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Abstract

We propose a novel method for discovering shape re-
gions that strongly correlate with user-prescribed tags.
For example, given a collection of chairs tagged as ei-
ther “has armrest” or “lacks armrest”, our system cor-
rectly highlights the armrest regions as the main dis-
tinctive parts between the two chair types. To obtain
point-wise predictions from shape-wise tags we develop
a novel neural network architecture that is trained with
tag classification loss, but is designed to rely on segmen-
tation to predict the tag. Our network is inspired by U-
Net, but we replicate shallow U structures several times
with new skip connections and pooling layers, and call
the resulting architecture WU-Net. We test our method
on segmentation benchmarks and show that even with
weak supervision of whole shape tags, our method can
infer meaningful semantic regions, without ever observ-
ing shape segmentations. Further, once trained, the
model can process shapes for which the tag is entirely
unknown. As a bonus, our architecture is directly oper-
ational under full supervision and performs strongly on
standard benchmarks. We validate our method through
experiments with many variant architectures and prior
baselines, and demonstrate several applications.

1. Introduction

Online repositories contain millions of 3D shapes,
providing rich data for data-driven 3D analysis and
synthesis [26]. While these repositories often provide
tags, textual descriptions, and soft categorization to fa-
cilitate text-based search, these labels are typically pro-
vided for the entire shape, and not at the region level.
Many applications require finer shape understanding,
e.g. parts and their labels are essential for assembly-
based modeling interfaces. While one can obtain these
labels by training a strongly supervised segmentation
model [6], this level of supervision requires substan-
tially more involved annotation interfaces and human
effort, making it infeasible for massive and growing on-
line repositories. Existing methods for discovering se-
mantic regions without explicit supervision are typi-

cally guided by geometric cues (e.g. [5]), but they are
prone to failure by being tailored to specific notions of
parts, implicitly encoded by algorithm design.

Weakly- or semi-supervised methods have been pro-
posed as a compromise between supervised and un-
supervised techniques. For example, Yi et al. [27]
leverage scene graph metadata in existing repositories,
which provide some segments and labels for a small
subset of shapes. This metadata is very sparse and spe-
cific to computer graphics models. In contrast, tags for
entire shapes are abundant, often accompany scanned
shapes, and are easy to crowdsource at scale.

In this work we propose a novel method for discov-
ering regions from shape tags without explicit region-
wise labeling or prior segmentation. For example, in a
collection of shapes tagged as “has armrest” and “does
not have armrest”, we are able to identify the armrest
components of the chairs in the former category (Fig-
ure 1). Further, once trained, our method can process
shapes for which the tag is entirely unknown.

Our main challenge is that the weak supervisory sig-
nal (whole object tag) is different from the target out-
put (point-wise labels). To address this, we use a neu-
ral network that jointly performs classification and seg-
mentation, and train it for whole object tagging while
relying on point-wise labels to infer the tags.

In particular, we propose a novel neural network
architecture with skip connections, which we call
WU-Net (Figure 2), inspired by the U-Net [16] ar-
chitecture for strongly-supervised image segmentation.
We make two key modifications. First, to regular-
ize the network and improve localization of segments
we replicate the ‘U’ structure thrice (‘WU’) and add
skip connections both within and across them. Second,
since the network is originally designed for strongly-
supervised segmentation, we add two layers for tag
classification from a hidden segmentation layer: aver-
age pooling followed by max pooling. Average pooling
encourages coherence, forcing the network to train for
segments that help tag classification. This network ar-
chitecture is our main technical contribution.



Figure 1: Chair armrests identified from only shape-level tags: “has armrest” (red/bisque) or “lacks armrest”
(green). The weakly supervised problem is solved by a novel neural network which we call WU-Net. The highlighted
red regions are the automatically generated outputs of the network, with no postprocessing except symmetrization.

To evaluate our approach, we use shapes from stan-
dard datasets [28], but withhold region labels and only
tag shapes based on part presence and absence. Our
method detects regions with remarkable accuracy with-
out observing a single segmented shape. As a bonus, we
observe that our approach is also suitable for strongly-
supervised segmentation, and demonstrate that the ar-
chitecture performs well under strong supervision. We
validate our design through extensive experiments, in-
cluding ablation studies, variant architectures, baseline
comparisons, and prototype applications.

2. Related work

We overview related work on shape and image seg-
mentation with various degrees of supervision.

Unsupervised shape segmentation One can
leverage shape similarities and geometric cues to dis-
cover parts [3, 18, 5]. These methods encode generic
part priors, but not all semantic regions conform to
them. To bias unsupervised methods towards seman-
tic regions, Yi et al. [27] leverage existing scene graphs,
which are sparse and not always informative. No such
method provides significant output control, which pre-
vents discovery of user-prescribed regions.

Supervised shape segmentation A direct remedy
is to use shapes with manually-labeled regions to train
a model that can discover similar semantic regions in
new shapes [7]. Recent methods exploit deep neural
networks, based on 2D renderings [6], local descriptors
after spectral alignment [30], unordered point sets [14],
canonicalized meshes [9], and voxel octrees [15, 23].

The need to collect labeled data is the main bottle-
neck for supervised methods. Several approaches try

to minimize this cost. E.g., Wang et al. [24] actively
choose the next shape to label that most benefits a
supervised method. Yi et al. [29] partially replace an-
notation with (quick) verification. These techniques
still require tedious manual segmentation. Our goal
is to avoid this altogether with a less taxing form of
supervision, known as weakly supervised analysis.

Distinctive regions in shapes In prior work most
relevant to ours, Shilane and Funkhouser [17] use hand-
crafted local descriptors to highlight regions common
to a category and different across categories. We learn
such a representation via a neural network directly
from a voxelized shape, and apply it to fine-grained
shape segmentation within a single category. Further,
unlike [17], our method directly applies to test shapes
with unknown tags, since it implicitly performs clas-
sification. In evaluations, our method is significantly
more accurate. In recent work, Hu et al. [4] identify
small local elements correlated with object styles.

Weakly-supervised image segmentation Several
computer vision methods can localize object data from
whole-image tags (e.g. [20, 22, 2]). With the rise of deep
neural networks, researchers observed that neurons in
a classification network often activate on salient ob-
jects [19]. Oquab et al. [12] append global max-pooling
to a convolutional segmentation network [8] to obtain
a classification network suitable for object localization.
In our work we focus on segmentation, and found that
global max-pooling does not favor detecting coherent
regions: we prefix it with average pooling for smoother
segmentation. We also found that WU-Net’s skip con-
nections improve results over sequentially stacked con-
volutions. Pathak et al. [13] study additional con-
straints, which we can potentially incorporate.



Figure 2: WU-Net architecture, showing three stacked down/upsampling ‘U’ structures linked by skip connections,
ending in segmentation branches. Under weak supervision, the network is trained with only a classification loss.

3. Method

3.1. Data representation

We represent a 3D shape in voxelized form. Given a
64×64×64 cubical grid tightly fitting the shape, we set
each voxel intersecting the surface to 1, and the rest
to 0. We omitted interior voxels. Apart from being
a natural domain for 3D convolution, this representa-
tion ensures we do not take advantage of inherent part
structure in meshes. In fact, our input need not be a
mesh at all, as long as we can densely sample it.

3.2. Network architecture

Our method for weakly-supervised 3D shape seg-
mentation utilizes a novel feedforward neural network
architecture, which we call WU-Net. It is inspired by
the U-Net architecture of Ronneberger et al. [16], which
was proposed as an effective way to segment biomedical
images with limited training data in a strongly super-
vised setting. U-Net’s prominent feature, from which
it derives its name, is a sequence of fully convolutional
downsampling layers (the “contracting” arm of an ‘U’),
followed by an inverse sequence of fully convolutional
upsampling layers (the “expanding” arm of the ‘U’),
with the two sequences bridged by skip connections.

The WU-Net architecture leverages this building
block by linking three fully convolutional U struc-
tures in sequence, i.e. a ‘W’ followed by an U (Fig-
ure 2). Data flowing through the network therefore
goes through three successive cycles of down- and up-
sampling, from 643 to 323 and back to 643, encourag-
ing spatial coherence and spread in the detected signal.
Unlike U-Net, our U’s are very shallow, each one involv-
ing a single downsampling/upsampling sequence. We
explain this design choice below.

Our architecture also has skip connections like U-
Net, which allow reasoning in later layers to be sensi-
tive to structure in the original data which may have
been lost during downsampling. Unlike the original U-
Net, the WU-Net skip connections also provide bridg-

ing connections between different U structures (see the
dashed arrows in the lower row of layers in Figure 2).
This provides an elegant symmetry between the high
and low resolution paths in the structure, with data
winding back and forth between the resolutions while
also having a secondary flow within the layers at each
resolution. We also discuss this design choice below.

To map from a layer at one resolution to a layer at
the same resolution (orange arrows), we employ several
53 convolutional kernels. To downsample, we use a max
pooling operator over a 23 neighborhood. To upsample,
we use bilinear interpolation of the feature map. All
neurons in the ‘WU’ structure have ReLU activations.

Output segmentation map. The output of the fi-
nal U is fed to two or more segmentation branches, one
for each class. For weakly-supervised binary classifica-
tion, e.g. “has back” vs “lacks back” for chairs, there
are two branches. Under strong supervision, there is
one branch for each part label: ‘seat’, ‘back’, ‘arm’ etc.
Each branch has one 33 convolutional layer, with sig-
moid activation. This layer acts as the segmentation
map – it is in one-to-one correspondence with the in-
put, and its output values are interpreted as the prob-
abilities of voxels having particular class labels.

Loss function. Under strong supervision, a per-
voxel cross-entropy loss is applied to the output seg-
mentation map. Under weak supervision, we apply
23 average pooling to this output, and then take the
maximum over the pooled response. Average pooling
encourages a wider response region (Section 4 tests the
effect of other pooling radii). The max-pooled predic-
tion (across branches) is compared to the GT shape
tag with a cross-entropy loss. To prevent activating
empty voxels near shape boundaries, we multiply each
segmentation map element by the corresponding ele-
ment of the input voxel grid, letting the network focus
only on errors over the shape.

Symmetrization. Our dataset shows prominent
symmetries, chiefly reflectional. Since such shapes



have redundant local information, a classifier can
achieve high accuracy without seeing the complete
shape. WU-Net is no exception, and our part de-
tection often demonstrates consistent asymmetry,

Before
symmetrization

After
symmetrization

yielding high precision but
lower recall, e.g. when only
right arms of chairs are de-
tected (inset). To correct
this, we simply mirror in-
ferred salient regions on both
sides of the symmetry plane.

Discussion of design choices. WU-Net has three
shallow U’s instead of a single deep one, bridged by skip
connections at both high and low resolutions. These
design choices enable convolutional filters in later lay-
ers to have a high effective field of view (by composition
with filters from preceding layers) even on high resolu-
tion data. Each shallow U mildly summarizes the sig-
nal and then immediately analyses it jointly with the
unsummarized signal. The information flow is visual-
ized in Figure 3. The “low resolution” skip connections
provide each summarization step context from previ-
ous summaries. Section 4 shows that each successive
stacked U improves performance, and weakly super-
vised shallow U’s outperform deep U’s.

Note the contrast to U-Net, where the latter half of
the deeper architecture reconstructs successively higher
resolution signals from a single drastic summary in the
bottleneck layer. While skip connections do provide
access to undecimated signals, the results of the joint
high- and low-resolution analysis at each level are not
further summarized, but simply upscaled to the next
level. The filters in the final layer cannot have a high
field of view on the original signal unmodified by down-
sampling. Thus, only excessively local information is
incorporated from early layers by concatenation, which

Figure 3: Information flow in weakly-supervised
WU-Net, captured as layer activation maps (red: high)
for detecting chair arms/backs, ship sails, and plane
engines. Shallow U’s prevent over-summarization, and
the signal is not lost by repeated concatenations from
distant layers, unlike a deep U (Figure 4).

can drown out meaningful signals from the summariza-
tion layers when only weak supervision is available.

U LAYER 1

BEFORE POOL

LOW RES
BOTTLENECK

CONV & UPSAMPLE

U LAST LAYER

MANY DEEP LAYERS

Figure 4: Arm, back, sail
and engine signals are lost
via over-summarization and
ambiguous high-resolution
concatenations in a weakly-
supervised deep U-Net.

In Figure 4, we
show how activation
maps in a single
deep U suffer from
excessive summa-
rization, which the
weak supervisory sig-
nal is not sufficient
to repair despite
skip connections:
per-voxel strong su-
pervision is required.
Even though the
bottleneck layer cor-
rectly localizes parts,
multiple rounds of
subsequent upsam-
pling and ambiguous
detail introduced
from earlier layers
spread the signal out
incorrectly.

3.3. Training

In the weakly supervised setting, the WU-Net ar-
chitecture is trained in two phases. We found the two-
phase training to give better results than a single phase
alone. The phases are described below.

Phase 1 (no output segmentation map). In this
phase, the final segmentation branches are removed
and a simple classification layer is temporarily ap-
pended to the ‘WU’. This layer computes the max-
imum, over all voxels, of each of the 12 ‘WU’ out-
put channels, followed by a fully-connected map from
the 12 maxima to two outputs (the complete shape la-
bel, e.g. “armrest” vs “no armrest”). This network is
trained with cross-entropy loss until the classification
accuracies on both training and validation sets exceed
95%. Once this happens, we adjudge the network to
have high generalization accuracy and move to the next
phase. Further phase 1 training tends to overfit.

Phase 2 (with output segmentation maps). We
now remove the phase 1 classification layer, restore
segmentation branches, and train the whole network
end-to-end. We found benefit in slowly enlarging the
average-pooling kernel, starting from 0 (no pooling) for
50 epochs, followed by 10 epochs for each expansion of
the kernel. The best overall performance came from a
23 final kernel, and we report all comparative results
with this setting. However, for specific datasets larger
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Figure 5: The effect of increasing the kernel size in
average pooling. While here the largest kernel works
best, for categories with finer parts this is not so.

kernels may help further, as we show in our evaluation.
Generally, detection of larger salient parts is aided by
larger average pooling kernels (Figure 5).

Under strong supervision, we dispense with two-
phase training and final pooling, and directly train the
network end-to-end with a per-voxel cross-entropy loss
over the segmentation maps for each output label.

4. Results

We evaluate our method on standard datasets that
contain various semantic region labels. For weakly-
supervised segmentation, which is our principal focus,
our extensive comparisons suggest that WU-Net is a
“sweet spot” in the space of related architectures. We
also show that the same network performs strongly un-
der strong supervision on standard benchmarks.

4.1. Weakly Supervised Region Labeling

In these validation experiments, we test if our
WU-Net architecture successfully detects salient parts
that distinguish one category of shapes from another.
We collated six different pairs of fine-grained shape
classes, each pair distinguished by a prominent seman-
tic component. These classes were: (a) chairs with
and without armrests, (b) chairs w/wo backs, (c)
cars w/wo roofs, (d) airplanes w/wo wing-mounted
engines/propellers, (e) ships w/wo sails, and (f) beds
w/wo heads. Fine-grained classes (a-d) are available
in ShapeNet [1] with ground-truth labeled segmenta-
tions, although we had to collect chairs without backs
(stools) from ModelNet [25]. We annotated ships (e)
and beds (f) ourselves.

Each class was randomly split 50:50 into train/test
sets. Under weak supervision, segmentation/labeling
accuracy on the training set is as important as on the
test set. Still, the test set allows us to directly compare
with a strongly supervised baseline. Dataset statistics
are in Table 1. The meshes were voxelized with Bin-
vox [10]. Our data (and code) will be publicly available.

In evaluations presented in this section we report
area under the curve (AUC) for precision/recall
curves, where higher numbers indicate better per-

Shape category Part category Has part Lacks part

(a) Chair Armrest 481 1359

(b) Chair Back 150 75

(c) Car Roof 806 106

(d) Airplane Engine 1034 266

(e) Ship Sail 95 674

(f) Bed Head 19 4

Table 1: Weakly supervised segmentation dataset.

formance. Our method is labeled “WU-Net + sym-
metrization”. Full plots are in supplementary material.

Segmentation performance. Table 2 reports the
per-voxel labeling accuracy of WU-Net with identi-
cal hyperparameters (including 23 avg pooling and
symmetrization) and automatic training protocol in
the 6 weakly supervised segmentation tasks, on train-
ing shapes. (Training set segmentation accuracy is a
relevant performance metric under weak supervision.
When computing it, we do not use ground truth tags.
Test set performance is similar, see supplementary.)
For comparison we use these ablated alternatives:

• The saliency map of the trained WU-Net, com-
puted as the gradient of output w.r.t. input.

• WU-Net without skip connections, representing a
conventional fully convolutional architecture.

• WU-Net without the final U, dubbed W-Net.

• WU-Net without 2 of the U’s, just a single shallow
U, dubbed V-Net.

Further, we also test WU-Net without symmetrization.

WU-Net, with or without symmetrization, substan-
tially improves upon these alternatives. Training of the
ablated networks does not always converge. When it
does converge, V-Net and W-Net perform reasonably
well, though they don’t match WU-Net. The version
without skip connections is much worse.

In Table 3, we compare WU-Net with networks using
deep U’s. All outputs are symmetrized.

• A 3D analogue of the original U-Net [16], with one
deep U structure that repeatedly halves the grid
resolution to 43, then repeatedly doubles it back
to 643, with skip connections at every resolution.

• 2 and 3 deep U’s, linked with high and low skip
connections just like WU-Net.

• The above 3 networks, with Inception-style
blocks [21] at every layer. Each 53 kernel has 23

and 33 kernels also applied in parallel.

• A 3D version of a Stacked Hourglass Network
(SHN3D) [11], modeled as 3 deep U’s without low-
resolution skip connections between different U’s.

Deep 3D U-Net training converges, but it identifies in-
correct parts (e.g. chair seats, not backs). Apart from



Arm Back Roof Propeller Sail Bed

WU-Net 0.69 0.79 0.32 0.46 0.77 0.32
+ symmetrization

WU-Net 0.61 0.76 0.39 0.39 0.76 0.32

W-Net 0.54 0.73 0.09 0.06 0.55 0.15

V-Net 0.60 0.76 0.03 0.34 0.52 0.12

No Skip Connections 0.07 0.62 0.05 0.09 0.30 0.17

Gradient saliency 0.03 0.27 0.12 0.18 0.00 0.29
+ symmetrization

Table 2: AUC of WU-Net vs various ablations for
weakly-supervised segmentation (on training shapes).

Arm Back Roof Propeller Sail Bed

WU-Net 0.69 0.79 0.32 0.46 0.77 0.32
+ symmetrization

3 Deep U 0.03 0.19 0.03 0.01 0.22 0.21
(Inception)

2 Deep U 0.00 0.08 0.05 0.00 0.27 0.39
(Inception)

1 Deep U 0.04 0.19 0.04 0.14 0.54 0.13
(Inception)

3 Deep U 0.08 0.10 0.03 0.00 0.00 0.42

2 Deep U 0.05 0.47 0.03 0.00 0.27 0.10

1 Deep U 0.31 0.01 0.03 0.11 0.16 0.06

SHN3D 0.35 0.39 0.04 0.16 0.45 0.16

Table 3: AUC of WU-Net vs Deep U-Net variants
(symmetrized) for weakly-supervised segmentation (on
training shapes).

Arm Back Roof Propeller Sail Bed

WU-Net 0.71 0.73 0.35 0.42 0.84 0.37
+ symmetrization

Strong supervision 0.06 0.43 0.70 0.57 0.07 0.48
without classifier

Strong supervision 0.91 0.97 0.89 0.89 0.68 0.48
with classifier

Table 4: AUC of Weakly supervised WU-Net vs a
strongly supervised baseline (on test shapes).

a single deep U for chair armrests and a double deep
U for backs, the rest cannot identify meaningful parts.
This validates our use of shallow U’s for weakly super-
vised segmentation.

We also present visual examples of symmetrized
WU-Net output, for a threshold of 0.9, in Figures 1
and 7. In addition we also show some visual results
on swivel chairs, for which ground truth segmentations
were not available: the roller wheels were identified as
salient in these shapes. Visual results on all shapes in
our datasets are provided in supplementary material.

Comparison to a strongly supervised baseline.
For further insight, we train WU-Net with strong su-
pervision, with a single segmentation branch which is

Arm Back Roof Propeller Sail Bed

WU-Net 0.69 0.79 0.32 0.46 0.77 0.32
+ symmetrization

SF 0.25 0.43 0.45 0.51 0.12 0.87 0.53

SF 0.5 0.52 0.59 0.27 0.13 0.67 0.62

SF 1.0 0.49 0.37 0.39 0.18 0.65 0.34

SF 2.0 0.39 0.42 0.42 0.29 0.61 0.34

Table 5: AUC of WU-Net vs Shilane and Funkhouser
(SF) [16] at different scales (on training shapes). Note
that SF requires knowledge of ground truth tags at test
time, whereas our method does not use them.

Arm Back Roof Propeller Sail Bed

2x2x2 (default) 0.69 0.79 0.32 0.46 0.77 0.32

No avg pooling 0.63 0.67 0.32 0.54 0.70 0.31

4x4x4 0.49 0.42 0.05 0.26 0.77 0.32

8x8x8 0.08 0.23 0.00 0.01 0.58 0.33

Table 6: The statistical effect (AUC) of increasing the
kernel size for average pooling at the end of WU-Net.

thresholded for a precision-recall plot. (We cannot use
the strongly supervised variant of Section 4.2, because
it outputs the max over label branches per voxel, and
has no tunable threshold.) This strongly supervised
network is not a classifier, and hence can end up iden-
tifying a semantic part in a shape which lacks it. This
leads to very poor accuracy (Table 4). If we aid it by
using the trained weak network simply as a binary clas-
sification oracle (∼99% accurate), then it establishes a
high baseline as expected. This indicates the very valu-
able role shape tags play in identifying semantic parts.

Comparison to Shilane and Funkhouser [17].
There is little prior work on weakly supervised 3D
shape segmentation. The most relevant research is
by Shilane and Funkhouser, who identify distinctive
regions in different shape categories. While our sce-
nario is slightly different (fine-grained intra-category
differences), their method can be evaluated directly in
our training setup. (Note that S-F relies on ground-
truth shape tags to find distinctive regions. It does
not work in our test setup, where the shape tag is un-
known.) Table 5 shows results. The S-F results were

WU-Net +
symmetrization

Threshold 0.1

Threshold 0.9

Chair
Armrest

Chair
Back

Figure 6: Chair armrest and back detected indepen-
dently (red), vs detected in a multi-label setting for
different thresholds on the label classifier outputs.



ShapeBoost ShapePFCN 1SU 2SU WU-Net (3SU) 4SU 1DU 2DU 3DU 1DUI 2DUI 3DUI

Co-aligned 83.1 89.0 87.8 89.8 90.2 90.0 90.5 90.7 90.1 91.2 90.9 91.3

Randomly rotated - - 73.1 74.7 75.1 75.6 77.8 77.8 78.7 78.3 79.0 79.0

Table 7: Strongly-supervised segmentation and labeling accuracy (%), averaged over 16 categories, for test shapes
in ShapeNetCore, versus ShapeBoost [7] and ShapePFCN [6]. Different WU-Net-style variants have abbreviated
names: 3SU is a sequence of 3 shallow U’s (i.e. WU-Net), 1DUI is 1 single deep U (Inception-style); each variant
trained for 100 epochs. Full per-category statistics are in supplementary material.

not symmetrized – symmetrization slightly hurt results
because of false positives. In three out of six cases
(chair arms/backs, airplanes), WU-Net with default
settings significantly outperforms S-F at all manually
specified scale settings. In the other cases (cars, ships,
beds), WU-Net is a little worse, but the scales at which
S-F outperform it turn out to be dramatically subopti-
mal in other cases. On average, WU-Net significantly
outperforms Shilane-Funkhouser at any given scale.

The role of the average-pooling layer. The ker-
nel size of the average-pooling layer after the segmen-
tation map is a tunable hyperparameter that directly
affects the identified regions in a visually interpretable
way. For large semantic parts, a larger final kernel size
often yields better results. The effect is one of degree,
as seen in Table 6, and depends on the data. However,
we found that a fixed 23 kernel achieves good perfor-
mance in all cases, and this is the setting we present
for our fully automatic method and for all evaluations.

Multi-label weak supervision. What does
WU-Net predict when weakly supervised with multiple
shape-level tags? While this is not this paper’s focus,
we find in preliminary investigations the framework
can extend to some multi-label settings. For instance,
we trained a single WU-Net on chairs tagged with
“arm” and “back”, where either, both or no labels
could be present. (In fact, we could not find chairs with
arms but no backs.) This WU-Net had two branches,

one for each part label, and the segmentation map
from each branch was output if the classification score
exceeded a common threshold. In Figure 6, we show
the multi-label output, vs training a different binary
WU-Net for each part. While the multi-label scores
are competitive, especially considering the training
data lacks “arm but no back” combinations, they
do not exceed the binary results. Extending weakly
supervised 3D segmentation to a range of multi-label
scenarios is a ripe avenue for future work. A major
difficulty is that in real datasets, weak tags are often
strongly correlated (e.g. chair legs and seats). A small
amount of strong supervision may resolve this.

4.2. Strongly Supervised Region Labeling

The WU-Net architecture has the great advantage of
being directly deployable in a strongly supervised set-
ting, where per-point labels are available. We therefore
test it on a standard benchmark: ShapeNetCore [1].
This dataset has manually annotated ground-truth seg-
mentations for thousands of shapes in 16 categories.
We compare our method to a recent state-of-the-art
technique ([6]), using the same train/test splits. Our
performance is summarized in Table 7 (more details in
supplementary material). Since the benchmark shapes
are co-aligned, WU-Net can take advantage of this to
achieve state-of-the-art scores. However, WU-Net is
not designed to be rotation-invariant by default, unlike

Figure 7: Examples of weakly supervised segmentation by WU-Net. Left to right: detecting chair backs, car roofs,
wing-mounted airplane engines/propellers, ship sails, bed heads, and chair swivels.



ShapePFCN [6]. If we train and test with every shape
independently and randomly rotated, scores drop by
about 10-15%, since the network can no longer memo-
rize rough absolute locations for parts. This is a famil-
iar issue with voxel grid-based networks, and augmen-
tation with many more rotations may help.

We also compare with a wide variety of variant archi-
tectures, described in the previous section, and present
results in Table 7 (and full per-category results in sup-
plementary material). From these, we can infer the
following (especially from results with rotation): un-
der strong supervision, (a) deep U’s, (b) stacking mul-
tiple U’s, and (c) Inception-style networks all improve
performance a little. Combining all three factors yields
the highest accuracy. Note that this improvement does
not extend to weakly-supervised training.

4.3. Applications

We demonstrate the wide utility of our method with
three mockup applications that focus on organizing a
3D shape database. First, we enable part-sensitive
shape search (Figure 8) by computing a fine-grained
shape similarity metric that focuses only on a user-
selected tag (our simple implementation uses weighted
average distance between the salient voxels, after align-
ing centroids of salient regions). Since we map tags to
specific geometric regions, we can make queries like:
“find chairs with similar armrests”. Second, we show
fine-grained exploration of a shape dataset (Figure 9),
demonstrating that the entire dataset can be orga-
nized based on similarity metrics computed for a spe-

cific tag (our prototype uses the simple metric above),
providing users with different tag-focused views of the
database. Third, we demonstrate that our method fa-
cilitates better thumbnail creation (Figure 10) by fo-
cusing on salient regions that correspond to specific
tags. Automatically-generated thumbnails are com-
monly used for rapid browsing, and demonstrating im-
portant surface regions can provide better shape un-
derstanding for the user.

5. Conclusion

We presented a method to obtain fine-grained se-
mantic part annotations of 3D shapes from only weak
shape-level tags. It achieves this through a deep neural
network trained simply to classify the shape as possess-
ing or lacking the part. The novel structure of this net-
work, which forms our core technical contribution, en-
courages finding large consistent regions across shapes
that characterize the differentiating part. We also pre-
sented compelling results on strongly supervised seg-
mentation using the same network.

There are several avenues for future work enabled
by unstructured user annotations in public online 3D
repositories. It would be interesting to leverage natu-
ral language processing in addition to geometric analy-
sis to automatically infer salient shape tags and corre-
sponding parts from free-form shape descriptions pro-
vided by people. It would also be interesting to gener-
alize our network architecture to handle a larger and
more heterogeneous sets of tags, and to scale robustly
to multi-label settings.

Figure 8: Each row shows the
top 3 shapes with similar arm-
rests, detected by WU-Net, re-
trieved for the query in the first
column.

Figure 9: A t-SNE embedding of chairs or-
ganized by similarity of the “armrest” re-
gions detected by WU-Net. Below, we show
several zoomed-in regions of the image. The
larger icons on top represent diverse repre-
sentatives of the collection that can be ob-
tained from this similarity metric.

Figure 10: Different thumbnails
of the same shapes (first col-
umn) created to highlight de-
tected “armrest” (second col-
umn) and “back” (third col-
umn) regions.
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1. Weakly-supervised segmentation
precision-recall plots.

In Figures 1, 2, 3, 4, 5, 6, we present full precision-
recall plots from various experiments on weakly-
supervised segmentation, including ablation studies
and comparisons to prior work. The area under the
curve (AUC) statistics summarizing these plots are pre-
sented in the main paper.

2. More segmentation statistics and com-
plete visualizations

Tables 1, 2, 3 and 4 show the per-category perfor-
mance of different deep and shallow WU-Net variants
for strongly-supervised segmentation on the standard
ShapeNet dataset, on (a) the train/test splits from
Kalogerakis et al. [1], (b) on randomly rotated versions
of the shapes in these splits, and (c) the splits from
the recent ICCV challenge [4] (both accuracy and IOU
statistics) respectively. Different variants of WU-Net-
style networks are given abbreviated names: 3SU is a
sequence of 3 shallow U’s (i.e. WU-Net), 1DUI is 1
single deep U (Inception-style).

Our project website for this paper has visualizations
of all segmentations of shapes in our datasets under
both weak and strong supervision of WU-Net.

The performance of WU-Net on weakly-supervised
segmentation of test set shapes mirrors that on the
training set, as can be seen in Table 4 of the main
paper as well as the visualizations on the website.
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Figure 1: WU-Net (red) consistently outperforms a
Stacked Hourglass Network SHN3D (3 deep U’s without
low resolution skip connections between different U’s,
green) on all categories (on training shapes, outputs
symmetrized).
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Figure 2: WU-Net vs various ablations for weakly-supervised segmentation (on training shapes).

WU-Net + symmetrization 2 Deep U 3 Deep U 1 Deep U (Inception)1 Deep U 2 Deep U (Inception) 3 Deep U (Inception)

Chair
Armrest

Chair
Back

Car
Roof

Airplane
Engine

Ship
Sail

Bed
Head

Figure 3: WU-Net vs Deep U alternatives (symmetrized) for weakly-supervised segmentation (on training shapes).
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Figure 4: Weakly supervised WU-Net vs a strongly supervised baseline (on test shapes).
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Figure 5: WU-Net vs Shilane and Funkhouser (SF) [3] at different scales (on training shapes). Note that SF
requires knowledge of ground truth tags at test time, whereas our method does not use them.
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Figure 6: The statistical effect of increasing the kernel size for average pooling at the end of WU-Net.



Category #train/ #labels Shape- Shape- 1 SU 2 SU 3 SU 4 SU 1 DU 2 DU 3 DU 1 DUI 2 DUI 3 DUI
#test Boost PFCN (WU-Net)

Airplane 250/250 4 84.1 88.4 89.54 90.32 90.13 90.66 90.34 90.75 90.77 91.12 90.87 90.97

Bag 38/38 2 94.3 95.5 93.24 96.51 96.02 95.53 96.18 95.26 96.21 96.24 96.15 96.19

Bike 101/101 6 78.6 87.5 80.84 84.07 84.77 85.75 85.04 85.04 85.54 85.19 83.66 85.9

Cap 27/28 2 94.8 92 87.77 88.7 89.82 88.63 90.27 91.19 86.31 90.75 91.69 91.88

Car 250/250 4 75.5 86.6 88.91 89.61 89.44 89.67 89.7 89.87 90.02 90.13 90.15 90.17

Chair 250/250 4 71.9 83.7 90.47 92.01 91.82 91.9 92.24 92.01 92.11 92.32 92.3 92.4

Earphone 34/35 3 76 82.9 67.21 75.86 78.53 74.44 78.24 80.84 74.71 82.2 77.34 79.73

Guitar 250/250 3 86.9 89.7 95.89 96.22 95.98 96.09 96.22 96.23 96.19 96.26 96.23 96.29

Knife 196/196 2 84.1 87.1 83.81 90.33 90.96 92.42 91.57 91.34 91.37 91.69 91.83 90.91

Lamp 250/250 4 63.8 78.3 75.75 77.97 77.37 80.91 82.7 83.63 82.96 84.38 83.82 85.09

Laptop 222/222 2 79.4 95.2 96.86 96.57 96.61 96.63 96.33 96.48 96.51 96.56 96.62 96.84

Mug 92/92 3 98.1 98.1 98.94 99.09 99.05 99.17 99.14 98.81 99.16 99.16 99.14 99.15

Pistol 137/138 3 84.9 92.2 94.46 96.01 95.75 96.05 96.41 96.51 96.7 96.55 96.54 96.55

Rocket 33/33 3 83.2 81.5 75.64 75.35 79.94 75.36 76.29 76.98 75.61 77.93 78.05 79.73

Skateboard 76/76 3 89.6 92.5 94.54 94.32 94.66 94.23 93.91 92.97 93.62 94.33 94.36 94.36

Table 250/250 3 83.9 92.5 90.33 93.58 92.91 92.99 93.94 93.32 94.37 94.57 94.92 94.42

Category average 83.07 88.98 87.76 89.78 90.24 90.03 90.53 90.7 90.14 91.21 90.85 91.29

Table 1: Dataset statistics and strongly-supervised segmentation and labeling accuracy per category for test shapes
in ShapeNetCore, versus ShapePFCN [1] and ShapeBoost [2], using the splits from [1].

Category #train/ #labels Shape- Shape- 1 SU 2 SU 3 SU 4 SU 1 DU 2 DU 3 DU 1 DUI 2 DUI 3 DUI
#test Boost PFCN (WU-Net)

Airplane 250/250 4 84.1 88.4 70.15 80.76 78.83 76.99 79.77 80.54 78.54 79.97 81.29 80.88

Bag 38/38 2 94.3 95.5 93.67 93.2 92.45 93.49 93.09 93.5 93.01 93.04 93.69 93.22

Bike 101/101 6 78.6 87.5 73.17 71.98 73.86 74.63 71.73 72.65 73.35 71.92 72.18 72.22

Cap 27/28 2 94.8 92 73.43 70.79 72.98 72.54 70.23 68.22 74.31 73.37 72.84 75.03

Car 250/250 4 75.5 86.6 74.66 76.12 78.03 78.3 78.42 80.02 80.25 77.58 78.8 78.49

Chair 250/250 4 71.9 83.7 55.32 66.14 69.62 74.99 79.77 77.9 80.51 78.68 81.01 80.87

Earphone 34/35 3 76 82.9 61.93 65.75 66.98 65.44 66.9 68.52 66.02 65.97 64.42 66.4

Guitar 250/250 3 86.9 89.7 88.54 91.91 92.16 93.01 93.06 94.17 93.25 93.65 93.4 93.66

Knife 196/196 2 84.1 87.1 71.33 71.55 70.24 71.01 79.24 80.25 78.04 80.05 79.02 79.61

Lamp 250/250 4 63.8 78.3 58.5 58.65 60.63 64.05 66.68 65.87 68.64 71.14 69.34 70.98

Laptop 222/222 2 79.4 95.2 53.91 56.36 54.39 51.64 57.12 50.6 57.71 62.18 62.64 62.43

Mug 92/92 3 98.1 98.1 95.77 97.29 97.5 97.58 96.86 97.26 96.14 96.55 96.41 96.37

Pistol 137/138 3 84.9 92.2 67.2 61.88 66.69 65.06 77.14 77.87 76.92 74.59 74.71 74.11

Rocket 33/33 3 83.2 81.5 71.96 70.85 69.26 70.72 67.12 69.24 68.43 67.59 72.09 69.86

Skateboard 76/76 3 89.6 92.5 84.98 85.5 85.08 84.85 82.31 82.3 86.42 80.84 85.51 82.92

Table 250/250 3 83.9 92.5 74.77 76.9 73.45 75.34 85.27 86.32 86.89 86.19 87.29 87.05

Category average 83.07 88.98 73.08 74.73 75.14 75.6 77.79 77.83 78.65 78.33 79.04 79.01

Table 2: Dataset statistics and strongly-supervised segmentation and labeling accuracy per category for randomly
rotated test shapes in ShapeNetCore, versus ShapePFCN [1] and ShapeBoost [2], on the splits from [1].



Category #train/ #labels 1 SU 2 SU 3 SU 4 SU 1 DU 2 DU 3 DU 1 DUI 2 DUI 3 DUI
#test (WU-Net)

Airplane 1958/341 4 87.46 89.18 89.61 89.73 90.4 90.16 90.32 90.51 90.65 90.74

Bag 54/14 2 93.51 90.96 93.44 92.83 96.02 95.57 95.74 96.12 96.43 96.56

Bike 125/51 6 75.35 75.89 86.36 86.9 73.64 77.78 87.1 86.95 86.1 86.83

Cap 39/11 2 88.32 87.01 87.4 87.24 83.35 86.72 88.38 90.62 87.47 85.63

Car 659/158 4 89.24 90.34 90.41 90.49 90.25 89.94 90.19 90.24 90.21 90.42

Chair 2658/704 4 91.16 92.93 93.13 93.4 93.85 93.91 93.92 93.95 94 93.98

Earphone 49/14 3 70.54 90.35 91.6 91.61 91.68 92.1 92.52 87.3 91.5 91.64

Guitar 550/159 3 95.63 95.75 95.65 95.89 96.11 95.96 95.66 95.88 96.05 95.89

Knife 277/80 2 83.28 90.8 91.98 90.7 91.93 91.08 90.77 92.31 91.83 91.49

Lamp 1118/296 4 73.87 78.21 78.38 80.49 88.27 88.18 87.19 88.1 86.47 87.83

Laptop 324/83 2 96.66 96.88 96.79 97.23 96.15 95.9 95.56 96.73 96.51 96.8

Mug 130/38 3 99.29 99.43 99.42 99.39 99.44 99.46 99.4 99.34 99.38 99.43

Pistol 209/44 3 92.94 94.46 94.33 94.85 95.84 95.98 96.01 95.91 95.85 96

Rocket 46/12 3 75.11 73.67 74.46 74.76 72.93 69.85 74.94 71.45 74.01 74.2

Skateboard 106/31 3 94.5 94.13 93.73 94.1 94.68 94.85 94.57 94.19 93.9 94.34

Table 3835/848 3 85.25 87.03 88.94 88.14 93 92.64 92.17 94.38 93.78 92.22

Category average 87.01 89.19 90.35 90.48 90.47 90.63 91.53 91.5 91.51 91.5

Table 3: Dataset statistics and strongly-supervised segmentation and labeling accuracy per category for test shapes
in ShapeNetCore on the new splits from the ShapeNet ICCV Challenge [4].

Method avg plane bag cap car chair earphone guitar knife lamp laptop bike mug pistol rocket skateboard table

2 DUI 83.13 81 83.2 75.2575.22 89.04 71.68 89.24 84.15 75.85 93.46 69.27 94.19 81.38 54.34 73.39 80.86

1 DUI 82.89 80.83 81.8 81.1675.31 89.02 60.22 88.93 84.99 77.72 93.37 70.12 93.9 82 50.28 72.46 80.12

3 DUI 81.12 80.9 83.4 73.1 75.93 89.04 73.94 89.13 83.59 77.1 93.51 69.44 94.7 82.61 47.32 72.7 74.52

3 DU 81.13 80.35 78.9176.6775.63 88.87 74.96 88.16 82.94 75.56 92.53 69.17 94.49 82.22 49.6 73.77 75.39

1 DU 81.03 80.42 81.7568.8273.95 88.81 73.97 89.82 84.34 76.64 92.85 29.7 94.78 82.18 48.69 71.95 77.47

2 DU 80.97 79.91 79.56 74 74.36 88.75 70.5 89.08 83.12 75.45 92.93 34.75 94.92 82.95 46.14 74.15 77.38

4 SU 79.84 77.19 68.7976.5275.01 87.41 68.59 89.54 83.16 68.08 93.96 68.63 94.28 80.07 50.07 71.57 74.91

3 SU 79.35 76.51 71.2 76.3975.07 86.95 69.24 89.08 84.64 66.87 93.26 61.91 94.66 77.18 51.56 71.04 74.62

2 SU 77.87 75.31 59.0174.6874.35 86.24 68.46 89.15 82.75 63.03 93.34 25.04 94.71 77.49 44.69 71.73 74.32

1 SU 74.35 70.86 73.4678.0669.05 81.31 37.21 88.49 71.97 58.67 93.01 24.66 93.73 74.71 46.46 73.23 72.23

Table 4: IOU scores for different versions of Deep and Shallow-U networks for strongly-supervised segmentation
of test shapes in ShapeNetCore on the new splits from the ShapeNet ICCV Challenge [4].


