
Multi-Content GAN for Few-Shot Font Style Transfer

Samaneh Azadi1∗, Matthew Fisher2, Vladimir Kim2, Zhaowen Wang2, Eli Shechtman2, Trevor Darrell1
1UC Berkeley, 2Adobe Research

{sazadi,trevor}@eecs.berkeley.edu {matfishe,vokim,zhawang,elishe}@adobe.com

Abstract

In this work, we focus on the challenge of taking partial
observations of highly-stylized text and generalizing the ob-
servations to generate unobserved glyphs in the ornamented
typeface. To generate a set of multi-content images following
a consistent style from very few examples, we propose an end-
to-end stacked conditional GAN model considering content
along channels and style along network layers. Our pro-
posed network transfers the style of given glyphs to the con-
tents of unseen ones, capturing highly stylized fonts found in
the real-world such as those on movie posters or infograph-
ics. We seek to transfer both the typographic stylization (ex.
serifs and ears) as well as the textual stylization (ex. color
gradients and effects.) We base our experiments on our col-
lected data set including 10,000 fonts with different styles
and demonstrate effective generalization from a very small
number of observed glyphs.

1. Introduction

Text is a prominent visual element of 2D design. Artists
invest significant time into designing glyphs that are visually
compatible with other elements in their shape and texture.
This process is labor intensive and artists often design only
the subset of glyphs that are necessary for a title or an an-
notation, which makes it difficult to alter the text after the
design is created, or to transfer an observed instance of a
font to your own project. In this work, we propose a neu-
ral network architecture that automatically synthesizes the
missing glyphs from a few image examples.

Early research on glyph synthesis focused on geomet-
ric modeling of outlines [29, 2, 27], which is limited to
particular glyph topology (e.g., cannot be applied to decora-
tive or hand-written glyphs) and cannot be used with image
input. With the rise of deep neural networks, researchers
have looked at modeling glyphs from images [1, 33, 22, 3].
We improve this approach by leveraging recent advances in
conditional generative adversarial networks (cGANS) [11],

∗Work done during an internship at Adobe Research

which have been successful in many generative applications,
but produce significant artifacts when directly used to gen-
erate fonts (Figure 6, 2nd row). Instead of training a single
network for all possible typeface ornamentations, we show
how to use our multi-content GAN architecture to retrain
a customized network for each observed character set with
only a handful of observed glyphs.

Our network operates in two stages, first modeling the
overall glyph shape and then synthesizing the final appear-
ance with color and texture, enabling transfer of fine dec-
orative elements. Some recent texture transfer techniques
directly leverage glyph structure as guiding channels to im-
prove the placement of decorative elements [34]. While this
approach provides good results on clean glyphs it tends to
fail on automatically-generated glyphs, as the artifacts of the
synthesis procedure make it harder to obtain proper guid-
ance from the glyph structure. Instead, we propose to train
an ornamentation network jointly with the glyph generation
network, enabling our ornament synthesis approach to learn
how to decorate automatically generated glyphs with color
and texture and also fix issues that arise during glyph genera-
tion. We demonstrate that users strongly preferred the output
of our glyph ornamentation network in the end-to-end glyph
synthesis pipeline.

Our Contributions. In this paper, we propose the first
end-to-end solution to synthesizing ornamented glyphs from
images of a few example glyphs in the same style. To en-
able this, we develop a novel stacked cGAN architecture
to predict the coarse glyph shapes, and a novel ornamenta-
tion network to predict color and texture of the final glyphs.
These networks are trained jointly and specialized for each
typeface using a very small number of observations, and we
demonstrate the benefit of each component in our architec-
ture (Figure 6). We use a perceptual evaluation to demon-
strate the benefit of our jointly-trained network over effect
transfer approaches augmented with a baseline glyph-outline
inference network (Section 5.3).

Our Multi-Content GAN (MC-GAN) code and dataset
are available at https://github.com/azadis/
MC-GAN.

1

https://github.com/azadis/MC-GAN
https://github.com/azadis/MC-GAN

Bx26x64x64 Bx26x64x64

LSGANLSGAN
local

LSGANLSGAN
global

locallocal

+

Discriminator 1

 (D1)

Bx26x64x64

 × L Loss × L Loss1

G
ro

u
n

d
 T

ru
th

F
a

k
e

 P
a

ir
R

e
a

l P
a

ir

Generator 1

 (G1)

1

1

Figure 1: Schematic of our Glyph Network to be trained on
our 10K font data set.

2. Related Work

Font glyph synthesis from few examples has been a long-
studied problem. Earlier methods [29, 2, 27] mostly relied on
explicit shape modeling to construct the transformation be-
tween existing and novel glyphs. Glyph part models for radi-
cals [36] and strokes [19] were designed specifically for Chi-
nese characters. Based on a shape representation, machine
learning techniques, including statistical models [27] and bi-
linear factorization [30], have been used to infer and transfer
stroke styles and composition rules. More recently, with the
rise of deep learning, convolutional neural networks have
also been applied to novel glyph synthesis. Promising results
were obtained with conventional model structures [1, 33] as
well as generative adversarial networks (GANs) [22, 3]. All
these networks only predict glyph shape, a goal also targeted
by our glyph network. We adopt a distinct multi-content rep-
resentation in our glyph network which proves to effectively
capture the common style among multiple glyphs.

Transferring artistic styles of color and texture to new
glyphs is a challenging problem distinct from inferring the
overall glyph shape. The problem was investigated in [34]
with the assumption that the unstylized glyph shape is given.
A patch-based texture synthesis algorithm is employed to
map sub-effect patterns to correlated positions on text skele-
ton for effect generation. Style transfer has been more ac-
tively studied on general images with the aid of convolutional
neural networks (CNNs). CNN features are successfully
used to represent image styles, and serve as the basis for
optimization [7, 16, 20]. Recently, networks trained with
feed-forward structure and adversarial loss have achieved
much improved efficiency [17, 12] and generalization abil-
ity [10, 18]. Our proposed ornamentation network is the
first to employ deep networks for text effect transfer. Our
ornamentation network learns transferring texture similar to
the deep image prior approach [32] where structure of a ran-
domly initialized generator (rather than a large training set)
captures the essential prior knowledge in this transformation.

Several problems in graphics and vision require synthesiz-
ing data consistent with partial observations. These methods
typically focus on learning domain-specific priors to accom-
plish this task. For example, given a single-view image,
encoder-decoder architectures have been proposed to halluci-
nate novel views of faces [15, 31, 4], bodies [35], and other
rigid objects [37, 25]. CNNs were also used to complete
missing regions in images [26] and new stereo and lightfield
views [6, 13] given a set of input images. Similarly, 3D mod-
els can be completed from a partial 3D shape [5, 28]. Unlike
one object under different viewpoints, different glyphs in the
same font share the same style, but not structure. Various ge-
ometry modeling techniques have been proposed for learning
structural priors from example 3D shapes [9, 14] and trans-
ferring style from a few examples to an input model [21].
Font data provides a cleaner factorization of style and content
that we leverage in our approach.

3. Multi-Content GAN Architecture
We propose an end-to-end network to take a subset of

stylized images of specific categories (such as font glyphs)
and predict the whole set of stylistically similar images. We
have specifically designed our model for the font genera-
tion problem to predict the set of letters from A to Z for
in-the-wild fonts with a few observed letters. We divide this
problem into two parts: glyph generation and texture transfer.
Our first network, called GlyphNet, predicts glyph masks
while our second network, called OrnaNet, fine-tunes color
and ornamentation of the generated glyphs from the first
network. Each sub-network follows the conditional genera-
tive adversarial network (cGAN) architecture [11] modified
for its specific purpose of stylizing glyphs or ornamentation
prediction. GlyphNet is trained on our 10K font dataset
and generalizes to glyph prediction for any arbitrary font
given a few of its letters in gray-scale, and thus learns the
general shape of the “font manifold”. We fine-tune the color
and ornamentation of these coarse glyph shapes for each
arbitrary font through OrnaNet generating clean and well-
stylized letters, which is not possible in a one-stage network.
By pre-training GlyphNet and fine-tuning the full model, we
break the problem into easier sub-problems with a dedicated
loss on the intermediate output (of the GlyphNet) and a grad-
ual training scheme that regularizes better the problem. We
assume the label for each observed letter is known for the
model and thus, skip the need for categorizing each letter
into the 26 letters. In the following sections, we will first
summarize the cGAN model, and then discuss our proposed
GlyphNet and OrnaNet architectures and stack them together
in an end-to-end final design which we refer to as MC-GAN.

3.1. Conditional Generative Adversarial Networks

Starting from a random noise vector z, generative adver-
sarial networks (GANs) [8] train a model to generate images

6x26x64x64

A
B
C
D
E
F
G
.
.
.

Z

E

O

R

T

W

Grou
nd

 Trut
h

P
re

di
ct

io
n

of
 G

ly
ph

N
et

 G

’1
(a) Glyph Network (b) Ornamentation Network

Generator 1
 (G1)

Z

A

~
~
~
~
~
~
~

~

~

Z

Discriminator 2
 (D2)

LSGAN
+
LSGAN

6x26x64x64

1x26x64x64

26x3x64x64 26x3x64x64

Fake P
air

R
eal P

air
ZZ ṓṓ

Z
ṓᵣ × MSE Loss

Extract

 Ƭ

4

ᵣ × L Loss3

ᵣ × L Loss1

ᵣ × MSE Loss2

˴

1

1

local

global
O

R

T

W

E

R

T

W

E

O

T

W

E

O

R

W

E

O

R

T

Generator 2
 (G2)

˴

˵
2

2

1

Figure 2: Schematic of our end-to-end MC-GAN model including (a) GlyphNet and (b) OrnaNet. Inputs and Outputs are
illustrated in white, network layers in green, and loss functions are shown in blue. We use a leave-one-out approach among
all observed letters of a word like TOWER (in orange) to construct a batch of input image stacks to be fed into G1: For each
input stack in the batch, we extract the left out generated glyph. In addition, the remaining 21 glyphs will be generated by
feeding in all observed letters together. After a reshape and gray-scale channel repetition, T , these extracted generated glyphs,
Ã, B̃, · · · , Z̃ will be fed into OrnaNet.

y following a specific distribution by adversarially training
a generator versus a discriminator (z → y). While the dis-
criminator tries to distinguish between real and fake images,
the generator opposes the discriminator by trying to generate
realistic-looking images. In the conditional GAN (cGAN)
scenario [11, 24], this mapping is modified by feeding an
observed image x alongside the random noise vector to the
generator ({x, z} → y), and thus, the adversary between
generator and discriminator is formulated as:

LcGAN(G,D) = Ex,y∼pdata(x,y)[logD(x, y)]

+Ex∼pdata(x),z∼pz(z)[1− logD(x,G(x, z))], (1)

where G and D minimize and maximize this loss function,
respectively.

Given the ground truth output of the generator, it is ben-
eficial to force the model to generate images close to their
targets through an L1 loss besides fooling the discriminator.
The generator’s objective can be summarized as:

G∗ = argmin
G

max
D
LcGAN(G,D) + λLL1(G), (2)

where LL1
(G) = Ex,y∼pdata(x,y),z∼pz(z)[‖y −G(x, z)‖1].

We follow this conditional GAN setting in each of our
sub-networks to generate the whole set of letters with a
consistent style, y, by observing only a few examples fed in
as a stack, x. Similar to [11], we ignore random noise as
the input to the generator, and dropout is the only source of
randomness in the network.

3.2. Glyph Network

Generalizing all 26 capital letters of a font from a few ex-
ample glyphs requires capturing correlations and similarities
among source letters and the unseen ones. Our GlyphNet
learns such correlations automatically in order to generate a
whole set of stylistically similar glyphs.

Due to the style similarity among all content images,
we add one input channel for each individual glyph in the
GlyphNet resulting in a “glyph stack” in both input and the
generated output (as illustrated in Figure 1). A basic tiling
of all 26 glyphs into a single image, however, fails to capture
correlations among them specifically for those far from each
other along the image length. This occurs due to the smaller
size of convolution receptive fields than the image length
within a reasonable number of convolutional layers.

With our novel input glyph stack design, correlation be-
tween different glyphs are learned across network channels
in order to transfer their style automatically. We employ our
generator, G1, based on the image transformation network
introduced in [12] including six ResNet blocks. The full
architectual specification of both GlyphNet and OrnaNet are
provided as supplemental materials.

We consider 64 × 64 glyphs in gray-scale resulting in
the input and output dimension of B × 26 × 64 × 64 for
the 26 capital English alphabets, with B indicating batch
size. Following the PatchGAN model proposed by [11], we
apply a 21× 21 local discriminator with three convolutional
layers on top of the generated output stack in order to dis-

criminate between real and fake local patches resulting in a
receptive field size equal to 21. In parallel, we add two extra
convolutional layers as a global discriminator, resulting in a
receptive field covering the whole image to distinguish be-
tween realistic font images and generated ones. In Figure 1,
our local and global discriminators are shown within one
discriminator block and will be referred as D1.

For higher quality results and to stabilize GAN train-
ing [38], we use two least squares GAN (LSGAN) loss
functions [23] on our local and global discriminators added
with an L1 loss penalizing deviation of generated images
G1(x1) from their ground truth y1:

L(G1) = λLL1(G1) + LLSGAN(G1, D1)

= λEx1,y1∼pdata(x1,y1)[‖y1 −G1(x1)‖1]
+Ey1∼pdata(y1)[(D1(y1)− 1)2] (3)

+Ex1∼pdata(x1)[D1(G1(x1))
2],

where LLSGAN(G1, D1) = Llocal
LSGAN(G1, D1) +

Lglobal
LSGAN(G1, D1). We train this network on our col-

lected 10K font data set (Section 4) where in each training
iteration, x1 includes a randomly chosen subset of y1 glyphs
with the remaining input channels being zeroed out. We will
refer to this trained model as G′1 in the following sections.
We explored adding in a separate input indicator channel
denoting which of the glyphs are present, but did not find
this to significantly affect the quality of the generator.

While we pre-train the GlyphNet using the conditional
discriminator, we will remove this discriminator when train-
ing the joint network (Section 3.4).

3.3. Ornamentation Network

OrnaNet is designed to transfer ornamentation of the few
observed letters to the gray-scale glyphs through a condi-
tional GAN network consisting of a generator, G2, and a
discriminator, D2. Feeding in the glyphs as input images,
x2, this network generates outputs, G2(x2), enriched with
desirable color and ornamentation. The main difference
between our proposed OrnaNet and GlyphNet lies in the
dimension and type of inputs and outputs, as well as in how
broad vs. specific the model is in generating images with a
particular style; the generator and conditional discriminator
architectures are otherwise identical to GlyphNet.

While GlyphNet is designed to generalize glyph correla-
tions across all our training fonts, OrnaNet is specialized to
apply only the specific ornamentation observed in a given
observed font. It is trained only on the small number of
observations available. Moreover, inputs and outputs of the
OrnaNet include a batch of images with three RGB channels
(similar to [11]) where the the input channels are repeats of
the gray-scale glyphs. Next, we will describe how to com-
bine our GlyphNet and OrnaNet in an end-to-end manner in
order to generate stylized glyphs in an ornamented typeface.

3.4. End-to-End Network

The goal of our end-to-end model, illustrated in Figure 2,
is to generalize both style and ornamentation of the observed
letters to the unobserved ones. For this purpose, we gener-
ate all 26 glyphs including the observed ones through the
pre-trained GlyphNet and feed them to the OrnaNet (initial-
ized with random weights) to be fine-tuned. To accomplish
this, we use a leave-one-out approach to cycle all possible
unobserved letters:

For instance, given 5 observed letters of the word TOWER
shown in Figure 2, we first use 4 letters T, O, W, E as the
given channels in a 1× 26× 64× 64 input stack and feed
it to the pre-trained GlyphNet to generate all 26 letters and
then extract the one fake glyph, R̃, not included in the input
stack. Repeating this process would generate all of the 5
observed letters from the pre-trained GlyphNet. Similarly,
we extract the 21 remaining letters from the pre-trained
model by feeding in a 1×26×64×64 input stack filled with
all 5 observed letters simultaneously while zeroing out all
other channels. This whole process can be summarized by
passing 6 input stacks each with dimension 1×26×64×64
through GlyphNet as a batch, extracting the relevant channel
from each output stack, and finally concatenating them into
one 1× 26× 64× 64 output. After a reshape transformation
and gray-scale channel repetition, represented by T , we can
transform this generated output to 26 images with dimension
3× 64× 64 and feed them as a batch, x2, to OrnaNet. This
leave-one-out approach enables OrnaNet to generate high
quality stylized letters from coarse generated glyphs.

To stabilize adversarial training of the OrnaNet generator
(G2) and discriminator (D2), we likewise use an LSGAN
loss added with an L1 loss function on generated images of
the observed letters, x2, and their ground truth, y2. More-
over, to generate a set of color images with clean outlines,
we minimize the mean square error (MSE) between binary
masks of the outputs and inputs of the generator in OrnaNet
which are fake color letters, G2(x2), and fake gray-scale
glyphs, x2, respectively. Binary masks are obtained by pass-
ing images through a sigmoid function, indicated as σ in (4).
In summary, the loss function applied on top of the OrnaNet
in the end-to-end scenario can be written as:

L(G2) = LLSGAN(G2, D2) + λ1LL1(G2) + λ2LMSE(G2)

= Ey2∼pdata(y2)[(D2(y2)− 1)2]

+Ex2∼pdata(x2)[D2(G2(x2))
2] (4)

+Ex2,y2∼pdata(x2,y2)

[
λ1‖y2 −G2(x2)‖1

+λ2(σ(y2)− σ(G2(x2)))
2
]
,

where x2 = T (G1(x1)) and

LLSGAN(G2, D2) = Llocal
LSGAN(G2, D2) + Lglobal

LSGAN(G2, D2).

. In the final end-to-end training, we do not use discrimi-
nator D1 in the GlyphNet and instead, OrnaNet plays the

Figure 3: Random subset of our 10K gray-scale font dataset

role of a loss function by back propagating the gradients of
the objective in (4) to improve style of the generated glyphs.
Adding a weighted L1 loss on top of the generator in Glyph-
Net, G1, also penalizes deviating from the predictions of
the pre-trained GlyphNet, G′1. We also add an MSE loss
function between binary masks of fake versions of the ob-
served glyphs, T (G1(x1)), and masks of their corresponding
ground truth glyphs, y2. Putting this all together, the gradi-
ents of the following loss functions would be passed through
GlyphNet in addition to the gradient coming from OrnaNet:

L(G1) = λ3Lw,L1(G1) + λ4LMSE(G1)

= Ex1∼pdata(x1),y2∼pdata(y2)

[
λ3

26∑
i=1

wi × |Gi
1(x1)−G

′i
1 (x1)|+

λ4(σ(y2)− σ(T (G1(x1)))
2
]
, (5)

where wi allows us to apply different weights to observed
vs. unobserved glyphs. Ratio between different terms in loss
functions in (4), (5) is defined based on hyper-parameters
λ1 to λ4. Moreover, as mentioned in Section 3.2, G′1(x)
indicates the prediction of the pre-trained GlyphNet before
being updated through end-to-end training.

4. Font Dataset
We have collected a dataset including 10K gray-scale

Latin fonts each with 26 capital letters. We process the
dataset by finding a bounding box around each glyph and
resize it so that the larger dimension reaches 64 pixels, then
pad to create 64 × 64 glyphs. A few exemplar fonts from
our dataset are depicted in Figure 3. These fonts contain rich
information about inter-letter correlations in font styles, but
only encode glyph outlines and not font ornamentations. To
create a baseline dataset of ornamented fonts, we apply ran-
dom color gradients and outlining on the gray-scale glyphs
resulting in a 20K color font data set. A few examples are
shown in the supplemental. Size of this data set can be ar-
bitrarily increased through generating more random colors.
These gradient fonts do not have the same distribution as

in-the-wild ornamentations but can be used for applications
such as network pre-training.

5. Experiments and Results

We demonstrate the quality of our end-to-end model pre-
dictions on multiple fonts with various styles and decorations.
First, we study the advantage of various components of our
model through multiple ablation studies. Next, we will show
the significant improvement obtained by our model in trans-
ferring ornamentations on our synthesized glyphs compared
with patch-based text effect transfer approach [34]. In the
following experiments, we have set λ1 = 300, λ2 = 300 if
epoch < 200 and λ2 = 3 otherwise, λ3 = 10, λ4 = 300,
while wi = 10 if i is an observed glyph and wi = 1 other-
wise. In all our qualitative experiments on our full model,
three to eight observed characters for each font are chosen
randomly and illustrated in red squares in the figures. Batch
size B is thus random and equal to the number of observed
letters. Glyph network is pre-trained in 400 epochs with a
fixed batch size of 150 fonts in each iteration. The full model
is then fine-tuned for 700 iterations on each specific font.

For evaluation, we download ornamented fonts from the
web1. In all experiments in sections 5.1 and 5.2, we made
sure that all used font examples were not included in our 10K
font training set by manually inspecting nearest neighbors
computed over the black-and-white glyphs.

5.1. Image Translation Baseline

To illustrate the significant quality improvement of our
end-to-end approach, we have implemented a baseline image-
to-image translation network [11] for this task. In this base-
line approach, we consider channel-wise letters in input and
output stacks with dimensions B × 78 × 64 × 64, where
B stands for training batch size and 78 corresponds to the
26 RGB channels. The input stack is given with “observed”
color letters while all letters are generated in the output stack.
We train this network on our color font data set where we
have applied randomly chosen color gradients on each gray-
scale font. Feeding in a random subset of RGB letters of
an arbitrary font into this model during test time, it is ex-
pected to generate stylistically similar 26 letters. Results
of this model are shown in the second rows of Figure 6
for each example font. Observe that while the network has
learned rough aspects of glyph structure, the predictions do
not follow a consistent color or ornamentation scheme, as the
network is not able to effectively specialize for the provided
ornamentation style. Similar artifacts are observered even
when evaluating on a test set derived from our simplified
color-gradient dataset (see supplemental materials).

1http://www6.flamingtext.com/All-Logos

Ground Truth

OrnaNet

T-Effect

Figure 4: Text Effect Transfer [34] failure example on clean input glyphs.

Ground Truth

OrnaNet

T-Effect

Figure 5: Failure cases on clean input glyphs.

5.2. Ablation Study

In Figure 6, we demonstrate the incremental improvement
of our proposed regularizers, Lw,L1

(G1),LMSE(G1), and
LMSE(G2). We found that pretraining on our OrnaNet on
gradient-based ornamentations was not helpful, and that the
best result comes from a random initialization of OrnaNet
and using all the proposed loss terms.

As mentioned in Section 3.4, Lw,L1
(G1) prevents net-

work predictions from going far from the original pre-trained
predictions of the GlyphNet. However, it also reduces the
freedom in modifying the style of the new glyphs during
the end-to-end training. We show this trade-off in the fourth
rows of each instance font in Figure 6 by highlighting letters
with additional artifacts in red and improved letters in blue
when this regularizer is excluded from the network. The
other two MSE loss regularizers weighted by λ2 and λ4 pre-
vent blurry predictions or noisy artifacts to appear on the
generated gray-scale and color letters.

5.3. Perceptual Evaluation

To evaluate the performance of our model, we compare
the generated letters of our end-to-end MC-GAN against the
output of the patch-based synthesis method in [34]. Since
this model is designed only for transferring text decorations
on clean glyphs, it is not fully comparable with our ap-
proach which synthesizes unobserved letters. To explore
this method, we use the predictions of our pretrained Glyph-
Net as the input to this algorithm. Moreover, this model
transfers stylization from only one input decorated glyph,
while our method uses all observed examples simultaneously.
Therefore, to enable a fair comparison in transferring orna-
mentations, we allow their model to choose the most similar
glyph among the observed instances to the generated glyph
mask using a simple image-space distance metric.

We generated the output of both methods on 33 font ex-
amples downloaded from web and asked 11 people to choose

which character set they preferred when presented with the
observed letters and the full glyph results of both methods.
Overall users preferred our method 80.0% of the time. We
visualize a subset of these examples in Figure 7 including
ground truth and given letters (first rows), predictions of the
text effect transfer method [34]which are applied on top of
the glyphs synthesized by our GlyphNet (second rows), and
predictions of our full end-to-end model in the last rows. The
two best and two worst scoring results for each method are
shown on the top and bottom examples of the figure. Please
see supplemental for the complete perceptual evaluation re-
sults and description of our experimental procedure.

The text effect transfer approach is designed to generate
text patterns on clean glyphs but mostly fails to transfer style
given our synthesized gray-scale letters. In addition, due to
their dependency on a patch matching based algorithm, they
often cannot transfer style correctly when the shape of the
given and new letters are not very similar (e.g., they cannot
transfer straight line patterns when there is a curvature in
their new input glyph as clear from the sixth and seventh
examples in Figure 7).

5.4. Ground Truth Glyph Ornamentation

We further compare the performance of our ornamenta-
tion network against patch-based synthesis in the case where
we are given correct grayscale glyphs (i.e. the ground-truth
for GlyphNet). Figure 4 indicates a failure mode of patch-
based effect transfer, where spatial patterns present in the
input are often violated. Figure 5 represents a failure mode
of both methods: our method averages over the distinct
colors present and does not always generate the observed or-
namentation such as eyes, while patch-based effect transfer
better preserves the input color distrubtion but can still fail
to capture the frequency of stylistic elements.

Figure 6: Ablation study on our MC-GAN model components: For each exemplar font, we show ground truth (1st row),
observed letters (red squares in the 1st row), predictions of a baseline image translation network (2nd row), predictions of our
end-to-end model with randomly initialized (RI) OrnaNet and λ2 = λ3 = λ4 = 0 (3rd row), with pretrained (PT) OrnaNet
weights and λ2 = λ3 = λ4 = 0 (4th row), selectively disabled loss terms (rows 5-7), and the full end-to-end MC-GAN model
(bottom row). Style transfer improvements by λ3 are highlighted in blue and degradation in the predictions by omitting each
individual regularizer is highlighted in red.

MC-GAN:0.45

T-Effect:0.55

MC-GAN:0.45

T-Effect:0.55

MC-GAN:0.82

T-Effect:0.18

MC-GAN:0.91

T-Effect:0.09

MC-GAN:1.0

T-Effect:0

MC-GAN:1.0

T-Effect:0

MC-GAN:1.0

T-Effect:0

MC-GAN:1.0

T-Effect:0

Ground Truth

Ground Truth

Ground Truth

Ground Truth

Ground Truth

Ground Truth

Ground Truth

Ground Truth

Figure 7: Comparison of our end-to-end MC-GAN model (3rd rows) with the text effect transfer approach [34] using
GlyphNet synthesized glyphs (2nd rows). Ground truth glyphs and the observed subset are illustrated in the 1st row of each
example font. Scores next to each example reveal the percentage of people who preferred the given results.

6. Conclusion

We propose the first end-to-end approach to synthesizing
ornamented glyphs from a few examples. Our method takes
a few example images as an input stack and predicts coarse
shape and fine ornamentations for the remaining glyphs. We
train two networks: one for the shape and one for the texture,
and demonstrate that by training them jointly, we can pro-
duce results that are strongly preferred by users over existing
texture transfer approaches that focus on glyphs. A surpris-
ing discovery of this work is that one can efficiently leverage
GANs to address a multi-content style transfer problem. In

many practical settings, however, fonts need to be generated
at extremely high resolution, motivating extensions to this
approach such as hierarchical generation or directly syn-
thesizing smooth vector graphics. In the future, we would
also like to explore other problems where content has to be
stylized consistently from a few examples. For example,
modifying a particular human face (style) to have a specific
expression (content), consistent stylization of shapes such
as emoticons, or transferring materials to consistent sets of
objects such as clothing or furniture.

References
[1] S. Baluja. Learning typographic style. arXiv preprint

arXiv:1603.04000, 2016. 1, 2
[2] N. D. Campbell and J. Kautz. Learning a manifold of fonts.

ACM Transactions on Graphics (TOG), 33(4):91, 2014. 1, 2
[3] J. Chang and Y. Gu. Chinese typography transfer. arXiv

preprint arXiv:1707.04904, 2017. 1, 2
[4] M. Chen, L. Denoyer, and T. Artières. Multi-view

data generation without view supervision. arXiv preprint
arXiv:1711.00305, 2017. 2

[5] A. Dai, C. R. Qi, and M. Nießner. Shape completion using 3d-
encoder-predictor cnns and shape synthesis. Proc. Computer
Vision and Pattern Recognition (CVPR), IEEE, 2017. 2

[6] J. Flynn, I. Neulander, J. Philbin, and N. Snavely. Deepstereo:
Learning to predict new views from the world’s imagery.
In The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016. 2

[7] L. A. Gatys, A. S. Ecker, and M. Bethge. Image style transfer
using convolutional neural networks. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 2414–2423, 2016. 2

[8] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-
Farley, S. Ozair, A. Courville, and Y. Bengio. Generative
adversarial nets. In Advances in neural information process-
ing systems, pages 2672–2680, 2014. 2

[9] H. Huang, E. Kalogerakis, and B. Marlin. Analysis and
synthesis of 3d shape families via deep-learned generative
models of surfaces. Computer Graphics Forum, 34(5), 2015.
2

[10] X. Huang and S. Belongie. Arbitrary style transfer in real-
time with adaptive instance normalization. arXiv preprint
arXiv:1703.06868, 2017. 2

[11] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros. Image-to-image
translation with conditional adversarial networks. arXiv
preprint arXiv:1611.07004, 2016. 1, 2, 3, 4, 5

[12] J. Johnson, A. Alahi, and L. Fei-Fei. Perceptual losses for
real-time style transfer and super-resolution. In European
Conference on Computer Vision, pages 694–711. Springer,
2016. 2, 3

[13] N. K. Kalantari, T.-C. Wang, and R. Ramamoorthi. Learning-
based view synthesis for light field cameras. ACM Transac-
tions on Graphics (Proceedings of SIGGRAPH Asia 2016),
35(6), 2016. 2

[14] E. Kalogerakis, S. Chaudhuri, D. Koller, and V. Koltun. A
Probabilistic Model of Component-Based Shape Synthesis.
ACM Transactions on Graphics, 31(4), 2012. 2

[15] T. D. Kulkarni, W. F. Whitney, P. Kohli, and J. Tenenbaum.
Deep convolutional inverse graphics network. In Advances
in Neural Information Processing Systems, pages 2539–2547,
2015. 2

[16] C. Li and M. Wand. Combining Markov random fields and
convolutional neural networks for image synthesis. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 2479–2486, 2016. 2

[17] C. Li and M. Wand. Precomputed real-time texture synthesis
with Markovian generative adversarial networks. In European

Conference on Computer Vision, pages 702–716. Springer,
2016. 2

[18] Y. Li, C. Fang, J. Yang, Z. Wang, X. Lu, and M.-H. Yang.
Universal style transfer via feature transforms. arXiv preprint
arXiv:1705.08086, 2017. 2

[19] Z. Lian, B. Zhao, and J. Xiao. Automatic generation of large-
scale handwriting fonts via style learning. In SIGGRAPH
ASIA 2016 Technical Briefs, page 12. ACM, 2016. 2

[20] J. Liao, Y. Yao, L. Yuan, G. Hua, and S. B. Kang. Visual
attribute transfer through deep image analogy. arXiv preprint
arXiv:1705.01088, 2017. 2

[21] Z. Lun, E. Kalogerakis, R. Wang, and A. Sheffer. Function-
ality preserving shape style transfer. ACM Transactions on
Graphics, 35(6), 2016. 2

[22] P. Lyu, X. Bai, C. Yao, Z. Zhu, T. Huang, and W. Liu. Auto-
encoder guided GAN for Chinese calligraphy synthesis. arXiv
preprint arXiv:1706.08789, 2017. 1, 2

[23] X. Mao, Q. Li, H. Xie, R. Y. Lau, Z. Wang, and S. P. Smolley.
Least squares generative adversarial networks. arXiv preprint
ArXiv:1611.04076, 2016. 4

[24] M. Mirza and S. Osindero. Conditional generative adversarial
nets. arXiv preprint arXiv:1411.1784, 2014. 3

[25] E. Park, J. Yang, E. Yumer, D. Ceylan, and A. C. Berg.
Transformation-grounded image generation network for novel
3D view synthesis. arXiv preprint arXiv:1703.02921, 2017.
2

[26] D. Pathak, P. Krähenbühl, J. Donahue, T. Darrell, and A. Efros.
Context encoders: Feature learning by inpainting. In The
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2016. 2

[27] H. Q. Phan, H. Fu, and A. B. Chan. Flexyfont: Learning
transferring rules for flexible typeface synthesis. In Computer
Graphics Forum, volume 34, pages 245–256. Wiley Online
Library, 2015. 1, 2

[28] M. Sung, V. G. Kim, R. Angst, and L. Guibas. Data-driven
structural priors for shape completion. Transactions on Graph-
ics (Proc. of SIGGRAPH Asia), 2015. 2

[29] R. Suveeranont and T. Igarashi. Example-based automatic
font generation. In Smart Graphics, pages 127–138. Springer,
2010. 1, 2

[30] J. B. Tenenbaum and W. T. Freeman. Separating style and con-
tent. In Advances in neural information processing systems,
pages 662–668, 1997. 2

[31] L. Tran, X. Yin, and X. Liu. Disentangled representation
learning gan for pose-invariant face recognition. In CVPR,
volume 4, page 7, 2017. 2

[32] D. Ulyanov, A. Vedaldi, and V. Lempitsky. Deep image prior.
arXiv preprint arXiv:1711.10925, 2017. 2

[33] P. Upchurch, N. Snavely, and K. Bala. From A to Z: super-
vised transfer of style and content using deep neural network
generators. arXiv preprint arXiv:1603.02003, 2016. 1, 2

[34] S. Yang, J. Liu, Z. Lian, and Z. Guo. Awesome typogra-
phy: Statistics-based text effects transfer. arXiv preprint
arXiv:1611.09026, 2016. 1, 2, 5, 6, 8

[35] B. Zhao, X. Wu, Z.-Q. Cheng, H. Liu, and J. Feng. Multi-
view image generation from a single-view. arXiv preprint
arXiv:1704.04886, 2017. 2

[36] B. Zhou, W. Wang, and Z. Chen. Easy generation of personal
Chinese handwritten fonts. In Multimedia and Expo (ICME),
2011 IEEE International Conference on, pages 1–6. IEEE,
2011. 2

[37] T. Zhou, S. Tulsiani, W. Sun, J. Malik, and A. A. Efros. View
synthesis by appearance flow. In European Conference on
Computer Vision, pages 286–301. Springer, 2016. 2

[38] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros. Unpaired image-
to-image translation using cycle-consistent adversarial net-
works. arXiv preprint arXiv:1703.10593, 2017. 4

Supplementary Material
for

Multi-Content GAN for Few-Shot Font Style Transfer

Samaneh Azadi1∗, Matthew Fisher2, Vladimir Kim2, Zhaowen Wang2, Eli Shechtman2, Trevor Darrell1
1UC Berkeley, 2Adobe Research

{sazadi,trevor}@eecs.berkeley.edu {matfishe,vokim,zhawang,elishe}@adobe.com

Figure 1: Example synthetic color gradient fonts

1. Font Dataset

To create a baseline dataset of ornamented fonts, we ap-
ply random color gradients and outlining on the gray-scale
glyphs, two random color gradients on each font of our col-
lected 10K examples, resulting in a 20K color font dataset.
A few examples are shown in Figure 1. Size of this data set
can be arbitrarily increased through generating more random
colors. These gradient fonts do not have the same distri-
bution as in-the-wild ornamentations but can be used for
applications such as network pre-training.

2. Network Architectures

We employ our generator (encoder-decoder) architec-
ture based on the image transformation network introduced
in [2] and discussed in [1]. We represent a Convolution-
BatchNorm-ReLU consisting of k channels with CRk, a
Convolution-BatchNorm layer with Ck, a Convolution-
BatchNorm-ReLU-Dropout with CRDk, and a Convolution-
LeakyReLU with CLk. In the above notations, all input
channels are convolved to all output channels in each layer.
We also use another Convolution-BatchNorm-ReLU block
in which each input channel is convolved with its own set of
filters and denote it by CR26k, where 26 shows the number
of such groups. Dropout rate during training is 50% while
ignored at test time. Negative slope of the Leaky ReLU is
also set to 0.2.

∗Work done during an internship at Adobe Research

2.1. Generators Architecture

Our encoder architecture in GlyphNet is:
CR2626-CR64-CR192-CR576-(CRD576-C576)-
(CRD576-CR576)-(CRD576-C576) where
convolutions are down-sampling by a factor of
1 − 1 − 2 − 2 − 1 − 1 − 1 − 1 − 1 − 1, respec-
tively, and each (CRD576-C576) pair is one ResNet
Block.

The encoder in OrnaNet follows a similar network archi-
tecture except for in its first layer where the CR2626 has
been eliminated.

The decoder architecture in both
GlyphNet and OrnaNet is as follows:
(CRD576-C576)-(CRD576-C576)-(CRD576-C576)
- CR192-CR64 each up-sampling by a factor of
1 − 1 − 1 − 1 − 1 − 1 − 2 − 2, respectively. An-
other Convolution layer with 26 channels followed by a
Tanh unit is then applied in the last layer of the decoder.

2.2. Discriminators Architecture

As mentioned in the paper in Figure 1, our GlyphNet and
OrnaNet discriminators, D1 and D2, consist of a local and
global discriminator where weights of the local discriminator
is shared with the latter. The local discriminator consists
of CL64-CL128 followed by a convolution mapping its
128 input channels to one output. Convolutions here are
down-sampling by a factor of 2− 1− 1, respectively. The
global discriminator has two additional layers before joining
the layers in the local discriminator as CR52-CR52 each
down-sampling by a factor of 2. Receptive field size of our
local discriminator is 21 while global discriminator covers a
larger area than the 64 pixels in the image domain, and thus
can capture a global information from each image.

1

Figure 2: Effect of number of observed glyphs on the quality
of GlyphNet predictions. Red line is passing through median
of each distribution.

3. Experiments and Results

3.1. Automatic Learning of Correlations between
Contents

Automatic learning of the correlations existing between
different letters is a key factor in transferring style of the few
observed letters in our multi-content GAN. In this section,
we study such correlations through the structural similarity
(SSIM) metric on a random subset of our 10K font data
set consisting of 1500 examples. For each instance, we
randomly keep one of the 26 glyphs and generate the rest
through our pre-trained GlyphNet.

Computing the structural similarity between each gener-
ated glyph and its ground truth, we find 25 distributions over
its SSIM scores when a single letter has been observed at
a time. In Figure 3, we illustrate the distributions α|β of
generating letter α when letter β is observed (in blue) vs
when any other letter rather than β is given (in red). Distribu-
tions for the two most informative given letters and the two
least informative ones in generating each of the 26 letters
are shown in this figure. For instance, looking at the fifth
row of the figure, letters F and B are the most constructive in
generating letter E compared with other letters while I and
W are the least informative ones. As other examples, O and
C are the most guiding letters for constructing G as well as
R and B for generating P.

3.2. Number of Observed Letters

Here, we investigate the dependency of quality of Glyph-
Net predictions on the number of observed letters. Similar to
Section 3.1, we use a random subset of our font data set with
1500 example fonts and for each font, we generate 26 letters
given n observed ones from our pre-trained GlyphNet. The
impact of changing n from 1 to 8 on the distribution of SSIM

scores between each unobserved letter and its ground truth is
shown in Figure 2. The slope of the red line passing through
the median of each distribution is decreasing as n increases
and reaches to a stable point once the number of observations
for each font is close to 6. This study confirms the advantage
of our multi-content GAN method in transferring style when
we have very few examples.

3.3. Results on Synthetic Color Font Dataset

In this section, we compare our end-to-end multi-content
GAN approach with the image translation method discussed
in Section 5.1 of the paper. In Figure 4, we demonstrate
the results on multiple examples from our color font data
set where we have applied random color gradients on the
gray-scale glyph outlines. By looking at the nearest neighbor
examples, we have made sure that the fonts shown in this
figure were not used during training of our Glyph Network.

Given a subset of color letters in the input stack of Glyph-
Net with dimension 1× 78× 64× 64 including RGB chan-
nels, we generate all 26 RGB letters from the pre-trained
GlyphNet on our color font data set. Results are denoted as
“Image Translation” in Figure 4. Our MC-GAN results are
outputs of our end-to-end model fine-tuned on each exemplar
font. The image translation method cannot generalize well
in transferring these gradient colors at test time by observing
only a few examples although other similar random patterns
have been seen during training.

3.4. Perceptual Evaluation

As mentioned in Section 5.3 of the paper, we evaluate per-
formance of our end-to-end model in transferring ornamenta-
tions by comparing its output against the patch-based model
of [3]. Here, glyph outlines for both methods are generated
through our pre-trained GlyphNet. We do this evaluation
on 33 fonts downloaded from the web1 and ask 11 users to
choose outputs of one of the models by observing the subset
of given letters. Full results and percentage of user prefer-
ences to each method are represented in Figures 5, 6, 7, 8,
with an overall 80% preference to our MC-GAN.

References
[1] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros. Image-to-

image translation with conditional adversarial networks. arXiv
preprint arXiv:1611.07004, 2016. 1

[2] J. Johnson, A. Alahi, and L. Fei-Fei. Perceptual losses for
real-time style transfer and super-resolution. In European
Conference on Computer Vision, pages 694–711. Springer,
2016. 1

[3] S. Yang, J. Liu, Z. Lian, and Z. Guo. Awesome typogra-
phy: Statistics-based text effects transfer. arXiv preprint
arXiv:1611.09026, 2016. 2, 5, 6, 7, 8

1http://www6.flamingtext.com/All-Logos

Figure 3: Distributions (α|β) over SSIM scores for generating letter α given β in blue and given any other letter rather than β
in red. Distributions for the most informative given letters β in generating each glyph α is shown in the left of each column
while the least informative givens are presented in the right.

Ground Truth

Img Translation

MC-GAN

Ground Truth

Img Translation

MC-GAN

Ground Truth

Img Translation

MC-GAN

Ground Truth

Img Translation

MC-GAN

Ground Truth

Img Translation

MC-GAN

Ground Truth

Img Translation

MC-GAN

Ground Truth

Img Translation

MC-GAN

Ground Truth

Img Translation

MC-GAN

Figure 4: Comparison between image translation and our end-to-end multi-content GAN on our synthetic color font data
set. For each example, ground truth and given letters are shown in the 1st row, image translation outputs in the 2nd row and
MC-GAN in the last row.

MC-GAN:0.45

T-Effect:0.55

MC-GAN:0.45

T-Effect:0.55

MC-GAN:0.82

T-Effect:0.18

MC-GAN:0.91

T-Effect:0.09

MC-GAN:1.0

T-Effect:0

MC-GAN:1.0

T-Effect:0

MC-GAN:1.0

T-Effect:0

MC-GAN:1.0

T-Effect:0

Ground Truth

Ground Truth

Ground Truth

Ground Truth

Ground Truth

Ground Truth

Ground Truth

Ground Truth

Figure 5: Comparison of our end-to-end MC-GAN model (3rd rows) with the text effect transfer approach [3] using GlyphNet
synthesized glyphs (2nd rows). Ground truth glyphs and the observed subset are illustrated in the 1st row of each example
font. Scores next to each example reveal the percentage of people who preferred the given results.

MC-GAN:0.64

T-Effect:0.36

Ground Truth

MC-GAN:1.0

T-Effect:0.0

MC-GAN:0.73

T-Effect:0.27

MC-GAN:0.91

T-Effect:0.09

MC-GAN:0.82

T-Effect:0.18

MC-GAN:0.91

T-Effect:0.09

MC-GAN:0.73

T-Effect:0.27

MC-GAN:1.0

T-Effect:0.0

MC-GAN:0.64

T-Effect:0.36

MC-GAN:0.82

T-Effect:0.18

Ground Truth

Ground Truth

Ground Truth

Ground Truth

Ground Truth

Ground Truth

Ground Truth

Ground Truth

Ground Truth

Figure 6: Continue - Comparison of our end-to-end MC-GAN model (3rd rows) with the text effect transfer approach [3]
using GlyphNet synthesized glyphs (2nd rows). Ground truth glyphs and the observed subset are illustrated in the 1st row of
each example font. Scores next to each example reveal the percentage of people who preferred the given results.

MC-GAN:0.91

T-Effect:0.09

Ground Truth

MC-GAN:0.45

T-Effect:0.55

MC-GAN:0.73

T-Effect:0.27

MC-GAN:0.82

T-Effect:0.18

MC-GAN:0.91

T-Effect:0.09

MC-GAN:0.55

T-Effect:0.45

MC-GAN:0.82

T-Effect:0.18

MC-GAN:0.73

T-Effect:0.27

MC-GAN:0.73

T-Effect:0.27

MC-GAN:0.82

T-Effect:0.18

Ground Truth

Ground Truth

Ground Truth

Ground Truth

Ground Truth

Ground Truth

Ground Truth

Ground Truth

Ground Truth

Figure 7: Continue - Comparison of our end-to-end MC-GAN model (3rd rows) with the text effect transfer approach [3]
using GlyphNet synthesized glyphs (2nd rows). Ground truth glyphs and the observed subset are illustrated in the 1st row of
each example font. Scores next to each example reveal the percentage of people who preferred the given results.

MC-GAN:0.91

T-Effect:0.09

Ground Truth

MC-GAN:0.73

T-Effect:0.27

MC-GAN:0.82

T-Effect:0.18

MC-GAN:1.0

T-Effect:0

MC-GAN:0.64

T-Effect:0.36

Ground Truth

Ground Truth

Ground Truth

Ground Truth

Figure 8: Continue - Comparison of our end-to-end MC-GAN model (3rd rows) with the text effect transfer approach [3]
using GlyphNet synthesized glyphs (2nd rows). Ground truth glyphs and the observed subset are illustrated in the 1st row of
each example font. Scores next to each example reveal the percentage of people who preferred the given results.

