 27. ACM, 97.

Lingyu Wei, Qixing Huang, Duygu Ceylan, Etienne Vouga, and Hao Li. 2016. Dense
Human Body Correspondences Using Convolutional Networks. In Proc. CVPR.

Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang,
and Jianxiong Xiao. 2015. 3d shapenets: A deep representation for volumetric shapes.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
1912–1920.

Xinchen Yan, Jimei Yang, Ersin Yumer, Yijie Guo, and Honglak Lee. 2016. Perspec-
tive transformer nets: Learning single-view 3d object reconstruction without 3d
supervision. In Advances in Neural Information Processing Systems. 1696–1704.

Li Yi, Hao Su, Xingwen Guo, and Leonidas Guibas. 2016. SyncSpecCNN: Synchronized
Spectral CNN for 3D Shape Segmentation. arXiv preprint arXiv:1612.00606 (2016).

Hong-Kai Zhao, Stanley Osher, Barry Merriman, and Myungjoo Kang. 2000. Implicit
and nonparametric shape reconstruction from unorganized data using a variational
level set method. Computer Vision and Image Understanding 80, 3 (2000), 295–314.

9 APPENDIX
Weprove that given a bijectionΦ : T1 → T2 and assuming τ (f ∗2д) =
τ (f) ∗2 д we have that τ (f ∗1 д) = τ (f) ∗1 д where τ = Φ−1 ◦ τ ◦ Φ.
As before, we use the notation τ (f) = f ◦ τ . First,

τ (f ∗1 д) =
[
(f ◦ Φ−1) ∗2 (д ◦ Φ

−1)
]
◦ Φ ◦

[
Φ−1 ◦ τ ◦ Φ

]
=

[
(f ◦ Φ−1) ∗2 (д ◦ Φ

−1)
]
◦ τ ◦ Φ

= τ
[
(f ◦ Φ−1) ∗2 (д ◦ Φ

−1)
]
◦ Φ

On the other hand we have

τ (f) ∗1 д =
[
(τ (f) ◦ Φ−1) ∗2 (д ◦ Φ

−1)
]
◦ Φ

=
[
(f ◦ Φ−1 ◦ τ ◦ Φ ◦ Φ−1) ∗2 (д ◦ Φ

−1)
]
◦ Φ

=
[
(f ◦ Φ−1 ◦ τ) ∗2 (д ◦ Φ

−1)
]
◦ Φ

=
[
τ (f ◦ Φ−1) ∗2 (д ◦ Φ

−1)
]
◦ Φ

= τ
[
(f ◦ Φ−1) ∗2 (д ◦ Φ

−1)
]
◦ Φ,

where in the last equality we used the invariance of ∗2 to τ . We
proved invariance of ∗1 to τ .

ACM Transactions on Graphics, Vol. 36, No. 4, Article 71. Publication date: July 2017.

http://dblp.uni-trier.de/db/conf/iccvw/iccvw2011.html#AubrySC11
http://dl.acm.org/citation.cfm?id=1735603.1735621
http://dl.acm.org/citation.cfm?id=1735603.1735621

	Abstract
	1 Introduction
	2 Previous work
	3 Method
	3.1 Overview
	3.2 Transferring functions between S and T
	3.3 Neural Networks on the flat-torus T

	4 Properties
	5 Evaluation
	6 Applications
	6.1 Semantic segmentation of surfaces
	6.2 Landmark detection on anatomical surfaces
	6.3 Timing

	7 Conclusion
	8 Acknowledgements
	References
	9 Appendix

