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Learning A Stroke-Based Representation for Fonts
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Figure 1: We learn style variations from existing typeface collections by representing them using a consistent parameterization, and projecting
onto a low dimensional manifold. We start with a set of glyph examples that are not consistently parameterized, and use our fitting method to
produce a part-based template parametrization consistent across same glyphs. We project the parametrization features into a low dimensional
manifold and thus produce a missing-data-aware generative model. The resulting manifold can be used for exploratory applications to
understand collections of fonts: topology-aware font retrieval, completion, and interpolation.

Abstract

Designing fonts and typefaces is a difficult process for both beginner and expert typographers. Existing workflows require the
designer to create every glyph, while adhering to many loosely defined design suggestions to achieve an aesthetically appealing
and coherent character set. This process can be significantly simplified by exploiting the similar structure character glyphs
present across different fonts and the shared stylistic elements within the same font.

To capture these correlations we propose learning a stroke-based font representation from a collection of existing typefaces.
To enable this, we develop a stroke-based geometric model for glyphs, a fitting procedure to re-parametrize arbitrary fonts to
our representation. We demonstrate the effectiveness of our model through a manifold learning technique that estimates a low-
dimensional font space. Our representation captures a wide range of everyday fonts with topological variations and naturally
handles discrete and continuous variations, such as presence and absence of stylistic elements as well as slants and weights. We
show that our learned representation can be used for iteratively improving fit quality, as well as exploratory style applications
such as completing a font from a subset of observed glyphs, interpolating or adding and removing stylistic elements in existing

fonts.

1. Introduction

Font collections are ubiquitous in design tools ranging from word
processors to graphics editors. Although professional typographers
perpetually create new and diverse families of fonts, it is not always
possible to find a font with desired visual features, and thus design-
ers often have to compromise by selecting a font that does not fit
with their graphic message.

Designing glyphs that have desired style, aesthetic appeal, co-
herence, and follow good typographic practices requires substantial
expertise and time investment. Even a small edit to one glyph (e.g.,
make the base of the ‘t’ a little wider) can require subtle updates
to many other glyphs to maintain coherence within the font. Since
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tools are not available to support these edits, font customization is
generally inaccessible to all but a few expert font designers.

The goal of our work is to describe a part-aware font represen-
tation and show how it can be integrated with machine learning
techniques to automate font manipulation. The described system
is designed as a first step to assist non-experts in the design of cus-
tomized fonts, it is not intended to compete with carefully designed
high-quality fonts. We observe that priors on glyph structure and
stylistic consistency are implicitly encoded in existing typefaces.
We therefore hope to capture this knowledge in a generative model
and use it to facilitate font editing, completion, interpolation, and
retrieval.
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The first challenge in learning from existing typefaces is that they
do not share a common structure. Glyphs are typically represented
by closed outline curves composed from primitives such as lines
and Bezier curves with no consistency across different fonts even
for the same character.

One approach to achieve a consistent representation would be
to rasterize the glyph to a fixed-size image [USB16], however, this
representation loses the advantages of vector graphics and does not
allow preserving sharp features of the original glyph geometry.

Another option is to represent each glyph’s outline with a poly-
line such that endpoints of each line segment are in correspondence
across all glyphs [CK14]. Outline-based representation makes it
difficult to reason about decorative elements such as serifs that are
present only in a subset of glyphs. It also ignores the stroke-based
structure of characters which is often consistent across glyphs and
can be used to facilitate analysis. Phan et al. [PFC15] proposed
a stroke-based glyph representation, however, this method still re-
quires significant human interaction during the learning step to con-
vert given outlines to the proposed representation, which hinders
non-expert usage.

In this work we represent a glyph as a set of strokes and outline
segments, where the latter are defined with respect to the coordi-
nate system of their respective stroke. Many fonts are constructed
with the appearance of brush strokes, to varying degrees; we be-
lieve they are better modeled by a spine and profile curves. A better
model means more appealing interpolation and synthesis of charac-
ters as compared to raster or polyline representations. Consistency
in stroke structure and low variance in profile offsets are among the
key ingredients in our parametrization which make it easier to learn
correlations between different parameters. This representation can
also naturally handle discrete topological variations (i.e., addition
and removal of strokes, such as serifs).

We take advantage of consistency in stroke structures of letters
to create a common template for each letter. We propose an opti-
mization procedure to align the template to the input outline, en-
abling re-parametrizing of any input glyph consistently with the
other glyphs of the same letter. Unlike previous work on outline
alignment [CK14], our method does not require joint analysis of
the entire dataset, which makes our method scale linearly with re-
spect to the number of fonts and allows us to process a collection
of fonts an order of magnitude larger.

We formulate our representation as a concatenation of glyph de-
scriptors for the entire font. Since there are co-dependencies in the
concatenated glyph descriptors, due to stylistic similarities within
a font and global structural similarities across fonts, it is possible
to learn a reduced-dimensionality representation that captures the
salient shape variations within a font collection. However, data is
not always available for all glyphs (if only certain letters have been
created by a designer for some font, or if the template fitting algo-
rithm produces a poor fit). Therefore, we employ an EM-PCA algo-
rithm [Row98] that is robust to missing data to learn the reduced-
dimensionality representation. This model is a linear form of the
more general Variational Auto-Encoder (VAE) [KW13] (we also
experiment with nonlinear VAESs, and find that the linear EM-PCA
model works better for our cases). The result is a projection to and

from a latent font space that can be used for manipulation, interpo-
lation, and generation of fonts.

We use a dataset of publicly available fonts to benchmark the
quality of fitting our stroke-based representation to unstructured
outlines and evaluate the reconstruction quality from the learned
manifold. We demonstrate that we can consistently parametrize
many existing fonts with our template, and use this parametriza-
tion to learn a common representation for fonts. We leverage our
learned model for topology-aware font retrieval and for completing
missing glyphs from a subset of outlines.

2. Related Work

Located at the intersection of graphics and information design, font
design has been a well-studied field for decades [Zap87, Car95,
Tsc98, Tra03, 0ST14, as8]. Our work is therefore informed by rich
prior research on representation, analysis, and synthesis of fonts
and shape collections. The most influential and relevant previous
work is described below.

Font Representations Font glyphs are examples of complex 2D
shapes that convey both meaning and appearance. There are gener-
ally three common ways to represent fonts: bitmaps, strokes, and
outlines. Bitmap representations are easy to use and compatible
with computer code, but do not scale without introducing artifacts.
Stroke representations capture glyph essence well and are gener-
ally more compact [Gon98] (which is extremely advantageous to
fonts with thousands of glyphs such as Chinese, Japanese, Korean
(CJK) fonts [LZX16]), but are generally less expressive [JPF06].
Outline-based representations are more expressive [JPF06], but re-
quire hinting to counteract rendering artifacts [hin, HB91, Her94].
Still, outline fonts are a prevalent for representing Latin script type-
faces in popular scalable computer formats [Mic16].

Typically, customizing a font requires tedious outline or
stroke-editing, which is addressed by parametric font representa-
tions [Knu86]. In industry, a popular approach is to use master
fonts, which enable high-level parametric control by interpolation
with consistently placed control points [Ado97]. A recent Open-
Type format [Mic16] allows more elaborate parametrization during
font design, for example, by continuously varying width or weight.
The main limitation of these techniques is that they require type-
face designers to provide a parametrization of the font. This might
be possible within a small family of related fonts (i.e., a typeface),
but these parametrizations are still inconsistent across typefaces. In
contrast, we aim to achieve similar expressiveness while imposing
minimal effort on typographers, simply by analyzing existing fonts.

To simplify the process of creating parametrized fonts, several
systems have been proposed that prescribe a mapping between
a few high-level font parameters and the control points of every
glyph. For example, the Metafont system [Knu86] was used to cre-
ate Computer Modern typeface families governed by a small set of
parameters. These control continuous attributes, such as width and
height of glyphs, as well as discrete variations, such as presence of
serifs. Hersch and Bétrisey [HB91] described a set of rules to fit a
topological model to outlines to enable automatic hinting. Shamir
and Rappoport [SR98] proposed a visual tool for designing para-
metric fonts with constraints, and Hu and Hersch [HHO1] provided
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a richer set of geometric components to define a parametric type-
face. Shamir and Rappoport [SR99] describe a procedure to repre-
sent outline-based oriental fonts using a hand-designed parametric
font model and a procedure to compact the resulting representation
using quantization. This work is different from our method in sev-
eral ways: first, their parameterization requires manual assistance;
second, their system fits deformable primitives to glyphs and does
not aim for a consistent primitive set; it cannot be used for learn-
ing a manifold of fonts and for reasoning about part relationships
within each glyph.

Learning Font Representation The first step in learning a font
representation is establishing consistency across glyphs. One sim-
ple approach is to rasterize a glyph to a fixed-size image. This is
effective for recognition [WYJ*15], but poses challenges for font
synthesis. Current image synthesis methods yield blurry results,
omit small features, and fail to enforce shape and curve continuity
in the resolutions required for most fonts [USB16] (see Figure 11b).

Early work in this direction [Ada89] proposed decomposing
glyphs into parts and deriving rules that share design attributes
across glyphs to encourage consistency. In this system, all control
glyphs have to be prescribed to create the complete font, and all re-
lationships between prescribed and synthesized glyphs are defined
manually. Campbell and Kautz [CK14] introduce a vector represen-
tation for learning font shapes, and learn a manifold of fonts. Their
method is based on correspondences between glyph outlines. They
jointly optimize for all control points by sliding them along the in-
put outline while matching geometric features (e.g., normals and
curvature) and preserving the original spacing (i.e., arc-length via
elasticity objective). This approach does not explicitly recognize
parts, and hence causes distortions in features like serifs when in-
terpolating serif and sans serif fonts. In addition, this approach does
not lend itself to learning the common shapes in different glyphs.
For example the upper loop of ‘g’ and ‘g’ are very similar, even
though the overall outline is not. Similarly, decorative elements,
such as serifs, need to be consistent in style, and together influence
attributes of the glyph, such as its width. Please see [Ada86,Ada89]
for extended discussion of common aesthetic principles. We al-
low glyphs with different topological structure to share a subset
of strokes. This enables us to learn, for example, the shape of the
upper loop in ‘g’ regardless of the shape of the bottom, and learn
the shape of serifs only from glyphs that have the them. The result-
ing stroke-based template with potential topological variations can
be matched to each glyph independently which enables us to avoid
joint analysis and process an order of magnitude more fonts.

Phan et al. [PFC15] also propose to leverage stroke-based rep-
resentation, modeling a glyph with brushes and caps aligned to
canonical strokes. However, their method requires manual labeling
of glyphs, limiting its applicability. It also represents each glyph as
a set of stroke curves with profile offsets, a representation which
suffers from artifacts in high curvature regions. Similarly, Lian et
al. [LZX16] relies on a stroke/profile representation to generate
hand-written fonts. Their proposed fitting procedure only focuses
on stroke fitting and is very similar to our initialization [MSCP*07],
but our contribution lies in optimization for Bezier control points
which comes after stroke initialization. Finally, their system as-
sumes that each type of stroke appears at least once in the input
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set and that the user provides at least several hundred characters,
while our system does not have these requirements. Suveeranont
and Igarashi [SI10] propose a weighted blend of outlines and skele-
tons to model new fonts as a linear combination of existing fonts.
As they observe in their paper, linearly combining good fonts does
not always yield a plausible result, since it does not capture co-
dependencies between different parameters. Their solution is to
limit the synthesis to a small set of the most similar examples, re-
quiring a dense sampling of font space.

Analyzing 3D Shape Collections Our method is also related to
existing work on analyzing 3D shape collections. In that domain,
boundary-based consistent parametrization techniques [PSSOI1]
were initially used to analyze similar surfaces with little topologi-
cal variations. Part-based templates have been developed to handle
more complex shapes [KCKK12,KLM™13], which enables a better
analysis of topological variations [AXZ"15]. As with font analysis,
they provide means to analyze relationships between objects that
share only a subset of parts, and provide effective priors on global
structure. Recently, several techniques have been proposed to an-
alyze stylistic compatibility between objects [LKS15, LHLF15],
aiming to separate content (i.e., object class) and style. Lun et
al. [LKWS16] also propose a non-parametric method for transfer-
ring style by curve-based deformation, addition, and removal of
parts. These approaches can be viewed as analogues to the problem
of synthesizing fonts by transferring style from designer-created
glyphs. The main advantage of our setting is that we can lever-
age a vast amount of data where the same content (i.e., letters) is
presented in various coherent styles (i.e., each font is stylistically
coherent). Of course, we provide a parametric model for glyph ge-
ometry, which is less challenging than arbitrary 3D shapes.

3. Overview

Typographers invest significant effort into designing glyphs that
maintain a consistent style and adhere to good design principles.
Thus, a well-designed font encompasses many implicit structural
and stylistic relationships between the glyphs or their parts. The
goal of this work is to learn these relationships from existing fonts
and use them to simplify the design process of new ones. In partic-
ular, given a collection of fonts, we learn a low-dimensional repre-
sentation that can be used to complete partial designs, interpolate
between existing fonts, and provide easy controls to add and re-
move different stylistic elements, such as serifs.

To achieve this goal, a low-dimensional manifold of fonts needs
to be learned across a variety of fonts. Since it is challenging to per-
form manifold learning on a general (inconsistent) font representa-
tion, we propose a two-step iterative process (Iterative Manifold
Evolution, Section 7) to overcome these challenges: we parameter-
ize fonts consistently by fitting the font model to all glyphs, and
then we update the model using the newly parametrized fonts. This
two-step process iterates until convergence to learn a font represen-
tation for all glyphs in a lower dimensional space.

We propose a stroke-based model that is concise, expressive, and
is semantically driven — enabling us to factorize a glyph shape into
meaningful elements. In particular, we represent each glyph with
a set of strokes, where each stroke consists of a skeleton curve,
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two outline curves on both sides of the skeleton, and a single cap
curve for every endpoint. We represent all curves with Bezier con-
trol points. The skeleton control points of one skeleton segment
are defined in the global coordinate system, while the other parts,
the outlines and the cap are defined relative to that base curve or
other skeleton segments in a tree-like manner (see Figure 2 right).
This naturally separates profile features (e.g., width) from stroke
features (e.g., slant), which facilitates learning relationships; out-
line control points will have a larger offset from the skeleton in a
bold font and skeleton strokes will have a slope in an italic font.
The stroke-based representation also naturally handles topological
variations in glyphs. For instance, the glyphs ‘g’ and ‘g’ can share
parameters for the control points of the upper loop, but have dif-
ferent strokes to represent the tail. Similarly, decorative elements,
such as serifs, can be represented with optional strokes. Thus, our
consistent representation is defined with respect to a set of strokes,
which we call a deformable glyph template, where template param-
eters include topological (which strokes are included) and geomet-
ric (control points of Bezier curves) ones (see Section 4).

To represent existing font outlines with our stroke-based model
we propose a fitting procedure of the deformable template. Our fit-
ting process takes advantage of the fact that stroke skeletons do not
vary significantly across fonts, since letters are recognized by spe-
cific stroke structures. Thus we start by fitting the strokes of the
template to the input glyph, followed by outline fitting, deforming
the template Bezier curves to align with the boundaries of the input
(see Section 5). Our template fitting process eliminates the need
for joint analysis of all fonts, and is trivially parallelizable, which
enables us to process 570 fonts, an order of magnitude more than
previous techniques (such as Campbell and Kautz [CK14]). We fo-
cus our analysis on lowercase letters, as prior work highlighted that
their design is more differentiated [Ada89], however, the system
can be extended to uppercase letters and other characters by gener-
ating more templates.

To represent the entire font we concatenate individual glyph
representations across all letters, generating a vector in a high-
dimensional feature space. Since glyphs share a lot of stylistic and
structural attributes, we expect this representation to be overcom-
plete, and learn a lower-dimensional font representation. For any
given font, there will be missing entries: the feature vector includ-
ing separate entries for different forms of ‘g’ and ‘g’ (only one of
which will appear in any given font), and serif parameters that do
not occur for sans serif fonts. Thus, we will not have the entire fea-
ture vector during training or testing time. In addition, at test time,
reasoning about the font representation by observing only a sub-
set of the glyphs can give rise to many applications, such as font
completion (see Section 9). We chose the Expectation Maximiza-
tion Principal Component Analysis (EM PCA) approach [Row98],
which provides a simple linear map for dimensionality reduction,
and generalizes PCA to allow for missing feature values at test and
training time (see Section 6).

4. Stroke-Based Deformable Template

Description We use a parametric deformable template 7;(®) to
represent each letter ¢ in the set of glyphs, where ® are the de-
formation parameters that define the shape of the glyph generated

(1,1,1,0,1,0) ¢

Connectivity Constraints

—0.—0.—0;...

mmw Other topology
Skeleton

Figure 2: Deformable template representations. An example for the
letter ‘a’. Our model is described by parameters of strokes (6s), out-
lines (8o), and caps (left), as well as topological parameters (6¢),
indicating which strokes need to be present, and outline connec-
tivity constraints (middle). Multiple topologies are prescribed for
the same letter (middle, bottom). In each topology, one base skele-
ton segment (s, ;) is represented in image space coordinates, while
all other segments are offsets from it, or from other segments in a
tree-like manner (right).

by T:(®). Our template is described by a set of skeleton segments
Sc¢ and outline segments O, as shown in Figure 2 for example
case when ¢ = ‘a’. A single skeleton segment, named the Base-
Segment s, is represented by the curve location in image space.
The other skeleton segments are represented as offsets from s ;, or
from another segment in a tree manner. Furthermore, every stroke
corresponds to one skeleton segment s € S¢, and each such seg-
ment corresponds to two outline segments on opposite sides of it:
{o;r ,05 + € Oc. We represent a cap as a special case skeleton stroke
that has only one outline (0$) associated with it. This dependency
structure ensures consistent part and outline positioning during the
fitting process, without the need to locally (or globally) align parts
across different fonts. Note that one could also encode the template
using angle relationships between segments, however we found po-
sitional differences to be more robust (as a slanted f still consists of
horizontal wings), and produced better results for the learning step
(see Section 6). Lastly, the template also prescribes the ordering of
the outline segments on the generated outline and their connectivity
constraints, as depicted in Figure 2 (middle). The connectivity con-
straints ensure the we always reconstruct a continuous outline, and
practically remove redundancies from our representation. When a
stroke is missing (e.g., a serif stroke in a sans-serif font), it creates
a gap in the outline, which is trivially closed by connecting the two
adjacent segments based on the ordering. In addition, Figure 2 (left)
also demonstrates an example skeleton, its corresponding profile
curve, and caps.

All curves in our framework are cubic Bezier, parametrized by
their control points. Most skeletons and outlines are represented by
a single curve, but long or more complex strokes are represented
by two (which are enforced to be C! at the seam). The connectiv-
ity and smoothness constraints render some of the 4 Bezier control
points redundant and thus they are removed from the representa-
tion. We denote the control points coordinates by 65 € @ for skele-
ton strokes and 6, € @, for outline curves. The control points of the
outline curve are defined relative to the skeleton points, and skele-
ton points are defined relative to points on s., or other segments
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Figure 3: For each letter template, we provide a set of example
layouts. Some depict topological variation (e.g. for the letter ‘a’,
Figure 2). Some distinguish between decorative and sans-serif ex-
amples (e.g. ‘u’, left). Some templates include only one example
(e.g. ‘e’, middle). These examples adhere to the connectivity and
smoothness constraints defined by the template, for example the
strokes of ‘c’ are constrained to be C! continuous (right). See the
supplemental material for all template examples.

in a tree structure, as depicted by arrows in Figure 2 (left). This
coordinate frame directly relates to meaningful properties such as
brush width profile, and so is the natural choice for outline repre-
sentation. Additionally, our template deformation parameters also
allow discrete topological changes, which we denote by a vector of
binary values, ®;. Each value corresponds to presence or absence
of a single stroke. Thus, the shape of a deformed template is de-
fined by the vector ® = (@5, @,,0y). To facilitate fitting, we also
provide a set of example topologies and geometries for each tem-
plate, as demonstrated in Figure 2 (right bottom) and Figure 3.
Number of Templates For each character, we generally have two
templates - for the serif and the sans-serif versions. Some charac-
ters (such as ‘k’) present significant variations in topology between
fonts and hence warrant another template in order to be captured
well, while others were successfully represented using one template
only (such as ‘0’). A general rule is to capture sufficient glyph vari-
ation to be used by the learning algorithm (see Section 8.1). The
template generation process involves annotating junctions and part
connectivity. We provide precise templates for every letter in the
supplemental material.

5. Template Fitting

We now describe the template fitting procedure that finds the opti-
mal deformation parameters for an input glyph G, s of the letter ¢
from a font f. Our fitting process is an optimization procedure in
which we optimize for the parameters ® such that the outlines of
G,y and T, (®) become as similar as possible, in a consistent man-
ner. The template 7; provides structure and geometric model for
the glyph as well as an example for every possible topology of the
glyph with approximate stroke shape: E. = {©{", 05" :i = 1..K.}
(see Figure 3 for examples and all details in supplemental mate-
rial). A demonstration of our process’ consistency can be seen in
Figure 4. In the following, we describe what are the considerations
we account for when searching for a good fit (see Section 5.1), de-
scribe the iterative optimization procedure (see Section 5.2), and
provide an initialization procedure for the template deformation
process (see Section 5.3). Note that this fitting procedure is fur-
ther refined through iteratively leveraging and evolving a manifold
of the learned fonts, as described in Section 7.
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5.1. Fitting Quality

In the following, we describe the objective function that evaluates
the quality of a template fit. Our function favors shape correspon-
dence between the input and the deformed template, alignment of
feature points (sharp turns and corners), and avoids undesired local
minima through regularization.

5.1.1. Correspondence

First, we penalize dissimilarities between the deformed template
and the glyph:

Ecorr(Gcﬁf, @) —
Y 6w (D(x,0:(0)+ Y

x€P(Ger) YEP(0.(0))

hﬁcon (D(ya Gc,f)) ’

1

where O.(®) is the outline generated by the current configuration
(®) of the deformable template, P(T") is a dense sampling of a curve
I', and D measures point-to-curve distance. In practice, we sample
100 points per outline segment and use a KD-tree for nearest neigh-

bor queries. We use a Gaussian kernel hg(x) = 1 — (&) of size
Gcorr to reduce the influence of outliers and to better control the op-
timization behavior. The effects of this term is depicted in Figure 6
(bottom left).

5.1.2. Normal Consistency Regularization

Measuring the overall bi-directional distance between the two
curves, in Euclidean space, can attract incompatible regions, some-
times as far as from the opposite side of the outline. Thus, we rem-
edy this issue by favoring similar normal directions of the deformed
template and the target outline it is projected onto. In particular,
we augment our point representation with normal directions, lift-
ing the 2D point p = [px, py] on the target outline to 4D space:
[Px; Py; wnnx(p), wnny(p)], where wy is a constant weight, and n(p)
is the normal at point p. Specifically, for our deforming template
outline, we lift each point ¢ to become [gx, gy, wnnx(q), wany(q)].
and do the same for the target glyph G, y. With this augmented
representation, we estimate the point-to-curve correspondence, and
evaluate Ecorr according to the 2D Euclidean distance of each point
on P(0¢(0®)) from the one most relevant to it on the glyph in this
combined position-and-normal space. Matching and regularizing
normal directions is especially useful for avoiding local minima
at outline corners, as it helps two sides of the outline to roughly
preserve their original orientations while aligning to the input, in-
stead of collapsing into one of the sides. This notion also further
facilitates consistency, as it encourages the outlines to be similar to
the skeletons, which are more similar to one another over different
fonts.

5.1.3. Feature points alignment

Feature points, i.e. points of a large change in outline directions,
are important for glyph appearance and provide a useful cue in the
fitting process. Thus, aligning these points is essential in construct-
ing a consistent database. We denote as F (G r) the set of points
which are the centers of such large direction changes. That is, if the
curve changes its direction by an angle greater than g over a short
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Figure 4: Consistency evaluation. Our template fitting process is focused on consistent semantic annotations of the input glyphs. The geo-
metric and topological variety of three letters are depicted in each row, along with the optimization’s successful capturing of the correct and

consistent stroke arrangement for them.

distance, we mark the middle of this region as a feature point. Ex-
amining regions instead of point-wise changes in direction induces
detecting both sharp and round corners.

To define these points on the template, we observe that sharp
turns are more likely to occur at the boundary of two different
strokes, thus we only consider junctions of outline segments as
template feature points and denote them as J(O.(®)). This ensures
that a specific outline segment does not undergo unnecessary turns
in some glyphs compared to others, as demonstrated in Figure 6
(bottom right). To avoid foldovers in cases when feature points in
G are close to one another in Euclidean space, but far-away along
the curve, we measure the distances intrinsically rather than extrin-
sically for this term. Specifically, we define an intrinsic distance
between a point x € J(O,(®)) and feature point in F(G ;) as:

Deurve (x,F(Ge.f)) ntlc? )Arclength (Proj(x,Ges),y), (2)
of

B YEF
where x is first projected to the glyph outline to be able to measure
arclength:

Proj(x, G, ;) = in D(x,y). 3
roj(x, Ge,r) arg min (x,y) (©)

Since we do not expect J(O.(®)) to be in perfect correspon-
dence with the set F(G. ) we only match a subset of junction
points that have a feature point nearby (i.e., Dcurve < Tg, Tt =
0.15 - average segment length). Denoting this set as Fr, (O¢(®)) C
J(0c(®)), we can quantify feature alignment as:

Ex(Ge,r,0) = Z Decurve (¥, Fz (Ge.f)), “)
XEF(0.(0))

5.2. Optimization

Starting with an initial template deformation 0" we use gradi-
ent descent optimization to find the optimal deformation param-
eters. We found that directly optimizing the entire objective E =
Ecorr + Ey is prone to local minima issues and slow convergence.
Thus, we opted for a procedure that alternates between optimizing
Ecorr and Eg. We rely on correspondence matching in early gradi-
ent descent iterations and slowly increase the influence of feature-
point compatibility term. This is controlled via rg parameter, the
ratio of distance the feature points are allowed to be moved rela-
tive to their projected targets, which increases with every iteration.
Similarly, we emphasize the weight of the normal matching with

every iteration by modifying parameter w, . In particular, the op-
timization parameters start with Georr = 20, w,, = 25,75 = 0.3 and
end with Georr = 5, Wy = 0.01, g = 1. We optimize for Njer = 70
iterations and update the weights at every iteration by interpolating
them linearly with respect to iteration count. Figure 6 demonstrates
an initial guess and optimized fitting result with some terms of the
objective function omitted.

5.3. Initializing Template Deformation

Starting with initial example strokes in E- we now obtain initial
guess for our fitting procedure, @°. See Figure 3 for an example of
a stroke structure in E.. These approximate examples lack outline
geometry and often are too dissimilar from input glyphs to serve as
our initial guess for the outline optimization. Instead, we start by
extracting a skeleton from an input glyph and fitting every example
stroke structure to it. These stroke structures exhibit far less vari-
ance than the full outline, which naturally simplifies this step. Once
we fit the stroke, it is simple to estimate a uniform width initial out-
lines around the strokes. We then pick the parameters that yield the
beost energy to define the initial state for the outline optimization,
0.

5.3.1. Stroke Initialization, @2

To fit the stroke parameters to an input glyph G, r we first estimate
its skeleton S, r. We use a method based on shape diameter func-
tion [SSCOO08] to extract the major stroke skeletons defined by the
outline. We then connect these regions by tracing a shortest path
between them via medial axis points, forming a connected graph
of skeleton paths, where most vertices have degree 2. This proce-
dure provides a single connected curve network for the skeleton,
which unlike the medial axis, captures only the main strokes, re-
ducing sensitivity to small outline perturbations. See Figure 5a for
an example output of this procedure.

Our next step is to fit the template strokes to the extracted skele-
ton. We found that directly deforming the template skeletons is
prone to failure, so instead we segment and parametrize the ex-
tracted skeleton consistently with the template. Since strokes are
continuous and smooth curves, and their junctions typically occur
at sharp skeleton features, or at intersections with other strokes (or
skeleton curves). We formulate the segmentation of the stroke ac-
cording to the template through a CRF-based objective, where the
nodes are skeleton points, the unary term is defined by registration
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@l (b) ©!. (d)

Figure 5: We illustrate our skeleton fitting pipeline. Given an input
glyph, we first extract its skeleton (a). We then register this skele-
ton to a template (b) to obtain an initial segmentation (c). We then
use CRF-based segmentation to obtain the final consistent segmen-
tation of the skeleton with respect to the template (d).

of the skeleton to the template, and the pairwise term favors cuts at
sharp features and intersections. In particular, we optimize:

E=Y W, U(x,L(x)+ Y Wy, - B(x,y), ®)
x€V x,yEV.L(x)#L(y)

where the unary U (x,/) term is a penalty for assigning a point x a
label / and the binary term B(x,y) is a penalty for a pair of adjacent
skeleton points to have different labels. These are formulated as:

Ux,l) = ho, (Di(x)) ©
Blxy) = {l—h@, @A), @y €EAES
0, otherwise

To define the unary term, we use D;(x), a distance between the
template and the extracted skeleton after it is registered onto the
template skeleton using Coherent Point Drift method [MSCP*07],
where the distance is measured to the /"™ skeleton segment. To de-
fine the binary term we use the angle between the normals of adja-
cent points A(x,y), where E denotes adjacency and J denotes junc-
tions - points where more than 2 skeleton paths meet. Both terms
are smoothed with the aforementioned Gaussian kernel Agjoma, and
we set 6y = 0.25,64 = /3, Wy = 1,W, = 4.

After the skeleton is consistently segmented with the template,
we parametrize every segment according to the template 7:(8), i.e.
we fit a Bezier curve to match each stroke s, r. Once the strokes of
the glyph are fitted, we turn to initialize the outlines next.

5.3.2. Outline Initialization, ©)

We represent the outline in the coordinate system of the extracted
skeleton segment (see Figure 2). To create an initial outline esti-
mate, we first generate a profile curve at a constant distance that
fits closely to the input outline for every stroke (i.e., such that the
average distance between the curve and the closest point on the out-
line is minimized) (see Figure 6). The resulting outline is typically
not continuous since the curve parameters are estimated indepen-
dently for each stroke. We enforce c? continuity at junctions of
outline segments by snapping the corresponding points to their av-
erage position. Sometimes this averaged control point can flip sides
of the skeleton, which leads to inferior optimization performances.
We detect these cases and project the average control point back to
the correct side of the corresponding skeleton segment.

6. Learning
Given a collection of fonts F = {Fy, F>,...,Fy} we use our glyph
fitting techniques to represent all letter glyphs consistently. We con-
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Oonly Eqorr // With Normal Reg /| With Feature
Y

Alignment

Figure 6: Outline optimization. Given an input glyph and its cal-
culated skeleton (top left), we use its segmented version (see Sec-
tion 5.3.1) to generate uniform width outlines around it (top mid-
dle). Our initial guess OC(G)O) is the latter, after incorporating the
template’s connectivity constraints (top right). Our fitting proce-
dure takes three considerations into account. Optimizing using only
Ecorr (see Section 5.1.1) can attract incompatible regions, as can be
seen in the red box (bottom left). Considering normal directions
(see Section 5.1.2) mitigates this issue (bottom middle). Finally,
incorporating feature point alignment (see Section 5.1.3) is crucial
for a semantically meaningful fitting, inducing consistent represen-
tation across different fonts. This is highlighted in the red circles
(bottom right).

catenate per-glyph parameters to create a feature vector represent-
ing a font: F; = [@«, @« ,...0,]. In this representation each font
becomes a point in high-dimensional feature space: F; € RPfont,
where Dyone = 3998 (the number of parameters required to repre-
sent all glyph parts in a font, after enforcement of continuity and
template part-sharing constraints). We expect this representation to
be redundant due to stylistic and structural similarities in fonts:
glyphs in the same font will share stylistic elements, and glyphs
that correspond to the same letter will have similar stroke structure.
We propose to learn these relationships by projecting all fonts to
a lower-dimensional embedding. The main motivation behind this
is to create a space where important correlations between different
attributes are captured implicitly, and thus, any sample point X in
this representation will implicitly adhere to common design prin-
ciples and font structures in the training data F. For this we need
an embedding function M that projects a font to a low-dimensional
feature space, i.e. M(F) = X, where X € RP, and an inverse func-
tion C that can reconstruct a font from the embedding C(X) = F.
To enforce learning correlations in the data we set the latent dimen-
sionality D = 0Dsone = 39 with oo = 0.01, which was determined
experimentally to work best for our setup.

In addition to capturing important correlations, we want the em-
bedding function to handle missing entries in the input feature vec-
tors F; because most fonts do not have glyphs with all possible
topologies (i.e., decorative elements and stroke structures). In addi-
tion, in many applications in order to help the typeface designer we
need to be able to reason about the whole font before it has been
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completed. To satisfy this requirement, we pick a linear embed-
ding, with a slight abuse of notation: M € RPon XD and compute
it from data points F via expectation-maximization principal com-
ponent analysis (EM-PCA) method [Row98]. This generalization
of PCA easily scales to large datasets and can handle missing data
at train and test time. This method alternates between the E-step
that optimizes for X = [Xj,...,Xy], embedding coordinates of all
fonts F, and the M-step that optimizes for linear maps M,C. In
this case C spans the space of first D principal components, and we
can compute M = (CTC)~'CT. To find an optimal linear map, the
optimization starts with a random matrix M. In the E-step, we set
X = MF, however, in case with missing data, each X; and F; are
optimized for to minimize the norm: ||CX; — F;||, where missing
entries of F; and entire vector X; are free variables, this problem is
then solved to find a least squares solution. In the M-step, we com-
pute C"¥ = FAXT(xXT)~!. This process then iterates between
the E-step and M-step K times to estimate the matrix M and all
projections X (in all our experiments K = 100).

While some existing non-linear manifold learning algorithms
also have variants that address missing data issues (e.g., GP-
LVM [NFCO07] and autoencoders [SKG*05]), we perform an em-
pirical comparison and show that a simpler linear model works bet-
ter with our dataset (see Section 8.1 for discussion).

7. Iterative Manifold Evolution

The initial manifold is learned by starting the fitting optimization
using skeleton-based initialization (see Section 5.3.2), measuring
the fitting error (see Section 8.1), and retaining only those fits with
err(®) < T to estimate a manifold. Given this manifold, we project
the font to the manifold and reconstruct it: M~ ' (M(F;)). We then
use the resulting parameters to initialize the optimization procedure
for every glyph with err(®) > T (i.e. completing the style of glyphs
with high error). For example, in Figure 7, we show an example of a
failed fit from a skeleton-based initial guess (template fitting com-
monly fails because the skeleton-based initialization for template
parameters is too far from global minima), and the improved guess
after manifold re-projection.

We iteratively estimate the manifold and re-project remaining
high-error glyphs in each iteration. As can be seen in Figure 8§,
the overall fitting error decreases, and fraction of successful fits
increases. All results presented in this paper correspond to the fifth
iteration of this procedure.

8. Evaluation
8.1. Fitting Evaluation

We test our method on 570 fonts obtained from online
database [Fon17]. Although more fonts are available, we restricted
ourselves to normal monospace, sans serif, serif, and slab serif
fonts, which still provides a data-set that is an order of magnitude
larger and more diverse than what has been used in previous work.
We fit our stroke-based representation to every glyph in this font
collection, providing a consistent representation across all fonts.
Figure 4 shows some example fits that result from the iterative fit-
ting procedure.

To quantitatively evaluate the expressiveness of our deformable
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Figure 7: Sample fit improvements using iterative manifold evolu-
tion. Starting with a manifold-generated initial guess reduces the
final fitting significantly in many cases.
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Figure 8: Iterative manifold evolution gradually increases the per-
centage of fits accepted for learning and reduces the mean fitting
error.

template and accuracy of our fitting procedure we compare the out-
line generated by our template and the outline of the input glyph.
To compare two curves we densely sample each curve so that the
distance between consecutive points is 0.3 pixels (each glyph is
scaled and represented to resolution of 200 x 200 pixels), and then
for each sample we compute the distance to the closest point on
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Figure 9: Fitting results by glyph. For all glyphs except for ‘g’, over
70-80% can be fitted well enough to be used for learning. ‘g’ is the
hardest case to fit due to high variation in both topology and shape.

the other curve. We then average these distances, in a root-mean-
square manner. We report these results in Figure 9, where the x-axis
is an average fitting error threshold, and the y-axis is the fraction of
glyphs that their average error is below the threshold. We observe
that errors vary depending on glyphs, for example, ‘g’ poses the
most challenges due to significance variance in its topology (e.g.,
the lower tail can be attached at various places on the upper loop
and might have very diverse shapes). Figure 10 provides some rep-
resentative visualizations of glyph appearance under different fit-
ting errors.

To learn a manifold of fonts, we pick a conservative threshold
of T = 1.0 pixels average error to ensure that we learn only mean-
ingful correlations. At test time, however, we can still project any
glyph to the manifold. Of course, the projection and reconstruction
quality will suffer as the quality of fits degrades.

79 a

2 N2 | \g//

Error: 0.52 Error: 0.99 Error: 1.96 Error: 3.49 Error: 8.54

Figure 10: Glyph Fits at Different Degrees of Fitting Error. The
threshold of 7' = 1.0 is picked as acceptable for learning purposes.
During test time, worse fits might also be successful projected onto
the manifold.

In the supplementary material, we provide an extended version
of all our experiments over many of the fonts: We show the fitting
result visualizations for a randomly selected sample of fonts, and
the three application results ran over a larger set of fonts.

8.2. Comparison to Prior Work

We evaluate both the representation and the learning component of
the method in comparison to previous work.

Representation Comparison We compare our method to the
state-of-the-art method of Campbell and Kautz [CK14] and a
raster-based approach. The goal of all three methods is to produce
a consistent font representation, thus we evaluate each of the three
representations using interpolation, which allows one to visualize
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(a) Interpolations between fonts of different topology (TimesNewRomanPSMT
and TrebuchetMS fonts). Interpolation between serifed and non-serifed fonts
yields interpolations only between corresponding parts. Decorative elements,
such as serifs, that are present only in one font are purposely not interpolated
in our method, and the Bezier-based representation avoids the blurry artifacts
seen in the raster-based approach.

hhhhhhhhhh

Part-based Representation

hhhhhhhhhh

Campbell [CK14]

hhhhhhhhhh

Raster-based

(b) Interpolations between fonts of similar topology (TimesNewRomanPSMT
and Georgia fonts). Quality of interpolation between same topology fonts is the
same. Since our method enforces corner constraints during fitting, corners are
better preserved during the interpolation process (seen on the sharp corners at
the edges of the serifs).

Figure 11: Comparison of different representations.

qualitative changes in consistency as one transitions from one style
to the other. Interpolation is the most direct way to measure consis-
tency, while evaluation on other tasks, such as style prediction, will
be confounded by properties of the learning algorithm.

For both our approach and that of Campbell and Kautz [CK14],
we employ the same interpolation scheme in a PCA space learned
from the same set of 12 fonts. We investigated whether results for
the latter approach differ when performed without PCA reduction,
and found that the results are similar (see Supplementary Mate-
rial). For the raster-based approach, we learn a variational auto-
encoder [KW13] manifold on 64 X 64 rasterizations of glyphs with
two fully connected layers of sizes 256 and 10, where the last
layer performs sampling (as in [KW13]). Typically, neural net-
works require more training data, so to provide a fair comparison,
we augment the training dataset with rasterizations from our full
font dataset, since the datasets contained different fonts (to a total
of 582 fonts). While results of the raster-based method will differ
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with a different choice of training data or architecture, they still will
exhibit blurry artifacts, as demonstrated in Figures 11a, 11b.

Unlike Campbell and Kautz [CK14], our model does not require
that outline vertices on two glyphs of different styles but the same
character have a bijective correspondence. This correspondence is
ill-defined when comparing distinct topologies, as demonstrated in
Figure 11a. This allows our method to explicitly interpolate be-
tween corresponding parts, which may be preferred to gradually
degenerating serifs present only in one of the interpolants. In ad-
dition, explicit enforcement of corners from the fitting procedure
often yields better preservation of sharp features in the resulting in-
termediate representations, as can be seen by the sharp corners of
the ends of the serifs. On the other hand, the explicit correspon-
dence aids in producing better quality results where this correspon-
dence is indeed meaningful: for example, the intermediate interpo-
lations of Campbell and Kautz [CK14] between two glyphs of the
same topology better respect parallel constraints of the stems of ‘h’
(in Figure 11a) and generate slightly better width/curvature varia-
tion (in Figure 11b), compared to our method. Finally, both vector-
based approaches outperform the raster-based method, which in-
herently produces blurry intermediate interpolations.

Generative Model Comparison To evaluate our generative
model, we empirically compare it to a nonlinear variational autoen-
coder (VAE) [KW13] learned directly on the font representation
from the fitting step. We implemented two variants: a vanilla ver-
sion that learns on examples with consistent topology (no missing
parts) and a denoising nonlinear VAE [VLBMOS] that can handle
different topologies and missing parts (please see supplementary
material for training and architecture details). The vanilla nonlin-
ear VAE produced smooth interpolations on examples in its domain
(see Figure 12b). However, the denoising nonlinear VAE failed
to produce meaningful interpolations between examples, introduc-
ing unnatural part deformations. This is likely due to the high-
dimensionality of our model and the lack of training data samples
(even after extensive data augmentation), which hinders the net-
work from capturing the correct posterior distribution and learn-
ing a more complex model without overfitting. This phenomenon
is often referred to as the curse of dimensionality [Bell5]. Ad-
ditionally, learning on a cross-topology dataset requires imputing
missing values (which are a form of noise), and, as has been high-
lighted [EHN*98, PPS03], linear methods may be preferable in low
signal-to-noise ratio scenarios over non-linear models. Finally, the
missing values in our case are “missing not at random” (MNAR),
which is known to be challenging for existing methods [TLZJ17].
As aresult, we found that for the considered scenario of MNAR and
signal-to-noise ratio, a linear model is preferred. We thus use the a
simpler linear model (EM-PCA) to demonstrate proposed applica-
tions, and leave analysis and development of more complex gener-
ative models (such as generalized nonlinear VAE [WHWW 14] that
additionally considers data relationships to mitigate dimensionality
issue) for future work.

A parametrized font database and a low dimensional manifold
enable a variety of exploratory applications that aim to browse and
predict consistent glyph styles. Since it is challenging to quantita-
tively evaluate style, we follow the approach of prior work in show-

hhhhhhhhhh

EM-PCA [Row98]

hhhhhhhhhh

Denoising Nonlinear Variational Autoencoder (VAE)

(a) Interpolations between fonts of different topology (TimesNewRo-
manPSMT and TrebuchetMS fonts).

hhhhhhhhhh

EM-PCA [Row98]

hhhhhhhhhh

Denoising Nonlinear Variational Autoencoder (VAE)

hhhhhhhhhh

Vanilla Nonlinear Variational Autoencoder (VAE)

(b) Interpolations between fonts of similar topology (TimesNewRo-
manPSMT and Georgia fonts).

Figure 12: Comparison of different generative models. Our method
is able to produce meaningful interpolations between glyphs of
same topology as well as glyphs of different topologies. The VAE
method is only able to produce meaningful interpolations between
glyphs of same topology (known as vanilla VAE). When applied to
multi-topology data (denoising VAE), it introduces unnatural part
variations.

casing a variety of qualitative experiments that demonstrate various
applications of our method.

9. Applications

Our font representation can be used in a variety of applications for
modeling, organizing, and analyzing fonts. In this work, we focus
on three applications that demonstrate the benefit of our method.
First, our part-aware model enables the user to use topological con-
straints when retrieving the most similar font in a database (e.g.,
find a font that is most similar to this sans-serif font, but with ser-
ifs). Second, we demonstrate font completion results enabled by
the use of an EM-PCA model that can handle missing data and the
effective factorization of fonts into strokes and outlines in our rep-
resentation.

To ensure that our results are representative of real-world use
cases, we split the database into training (370) and testing (200)
sets, where we learn our manifold on the training data, and use the
test data as query either for retrieval or completion. For visualiza-
tion, each glyph outline is drawn in its scaled unit box representa-
tion used for training (scale parameters may not be known during
testing time).

(© 2018 The Author(s)
Computer Graphics Forum (©) 2018 The Eurographics Association and John Wiley & Sons Ltd.



E. Balashova et al. / Learning A Stroke-Based Representation for Fonts

hambuUr geF ON

Query Font: Ubuntu-Light

hambUr g9 eIF O

Nearest Neighbor: Ubuntu

hamblUlffg8@@F o

Farthest Font: RussoOne-Regular

habhblUilrrgei+fao

Nearest Serifed Font: Arvo

hdmbUlgde&Tf o

Nearest Font With Topology 1 of a: Inder-Regular

hambUurlr &erf o

Query Font: OpenSans-Italic

hamb U

Nearest Neighbor: OpenSans-SemiboldItalic

hambufls@{Ffo

Farthest Font: RussoOne-Regular

hamlbUll 8 @ f O

Nearest Serifed Font: LiberationSerif

hamburgdgde

Nearest Font With Topology 2 of a: Roboto-Lightltalic

B 3 S S 3B 3 3

Figure 13: Font Retrieval. We project the query (testing) font into
the manifold and search for existing fonts in the manifold. It can
be seen that the nearest font is stylistically very similar, while the
farthest font is quite distinct. We also demonstrate topology based
queries, which take advantage of our part-based glyph representa-
tion. The style of the nearest fonts under these topology constraints
also nicely matches the query font style.

Topology-aware Retrieval By consistently parametrizing a large
variety of fonts and embedding them in a low dimensional manifold
we implicitly organize font database and learn their similarities in
context of the entire data-set. As was demonstrated before [CK14],
this can facilitate font retrieval. In addition, our topology-aware
representation enables us to constraint the retrieved results to have
certain features (e.g., serifs, or particular stroke structure). In Fig-
ure 13 we present two queries of the database. For each query font
(top row), we retrieve the most similar (second row) and dissimilar
(third row) ones. We can also impose additional constraints on the
retrieved font, such as it must have serifs (fourth row) or a different
topology for some glyphs (fifth row).

Font Completion Since our learning method allows projecting
a partial font vector to the manifold, we can reconstruct the full
font from this a partial projection and thus complete the remaining
glyphs. In this experiment, we hold out a subset of glyphs and use
the manifold to predict it. In Figure 14 we visualize some sample
completion predictions. Given a font consisting only of the glyphs
in the word ‘hamburgefon’, we use the first seven letters to predict
the style of the last three. It can be seen that our system correctly
predicts the slant and part widths, italics, and decorative elements.
Specifically, notice the consistency in slant in Figure 14(2,4,7.,9).
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Figure 14: Completion of fonts in different styles. The input glyphs
are colored blue and the predicted glyphs are colored yellow.

The system is able to infer the correct variation of extremely thin
styles such as (3) and (8), and thicker styles such as (2) and (5).
Finally, notice that our system correctly predicted the existence of
decorative elements in glyphs ‘f” and ‘n’ examples (11-14), based
on their presence in the the input glyphs.

An interesting completion question to ask is to see how many
glyphs are needed to be designed in order to predict the rest. For
example, one might want to design a subset of the most repre-
sentative glyphs (such as the word ‘handglove’), and complete the
rest. In Figure 15, we complete the fonts UbuntuMono-Italic and
AveriaSansLibre-BoldlItalic, based on different numbers of given
letters. As more and more letters are given, the prediction qual-
ity of some glyphs that generally exhibit a lot of variation improves
(such as ‘f” and ‘m’), while the prediction quality of simpler glyphs
such as ‘x’, ‘y’ and ‘z’ is correctly inferred even for only a small
subset of provided glyphs. While the predicted glyphs are generally
below the quality of manually designed fonts, the predictions sug-
gest that the model does capture stylistic co-occurences necessary
for generating a stylistically compatible set of glyphs.
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Figure 15: Completion robustness experiment. The number of let-
ters necessary for completion is examined. The input glyphs are
colored blue and the predicted glyphs are colored yellow.
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10. Conclusion

This paper has proposed a new method for extracting a consistent
parametrization for a large collection of fonts that can be used to
assist font design applications. In comparison to previous work, the
key novelty is the automatically extracted and part-aware font rep-
resentation, that describes a glyph outline with respect to a seg-
mented, center-line skeleton, which is suitable for learning a font
manifold. We provide template fitting algorithms to extract this
representation automatically and investigate manifold learning al-
gorithms to factor co-occurences within and across fonts in this
representation. We demonstrate that the low-dimensional manifold
learned with the proposed methods is useful for a new font design
application, font completion, as well as traditional applications like
font retrieval and font interpolation.

This work is one step towards font design by non-experts. It pro-
vides the underlying framework for synthesizing new fonts within
a manifold learned from data. However, it could be extended in
many ways. First, it could be integrated with interactive tools that
provide real-time feedback, user-provided constraints and postpro-
cessing techniques that generate print-quality glyphs from coarse
predictions of the learning step. Second, it could be extended to
handle wider varieties of fonts and characters (for example, Cyril-
lic scripts). Finally, it could be adapted to handle data from other
fields where 2D boundary curves must be co-parametrized and an-
alyzed (e.g., medicine, agriculture, etc.).
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