OptCuts: Joint Optimization of Surface Cuts and Parameterization

MINCHEN LI, University of British Columbia & Adobe Research

DANNY M. KAUFMAN, Adobe Research
VLADIMIR G. KIM, Adobe Research

JUSTIN SOLOMON, Massachusetts Institute of Technology

ALLA SHEFFER, University of British Columbia

Eg =8 5‘
Ey =40
Input

boundary cuts @

Iteration 417

interior cuts

Iteration 815\

Iteration 930 (Output)

Fig. 1. Starting from an initial embedding (left), we show the iteration process of our OptCuts algorithm jointly optimizing surface cuts and mapping distortion
while enforcing global bijectivity. OptCuts iteratively updates continuous changes in the embedding vertices and discrete topological changes in the UV mesh
by propagating simple and local topology splitting and merging operations. In this example a distortion bound of 4.1 is enforced, measured by the symmetric
Dirichlet distortion energy [Smith and Schaefer 2015]; we report total inner iterations at each rendered frame.

Low-distortion mapping of three-dimensional surfaces to the plane is a
critical problem in geometry processing. The intrinsic distortion introduced
by these UV mappings is highly dependent on the choice of surface cuts
that form seamlines which break mapping continuity. Parameterization
applications typically require UV maps with an application-specific upper
bound on distortion to avoid mapping artifacts; at the same time they seek to
reduce cut lengths to minimize discontinuity artifacts. We propose OptCuts,
an algorithm that jointly optimizes the parameterization and cutting of a
three-dimensional mesh. OptCuts starts from an arbitrary initial embedding
and a user-requested distortion bound. It requires no parameter setting
and automatically seeks to minimize seam lengths subject to satisfying the
distortion bound of the mapping computed using these seams. OptCuts
alternates between topology and geometry update steps that consistently
decrease distortion and seam length, producing a UV map with compact
boundaries that strictly satisfies the distortion bound. OptCuts automatically
produces high-quality, globally bijective UV maps without user intervention.
While OptCuts can thus be a highly effective tool to create new mappings
from scratch, we also show how it can be employed to improve pre-existing
embeddings. Additionally, when semantic or other priors on seam placement
are desired, OptCuts can be extended to respect these user preferences as
constraints during optimization of the parameterization. We demonstrate the
scalable performance of OptCuts on a wide range of challenging benchmark
parameterization examples, as well as in comparisons with state-of-the-art
UV methods and commercial tools.

CCS Concepts: « Computing methodologies — Mesh geometry mod-
els;

Authors’ addresses: Minchen Li, University of British Columbia & Adobe Research;
Danny M. Kaufman, Adobe Research; Vladimir G. Kim, Adobe Research; Justin Solomon,
Massachusetts Institute of Technology; Alla Sheffer, University of British Columbia.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

© 2018 Association for Computing Machinery.

0730-0301/2018/11-ART247 $15.00

https://doi.org/10.1145/3272127.3275042

Additional Key Words and Phrases: geometry processing, mesh parameteri-

zation, seam placement, numerical optimization

ACM Reference Format:

Minchen Li, Danny M. Kaufman, Vladimir G. Kim, Justin Solomon, and Alla
Sheffer. 2018. OptCuts: Joint Optimization of Surface Cuts and Parameter-
ization . ACM Trans. Graph. 37, 6, Article 247 (November 2018), 13 pages.
https://doi.org/10.1145/3272127.3275042

1 INTRODUCTION

Mapping three-dimensional meshes to the plane is a fundamen-
tal task in computer graphics. The two-dimensional mesh embed-
dings produced by mapping methods are commonly used to store
reflectance functions, normals, and displacements for the mesh, pro-
viding a domain for painting, synthesizing, and manipulating texture
and geometric details. The usability of these embeddings is highly
dependent on two interconnected factors: the surface distortion
introduced by the mapping, and the quality of the surface cuts form-
ing seams across which the mapping is discontinuous [Hormann
et al. 2007]. Both high distortion and longer seams are detrimental to
downstream applications. Yet, reducing distortion below a desired
bound typically requires introducing longer seams.

Given its broad applicability, parameterization has long been a
focus of research in geometry processing. Algorithms in this domain
focus on these two key aspects of the problem [Sheffer et al. 2007].
Particularly well-studied are geometric techniques that assume a sur-
face has already been cut into disk-topology segments, which then
need to be mapped into the plane with minimal distortion while
maintaining fixed connectivity; at this point, parameterization be-
comes a real-valued optimization problem that seeks to minimize
changes in mesh angles and areas while maintaining local or global
injectivity. Complementing these techniques, topological algorithms
find reasonable seams, either keeping the surface in one piece or par-
titioning it into individual segments that can then be parameterized
with low distortion.

ACM Transactions on Graphics, Vol. 37, No. 6, Article 247. Publication date: November 2018.

https://doi.org/10.1145/3272127.3275042
https://doi.org/10.1145/3272127.3275042

247:2 « Li, M. et al

In contrast, we propose a joint optimization algorithm OptCuts
that simultaneously optimizes for both seams and the correspond-
ing distortion of the embedding. Our algorithm is based on a mini-
mization model problem that directly and automatically balances
between seam length and parametric distortion measures. Manually
balancing distortion and seam quality requires a choice of a relative
scaling factor between these two objectives. From a practical per-
spective, it is difficult for users to choose this factor as the two terms
measure very different quantities and no such setting can provide a
guarantee on the quality of the generated map’s distortion. On the
other hand, users typically have a clear sense of the amount of distor-
tion they consider acceptable for their application. Motivated by this
observation we propose coupled seam and distortion optimization
as a constrained problem to find charts with locally minimal seam
lengths that strictly satisfy a user-set distortion bound. Treating
the distortion bound as a hard inequality constraint guarantees a
pre-specified level of mapping quality, while enabling us to explore
optimal seams that satisfy this bound.

Prior methods coupling distortion reduction and cutting have
generally required hand-tuning a number of user-exposed parame-
ters and, as in the recently proposed AutoCuts [Poranne et al. 2017],
even advocate manual intervention by interactively adjusting these
parameters during the optimization process.

In contrast, OptCuts is a fully automatic optimization method:
users provide their desired distortion bound and OptCuts then di-
rectly computes a parametrization satisfying this bound while mini-
mizing seam lengths. While artists often also seek seam locations
that will help hide cuts and/or preserve symmetries we focus here on
seam length as a general-purpose quality measure. Maps provided
are always locally injective and, as we will show, can additionally
be constrained to be bijective and support additional, user-provided
seam placement constraints and biases when desired. As demon-
strated by our comparisons in Section 7, when compared to previous
methods that do provide an automatic mode [Poranne et al. 2017;
Sorkine et al. 2002], OptCuts produces much shorter seams when its
bound is set for the same achieved distortion. Likewise, as we show
in Section 7.5, e.g. Figure 13, OptCuts can also be used to polish
pre-existing UV maps. OptCuts can take an arbitrary UV map as
input and improve either seam length while preserving the current
distortion bound or even improve upon distortion as well, by setting
a lower distortion bound.

To achieve these gains we begin by casting global parameteriza-
tion as a constrained minimization, formulated with seam length as
our objective and a distortion bound as our inequality constraint. We
then observe that the Lagrangian of this constrained minimization’s
saddle-point problem directly gives a multi-objective optimization
formed by the weighted sum of our seam length measure and map
distortion. However, the key observation here is that now there is a
natural scaling implied between the two measures that is directly
defined by the Lagrange multiplier of the distortion bound. Reg-
ularization of iterated updates to this multiplier then allow us to
smoothly explore variations of the Lagrangian over the space of
seam cuts.

Next, we observe that to solve this saddle-point problem we
must optimize over both smooth vertex parameters and discrete
changes in topology. Exhaustive search is clearly not an option.

ACM Transactions on Graphics, Vol. 37, No. 6, Article 247. Publication date: November 2018.

Instead, we propose a discrete-continuous optimization method that
explores decrease of distortion and seam length over both classical,
smooth descent directions and along propagations of topological
merging and cutting operations on the UV mesh. When desired,
we additionally enforce constraints to achieve globally bijective
maps. Finally, we further allow UV artists the option to guide seam
placement away from salient regions by enabling painting over the
surface. OptCuts then avoids seam placement in these regions in
proportion to the intensity of the painting.

Together, these components form the core of our OptCuts al-
gorithm. Over a wide range of examples we show that OptCuts
efficiently achieves all attempted distortion bounds while minimiz-
ing seam length for both locally injective and bijective mappings.
In Section 7 we compare against both state of the art algorithms
and industrial UV-parameterization tools and show that for the
same achieved distortion bound, we consistently improve seam-
length over prior automated methods, while our automated results
closely match with the results of hand-tuned methods. We also eval-
uate OptCuts over a large benchmark of parametrization problems,
demonstrating that across mesh scales and problem difficulties Opt-
Cuts successfully obtains user-specified distortion bounds while
efficiently minimizing seam length.

Contributions. To our knowledge, OptCuts is the first fully au-
tomated global parameterization algorithm that obtains bijective
maps satisfying prescribed distortion bounds while minimizing seam
length. To do so we first propose a new, simple-to-state, constrained
seam-length minimization model problem. We then solve our prob-
lem by our proposed discrete-continuous algorithm for the saddle-
point problem using a combined discrete search over propagated
mesh operations and smooth descent over vertex positions. We eval-
uate OptCuts to show efficient performance and scaling. Across
a wide range of automated methods it improves over the state of
the art, while automatically obtaining comparable quality results to
hand-tuned parameterization methods.

2 RELATED WORK

Surface parameterization is a fundamental geometry processing
problem that has been extensively researched [Hormann et al. 2007;
Sheffer et al. 2007]. Much of the literature treats surface cutting and
distortion minimizing parameterization as two separate, sequential
tasks; only a handful of methods, discussed below, address these
two goals in tandem.

Parameterization with fixed connectivity. A significant body of
work takes three-dimensional surfaces with fixed connectivity and
disk topology and embeds them in the plane. A primary distinction
between these methods is often in the choice of distortion metrics
they seek to minimize. While multiple methods focus on minimizing
angular distortion [Aigerman and Lipman 2015; Floater 2003; Lévy
et al. 2002; Sawhney and Crane 2017; Sheffer et al. 2005], others
seek to produce more isometric parameterizations that account
for triangle stretch [Claici et al. 2017; Hormann and Greiner 2000;
Rabinovich et al. 2017; Sander et al. 2001; Shtengel et al. 2017; Smith
and Schaefer 2015].

OptCuts: Joint Optimization of Surface Cuts and Parameterization « 247:3

Many of these methods produce parameterizations that are not
necessarily globally bijective. Recent methods obtain global bijectiv-
ity by initializing with a bijective map and then explicitly prevent-
ing both local and global overlaps during subsequent optimization
steps [Jiang et al. 2017; Smith and Schaefer 2015]. OptCuts sup-
ports enforcement of global bijectivity by extending the scaffolding
method of Jiang et al. [2017] with rapid meshing updates and ad-
ditional distortion energies distributed on so-called air-meshes in
void regions between UV-mesh boundaries. In concert with these
scaffolds we optimize both mesh vertex positions and topology to
jointly improve mapping distortion and seam quality.

A number of seamless parameterization approaches have also
been recently proposed [Kharevych et al. 2006; Myles and Zorin
2013]. While these methods still can generate discontinuities in their
embeddings they ensure that parameterization across seams are con-
tinuous up to a rigid transformation. They typically place seams by
connecting cone singularities, discrete points on the surface where
the mapping is discontinuous, to existing boundaries. While this
is desirable for applications such as inter-surface mapping [Aiger-
man et al. 2015] and quad meshing [Ray et al. 2006], benefits are
not obvious for storing surface signals, such as texture in atlases.
Likewise, discontinuities still lead to artifacts thus spurring recent
work [Liu et al. 2017; Ray et al. 2010] focused on manipulating tex-
tures to hide sampling artifacts produced by discontinuities. These
texture-manipulating methods continue to appreciate shorter seams,
further motivating our decision to focus on reducing seam lengths.

Separate Cut Computation. The purely geometric methods above
rely on the multitude of existing methods that cut or segment meshes
prior to parameterization [Julius et al. 2005; Lévy et al. 2002; Shef-
fer and Hart 2002; Snyder et al. 2003; Vallet and Lévy 2009]. Since
the cutting is done before parameterization, these methods rely
on proxy metrics as a predictor of anticipated mapping distortion.
Consequently, achieving a desired distortion bound with these tools
requires trial and error hand-tuning as users need to provide the
right proxy parameter thresholds that will eventually result in the
amount of distortion they ultimately wish to achieve. OptCuts com-
bines the two tasks of cutting and parameterizing, enabling users to
directly control the resulting tradeoff between mapping distortion
and seam length.

Simultaneous Cutting and Parameterization. Motivated by the
need for joint reasoning over distortion and seam placement, a few
methods directly consider mapping distortion while making cutting
choices. Sorkine et al. [2002] parameterize a surface triangle-by-
triangle, introducing cuts when distortion exceeds user-prescribed
bounds. Due to this locality, this generally introduces longer than
necessary output seams to achieve a given bound [Hormann et al.
2007; Poranne et al. 2017]. Starting with an input parameterization
Gu et al. [2002] repeatedly introduce cuts connecting the current
boundary with distortion maxima in the current parameterization.
This process terminates once distortion falls below a given bound.
This aggressive approach works well in the presence of a few distor-
tion extrema, but becomes less effective as the distortion becomes
more evenly distributed (Figure 12, left). OptCuts performs equally
well in both scenarios (Figure 12, right).

Most recently Poranne et al. [2017] proposed AutoCuts—a method
that optimizes the weighted sum of a seam-penalty energy and the
symmetric-Dirichlet distortion energy [Smith and Schaefer 2015]
for parameterization. AutoCuts effectively treats the UV-mesh as a
fixed topology triangle soup and uses its seam-penalty energy to pull
triangles together. AutoCuts provides two usage settings: the first
is interactively driven by direct user guidance throughout the opti-
mization iteration process; and the second is fully automated. It is
primarily targeted towards the user-assisted parameterization mode
and provides multiple ways for users to interact with the system.
OptCuts complements AutoCuts in its focus on efficiently serving
settings where users want to obtain parameterizations automati-
cally. In this automatic setting, OptCuts consistently outperforms
AutoCuts in terms of distortion to seam-length trade-off as well as
in timing and scalability; see Section 7.2 and Table 2.

In both automated and user-guided modes AutoCuts requires
users to pre-select a balancing factor between the seam penalty and
distortion terms in its multi-objective. Unfortunately, there is no
intuitive, nor direct mapping between this balancing factor and the
resulting distortion obtained per example. Similarly, although in the
limit of stiffness the seam-penalty term would remove all cuts, there
is no direct mapping between this penalty term and a meaning-
ful measure of seam length. Consequently, AutoCuts requires trial
and error, achieved via user interaction, to achieve the distortion
versus seam-length tradeoffs users generally envision. Addressing
these needs, OptCuts optimizes directly on the two quantities users
typically want to control in parameterization—seam length and
mapping distortion. OptCuts allows users to provide a hard bound
on distortion and then automatically finds a mapping that satisfies
this bound while keeping seam length small. This enables users to
more easily communicate their intent and to generate the UV-maps
they seek.

3 PROBLEM STATEMENT

Given an input triangle mesh M = (V, F) of a three-dimensional
surface with vertices V, and faces F, we seek its UV embedding with
connectivity T* = (V7+, Fr+) and a corresponding two-dimensional
embedding of vertex coordinates, U* € R2!V7*|, that locally opti-
mizes the constrained parametrization problem

minEg(T) s.t. Eg(T.U) <bg and (TLU)eI. (1)

Here V7« is a superset of V with possibly duplicated vertices, and Fr+
is the set of original faces indexed into this new set of vertices. We
use 7 to define the set of either locally injective or globally bijective
UV maps; in the following we will first initially focus on the locally
injective set and then discuss the extension to globally bijective
maps (Section 6.4). Energies Eg and E; respectively measure seam
quality (length) and map distortion while b, is a user-specified
upper bound on the acceptable distortion of the generated map. This
optimization is always feasible as in the limit having all triangles
separated would allow for zero distortion.

In general, distortion measures are smooth albeit nonconvex, while
seam length measures are nonsmooth as they increase by discrete
amounts when interior mesh edges are cut along or seam edges are
merged. Hence, generic optimization techniques cannot be easily

ACM Transactions on Graphics, Vol. 37, No. 6, Article 247. Publication date: November 2018.

247:4 « Li, M. et al

applied to our setting; instead, we need to design a tailored opti-
mization method that addresses both challenges.

3.1 Dual Objective

As a first step toward solving the problem at hand, we construct the
Lagrangian for (1)

L(T,U,A) = Es(T) + ME4(T,U) — by), (2)

to form the equivalent saddle-point problem [Bertsekas 2016] de-
fined over primal variables T, U and dual variable A:

i L(T,U,). 3
R U)

Here A € Ry is the Lagrange multiplier for our distortion bound. On
examination the Lagrangian L can be seen as a multi-objective bal-
ancing between distortion and seam quality as dictated by A. Here,
however, 1 effectively applies a local scaling between the seam
and distortion terms that is implied by the user-specified distortion
bound. As we iterate to solve (1), A will grow when we threaten
to violate our distortion bound prioritizing distortion minimiza-
tion; similarly, A will decrease toward 0 when our bound is strictly
satisfied to prioritize seam quality.

3.2 Embedding Energy

Concretely we formulate our seam-quality energy as the normalized
total seam length

1
Es = ——=—) leil 4)

VEier 1AD)/n ZS

where § is the set of all seam edges on the input surface and |e;] is
the length of edge i in the input mesh. We measure distortion over
the mapped domain using the symmetric Dirichlet energy [Smith

and Schaefer 2015] normalized by surface area !,

1

- 2 2 -2 —2
d= Sicr [Ar] Z |Atl(op) + 07, + 0,1 +0,3), (5)

tefF

where 7 is the set of all triangles, |A;| is the area of triangle t on the
input surface, and oy, ; is the i-th singular value of the deformation
gradient of triangle ¢.

3.3 Adding Global Bijectivity

Most applications or UV embeddings require global bijectivity. Fol-
lowing the observations of Jiang et al’s [2017] we realize this addi-
tional constraint on our mapping by first triangulating the outer,
void regions of each iteration’s updated UV map and then augment-
ing our distortion energy E; with an additional term, not included in
the distortion bound constraint, that prevents the added void-space
triangles from collapsing during each optimization iteration. For
details see Section 6.4.

!For simplicity we focus on symmetric Dirichlet here; alternate distortion energies
follow similarly.

ACM Transactions on Graphics, Vol. 37, No. 6, Article 247. Publication date: November 2018.

4 OPTIMIZATION FRAMEWORK FOR OPTCUTS

We solve our constrained optimization problem (1) by recasting it
as a the saddle-point problem in (3). We start from an initial, valid
UV map (T°, U°) and set our dual variable as A° = 0. OptCuts then
iteratively alternates between primal solves designed to improve
geometry, (T, U), and dual solves updating our multiplier, A, encod-
ing the new balancing term between distortion and seam quality
for the next primal solve we take. See Algorithm 1.

4.1 Primal Update

Our kth primal update is a joint discrete-continuous search over
variations in geometry to minimize the weighted sum of seam length
and distortion energies in our Lagrangian (2). We hold the current
iterate’s dual variable, Ak, fixed and initialize with the last iterate’s
geometry (Tk=1, Uuk-1y,

We initially experimented with solving our primal problem by
approximating topology change with non-smooth energies on du-
plicated vertices of the input mesh, in a manner similar to Auto-
Cuts [Poranne et al. 2017]. Unfortunately, this quickly led to prob-
lems with strongly ill-conditioned real-valued optimization and
prevented scaling to larger meshes.

To counter these challenges we directly optimize in alternating
inner steps searching over changes in topology T and vertex po-
sitions U. These inner iterations loop until we reach a stationary
point, giving us iterate k’s newly updated geometry (Tk,U¥); see
Algorithm 1.

Each vertex step of the primal update performs a single iteration of
Newton-type, smooth descent with line-search towards minimizing
our distortion energies over vertices U while holding topology, T,
fixed. As our distortion energies, including symmetric Dirichlet,
are generally nonconvex we employ the projected-Newton [Teran
et al. 2005] approximation of the Hessian. This is then coupled
with search of topology changes to form a customized discrete-
continuous topology search method. We defer discussion of the
details of this component to Section 5.

4.2 Dual Update

Our Lagrangian in (3) is nonsmooth in 2. When we exceed the
distortion bound, i.e., E4(T,U) > by, we have A = oo; when on
boundary of the feasible set, E;(T,U) = by, we have a finite A € R,
and finally, in the strict interior of the set of feasible distortions, we
have A = 0. While these conditions nicely characterize optimality,
we need a way to iterate on A towards the solution in a smooth and
robust manner irrespective of whether we are locally exploring a
feasible or infeasible distortion.

At iteration k we thus smoothly approximate the multiplier’s
behavior by adding a simple quadratic regularizer to the Lagrangian.
This keeps the updated multiplier proximal to the previous iterate’s
estimate via Powell’s extension [Powell 1973] of the Augmented
Lagrangian to the inequality constrained setting,

i Es(T) + A(E(T,U) = by) — (A — AF~1)2, 6
mip max s(T) + (d(,) d) 5 () (6)

At each iteration, to find 1% we simply fix vertices and topology
to (Tk=1, U*~1). Optimality of (6) then gives us our corresponding

OptCuts: Joint Optimization of Surface Cuts and Parameterization « 247:5

dual update in closed form

AF e max (0, (Eg(TF1, UKy = by) + 2F77). (7)

5 COUPLED DISCRETE-CONTINUOUS DESCENT

To perform our primal update, we seek to minimize the Lagrangian
over both continuous changes in vertex positions and discrete
changes in topology. To optimize over topology we could poten-
tially perform exhaustive search over the graph of all possible mesh
changes. This approach, however, is intractable for any practical
mesh size. Instead, we construct a local search algorithm for topo-
logical updates that is inspired by the standard descent process of
optimizing a smooth energy over vertex positions.

For smooth descent methods it is standard to formulate a local ap-
proximation of the energy function, use it to estimate the direction
for the gradient descent step, and then search along the proposed di-
rection to find the step magnitude that ensures significant decrease
in energy. We extend this process to include search over discrete
variations in topology. In analogy to seeking a continuous search
direction, at the start of each new primal solve we will build many
localized energy approximations to search for a likely candidate
mesh operation to repeatedly propagate topology change, i.e., cut-
ting or merging, over our UV mesh. Each inner iterate of the primal
solve will successively apply this operation in combination with
standard smooth descent to explore discrete-continuous descent
until no further progress is made.

In the remainder of this section we formulate the energy model
that is used to evaluate the candidate topology operations (Sec-
tion 5.1), enumerate the topology operations used in our algorithm
(Section 5.2), explain how we find the search direction (Section 5.3),
and iteratively explore the identified direction (Section 5.4).

5.1 Energy Model for Topology Updates

We next devise an approximate energy model to efficiently estimate
the effect of a potential topological change. To keep our notation
simplified, in the following we use i or j to index the inner loop of
the primal update and k for indexing the outer loop. At each outer
iterate k, the locally optimal Lagrangian for any proposed topology
T is

o(Th = min L(TL,U) = E¢(T?) + A mUinEd(T", U). ®)

Then, for any valid topology-changing operation, o™/ : T? — T/, the
resultant change in Lagrangian is AL(o>/) = £(T/) - £(T"). We seek
a valid operation that will produce large decrease in the Lagrangian.

Since minimizing over U for every potential topology change is
impractical for large meshes, we start from a known (Ti, Ui), and
approximate the change in Lagrangian by restricting the distortion
update to the locally changed vertex stencil U/ of the applied topo-
logical operation o/, We construct this stencil to include only the
vertices affected by the topological operation and their immediate
neighbors. We hold all other vertices Us, shared in common with
T, fixed in the mesh to the same positions previously held in U*.
Thus vertex positions after the update are U/ = (U%/, Us). Our
approximate change in Lagrangian is then

d(0™)) = Es(T") + 2 min Eq (T', (U™, Uy)) - LT, U%, 25). (9)
Ui.Jj

Evaluating d requires solving continuous distortion optimization
with respect to stencil vertices U"/. We use Newton-type smooth
descent for this; see Section 6.3 for details.

5.2 Local Topological Operations

We consider descent with topology changes induced by three mesh
operations.

Boundary Vertex Split. Boundary vertices can be split along any
interior incident edges. Each such candidate split generates two
duplicate vertices forming the stencil to compute d. When splitting
a boundary vertex along an edge
connecting to another boundary .
vertex, we either remove a hole or = s
else produce a new chart in our
UV map. For the latter case, we boundary split
generate four duplicate vertices forming the stencil to compute d.

Interior Vertex Split. Interior
vertices can be split along any pair
of incident edges. Each such candi-
date split generates two duplicate
vertices forming the stencil to compute d.

=»

interior split

Corner Merge. Corners are formed by three UV vertices corre-
sponding to the tail edge of a cut seam on the input surface. Merging
the end vertices generates a single new vertex forming the sten-
cil to compute d. Merging requires extra care here. Unlike vertex
splitting, an initial location for
the newly merged vertex must be % = %
selected. Naive merging can vio-
late local injectivity and so pre- corner merge
vent progress if we are working
with barrier-type energies like symmetric Dirichlet. We initialize a
merged vertex to the average of its parent vertices. If inversion is
detected, we then apply Agmon’s relaxation [1954] to project to an
inversion-free position iteratively. On rare occasions this will not
suffice and so we remove the proposed operation from our queue.

5.3 Topology Search Candidates

In analogy to computing a continuous search direction, at the start
of each new primal solve we search for a candidate mesh operation
to propagate descent. We first consider boundary vertex splits orig-
inating at one of m boundary vertices in the current topology Tk,
To reduce unnecessary computational overhead we select a subset
of Mpoundary = m?-8 boundary vertices that might have the largest
effect on the energy. To estimate the priority, we compute the stan-
dard deviation over all the distortion energy gradients acting on
the boundary vertex contributed from incident elements. We then
pick boundary vertices with largest deviation, i.e. where distortion
might best be alleviated by cutting. We use the selected vertices to
initiate boundary vertex splits, and consider all current seams for a
corner merge, building a set ok of potential topological operations.
We then find a minimizer for the first topological change:

0,1

0" = argmind(o). (10)

0eOk

ACM Transactions on Graphics, Vol. 37, No. 6, Article 247. Publication date: November 2018.

247:6 « Li, M. et al

Since we use local support for vertex stencils, all queried d in this
minimization can be efficiently evaluated in parallel.

It is possible for none of the boundary cuts to yield a decrease in
energy (i.e., d(0®1) > 0). In this case, we consider initiating a new
seam via an interior vertex split. In a similar process, we then pick
Minterior = (n — m)®8 interior vertices with the largest deviation of
distortion energy gradients, and build OK as the set of all interior
vertex splits on those vertices. We select the d-minimizing interior
split operation 0% € O using (10). Once we identify the best
topological change 0%1, i.e. our search direction, we next expand it
via iterative propagation.

5.4 lterated Search, Propagation and Descent

We propagate the best seed topological operation 0% ! by iteratively
applying operations of the same type (a boundary or interior split,
or a merge). During the primal update we alternate between propa-
gating topological change, updating T?, and a smooth coordinate
update on U'.

Each topology propagation step first generates a set of all possible
mesh operations (0’1, T?) that could continue to propagate the
previous operation o'~/ on the current topology T%; e.g., all valid
edges to extend an existing seam at its tail. Figure 2 illustrates how
we propagate each type of topological operation. Here we then pick
a d-minimizing operation from this small set of candidate operations
for our next operation to apply,

obitl = argmin d(0). (11)

o0& (011, TH)

Since each change in topology alternates with smooth coordinate
descent and we wish to come close to a local minimized of distortion
in each primal solve, we work to avoid introducing too many topo-
logical changes as long as the coordinate update provides significant
energy improvement. We denote the threshold for desired estimated
decrease by § I Tt is initialized to 8° = 0 in the first iteration, and
then set to the distortion energy improvement from each successive
coordinate update. At any iteration, if d(o”*1) < §! we update the
topology based on the best operation T*! « o%*1(T%) and keep
it unchanged otherwise, T**! « T%.

The subsequent coordinate update then simply applies a single
step of projected Newton descent with line search to update the
vertex coordinates U’; see Section 6.3 for details. We then ask for the
next topology update to gain similar or greater magnitude decrease
by setting 8 = E4(U*) — Eg(Ui™1).

This process terminates at iteration i + 1 when smooth iterations
have converged (see Section 6.3 on varying conditions for this) and
the propagation of the seed mesh operation produces no further
descent. We then set (TK, U¥) « (T+!, U*1) and begin the next
outer iterate k + 1 with the dual variable update.

6 THE OPTCUTS ALGORITHM

With the key components now in place, Algorithm 1 summarizes
our full OptCuts algorithm in pseudocode, including details on
convergence detection and termination. Here, in this section, we
next discuss key details including termination/convergence criteria,
initialization, preconditioning, and inclusion of global bijectivity
constraints.

ACM Transactions on Graphics, Vol. 37, No. 6, Article 247. Publication date: November 2018.

XK

(a) boundary split

I@I
LR R

(b) corner merge

B~

(c) interior split

Fig. 2. Propagation of the boundary split (orange), corner merge (green),
and interior split (blue) topology operations. When propagating a boundary
split all edges that can continue the boundary splitting from the current
cut’s tail are set as propagation candidates (a). At corner merges we have a
single candidate to query—the new corner at the current tail (b). Finally, for
propagating an interior split, first we choose an incident edge from either
of the two possible seam tails; once split, propagation then follows in the
same fashion as the boundary split for following propagation steps (c).

6.1 Termination and Convergence

Our primal solution is converged whenever it is stationary with
respect to variations in both topology and vertex position for a fixed
A¥ multiplier value. Numerically, primal convergence is declared
for any (T?, U?) pair when 1.) the topology descent is stationary—
meaning there are no further available mesh operations at the cur-
rent multiplier AX value that will give decrease to the Lagrangian
below L(T, U, 1%); and 2.) the smooth distortion energy at topology
T s sufficiently locally minimized so that ||Vy Ey4 (TE,UY| < 1076,
When both our primal solve is converged and our dual variable is
likewise close to stationary so that Mk -)Lk_1| <1073, OptCuts
terminates with a solution that is numerically converged to a local
minimizer of (1) with respect to all available variations in topology
provided by our merge and cut operations.

Importantly, our OptCuts algorithm and its implementation do
not apply a maximum iteration cap anywhere in any of our iteration
loops. All presented results and corresponding timings are from
solutions that have converged either as defined above or by a cyclic
stationarity condition required for a robust implementation that
warrants further discussion in text rather than in pseudocode—we
cover this immediately below.

First, while we converge with respect to the mesh operations we
make available, we of course do not cover all possible topological
operations on a mesh. Our choice of propagated cutting and merg-
ing operations was selected to cover the basic topology changes that
we find suitably expressive for our parameterization task. However,
we expect many others to be useful; indeed, below in Section 7.5
we also consider and compare with another interesting mesh opera-
tion subset and remark that there is interesting future work to find
improved mesh operation subsets for OptCuts. In the meantime, for
any discrete subset of topological operations that do not fully cover
all possible mesh changes, there can and will be discrete sets of
points that are stationary with respect to variations of the available
mesh operations. In turn, while some of these points will satisfy the
imposed distortion bound, they may not match the bound. In such

1

2

3

4

5

10

11

12

13

14

22

23

24

25

26

27

28

29

30

31

32

33

34

35

39

40

41

42

43

44

OptCuts: Joint Optimization of Surface Cuts and Parameterization

ALGORITHM 1: OptCuts
Given: M, T°, U°, b,
Initialize: A° « 0, converged « false, k « 1
while !converged do
2K max (0, (Eg(T*™1, UR"1) = by) + 2%71)
d_stationary « |1k — Ak-1| < 1073
// Primal update (§4.1, details in §5):
i—0, (T, U « (TF, UF), §i <0
v_converged « false, t_stationary « false, t_stopped « false
o1

// Dual Update (§4.2)

 argmin__,r d(0)

if d(0®') >0
t_stationary « true

end if

while ! (v_converged and t_stopped) do
t_stopped « true

if ! t_stationary
i,i+1

// Get seed topological operation (§5.3)

0 — argmin, g ,i-1,i 7i) d(0) // Get candidate op (§5.4)
if d(o%i1) < §F

Ti+1 — Oi,i+1(Ti)
i+1 i, i+1

Uil (UL Uy

t_stopped « false

// Sufficient decrease
// Update topology (§5.4)
// Initialize new geometry (§5.4)

else
Titl T Unz;tl Ui
end if
end if
ie—i+1
g « VyEq(T?, Uifm) // Distortion energy gradient
if [lgll > 1076
H « Project(V4,Eq(T%, UL,)) // Projected-Hessian (§6.3)
Solve: Hp = —g // Get smooth descent direction p (§6.3)

a « LineSearch(UL., p, Eq)

U Uy +ap

8!« Eq(T%, U') — Eq(T%, UL,)

if |6'/Eq(T%, UL,)| < 10 and ! t_stationary
break // Safe to early exit

end if

else

// Line-search (§6.3)

v_converged « true
end if

end while

(Tk, U*) — (T, UY)

ke—k+1

converged « v_converged and t_stationary and d_stationary
end while
(T*, U*) P (Tk_l, Uk—l)

cases, without additional handling and preparation for cycling be-
havior, OptCuts would oscillate without stopping between a number
of high-quality, close-to-optimal solutions. To handle this condition,
we employ a simple cycle detection strategy, where after each pri-
mal solve we save hashes (Es, Ez, 1) of solution triplets, and the
best visited solution. When we detect that a duplicate solution is
being revisited, we terminate with the best visited solution. Of the
254 examples computed with OptCuts in Section 7, 171 terminate

247:7

with cycling about stationarity, while the remainder converge to a
stationary point.

6.2 Initialization

To initialize our UV map, (TO, UO), for an input surface, we map its
initial seam to a circle preserving edge lengths and parameterize the
remaining vertices with Tutte’s embedding [1963] using uniform
weights to ensure bijectivity. For disk-topology surfaces, we simply
pick the longest boundary as an initial seam while for genus-0 closed
surfaces, we randomly pick two connected edges as an initial seam.
For higher-genus surfaces we detect homology generators (using
the cut_to_disk function in libigl [Jacobson et al. 2017]) and then
connect them to form an initial seam. We then set (T, U?) to this
initial topology with vertex positions minimizing distortion, E;, on
the initial embedding, and start OptCuts by initializing A° = 0. This
sets the first iteration to initially ignore distortion and so begin by
exploring a shortening of seam lengths.

6.3 Minimizing Distortion

Each smooth descent step takes as input a possibly updated UV
map from the previous topology descent step and applies a single
Newton-type iteration to reduce E; over changes in vertex positions
U while holding topology, T, fixed. As our distortion energies E;
are generally nonconvex, we apply Teran et al’s [2005] projected-
Newton (PN) method to gain a modified Hessian proxy that is guar-
anteed PSD. We parallelized PN’s per-element Hessian construction,
projection and assembly into the PN Hessian proxy, H, with Intel
TBB [Reinders 2007]. We then apply Pardiso [Petra et al. 2014a,b]
to solve the resulting linear system for the next descent direction.
For line search we first use Smith and Schaefer’s [2015] line-search
filter to avoid element inversion followed by standard line search
with Armijo conditions [1966] to ensure sufficient energy decrease.
Finally, we employ one additional optimization that is specific to
OptCuts: on smooth steps where we are not yet stationary with
respect to topology operations, there is no need to expend extra
iterations to gain tight convergence on distortion. In these cases
we terminate iterations when we simply have the more relaxed
condition of small change in energy. On the other hand, when a
stationary topology is reached, we then always require and apply
full convergence to small gradient norm of E;; see Algorithm 1.

6.4 Global Bijectivity

Following Jiang et al. [2017], we apply global bijectivity constraints
to our mapping by (re-)triangulating void regions each time we
update our UV map. We use the Triangle library [Shewchuk 1996].
Void regions consist of all holes as well as a loose bounding box
enclosing the UV map. We then add to our distortion energy E,4
an additional term not included in the distortion bound constraint
on these void triangles to form a collapse-preventing energy for
the added negative-space triangles during each primal optimization
iteration.

Our continuous descent steps on vertices then remains otherwise
unchanged. However, for each topology step, we need to ensure that
negative-space triangles are inserted correctly for each query of a
candidate local topological operation. Here, there are two simple
modifications we need to apply. First, for local queries of descent

ACM Transactions on Graphics, Vol. 37, No. 6, Article 247. Publication date: November 2018.

247:8 + Li, M. et al

OptCuts without bijectivity OptCuts with bijectivity

by =4.20

b, =4.10

by =4.05

E4=4.049,E=6.143 E;=4.049,E=6.291

Fig. 3. UV maps generated for the hand model by OptCuts both with-
out (left) and with (right) bijectivity enforcement enabled, as we vary the
distortion bound by over 4.2, 4.1, and 4.05 respectively from top to bottom.

per candidate query minimizations evaluating d, we need only tri-
angulate the void region about the union of one rings around the
participating stencil vertices. This provides a sufficient scaffold to
ensure bijectivity in the local solve without growing the problem
size. Second, for each candidate edge split we need to carefully
pull apart the new split vertices to form an initial void to build the
scaffold triangulation. We pull the duplicated vertices along their
curvature normals far enough to form a gap while ensuring no
triangle elements are inverted.

7 EVALUATION

In the following sections we evaluate OptCuts and a range of other
UV parameterization methods and commercial tools on meshes from
a benchmark mesh dataset containing a diverse range of 71 surfaces
commonly employed in geometry processing research. Meshes in
this benchmark are organic shapes with intricate geometric details
and varying resolutions ranging from 80 to 10K vertices (with 3.7K
average vertex count); we also employ a set of refined Lucy models
with resolutions increasing from 2.5K to 48K vertices.

For all examples reported in all of the following sections we note
that OptCuts always successfully converges to a solution achieving
the targeted symmetric Dirichlet energy distortion bound b, (see
our discussion in Section 6.1). Thus, in many experiments we will
focus on evaluating the seam length measure, Es, as an evaluation
metric with the goal being to achieve any set target distortion bound
with the shortest possible seam lengths. Recall that our seam-length
measure, Eg, is normalized by square root of mesh area and so
provides a consistent and comparable measure across examples and
methods.

All our evaluations in the following sections employ our imple-
mentation of OptCuts using the libigl [Jacobson et al. 2017] library

ACM Transactions on Graphics, Vol. 37, No. 6, Article 247. Publication date: November 2018.

Table 1. Seam length and performance statistics for our OptCuts algorithm
applied to our benchmark of 71 surfaces as we decrease the distortion bound,
bg; each example is run with and without our additional enforcement of
global bijectivity enabled. All examples converge satisfying the requested
distortion bound. Note that here min E; gives the minimum nonzero seam
length.

by | bijectivity Es time (5)
an min max an min max
49 OFF 3936 0.289 14.545 92.5 0.3 417.8
ON 4.006 0.289 17.063 | 187.0 0.6 983.3
41 OFF 4919 0.752 17980 | 144.6 4.0 886.9
ON 5.346 0.860 21.595 | 274.6 6.9 1767.8
405 OFF 6.416 1.035 21.566 | 223.3 3.9 1398.1
ON 7.256 0.932 29.596 | 479.5 7.2 5141.2

o

;Aﬂ a

&

(b) feline, #v = 10264, genus = 2
E,= 4.100, E= 14.201

‘RW':

(a) buddha, #v = 12843, genus = 6
Ey=4.099, E= 19.360

Fig. 4. UV maps generated by OptCuts on higher-genus input surfaces,
with distortion bound b; = 4.1, and bijectivity enforcement enabled.

for rapid prototyping and testing. Implementation details are re-
ported above in Section 6. We are releasing our implementation
publicly for future development and application. All experiments
presented in this paper were executed on a Macbook Pro with 3.1
GHz quad-core Intel Core i7 CPU and 16 GB 2133 MHz LPDDR3
memory.

7.1

We first execute OptCuts on our full set of benchmark examples over
a range of decreasing target distortion bounds, by € {4.2,4.1,4.05}.
For each bound we run OptCuts twice—in each of its modes: once
with the global bijectivity constraint enabled, and once with just
local-injectivity, i.e. with bijection disabled. As discussed, for all
examples in the benchmark, at all three distortion bounds, and both
with and without bijectivity constraints, OptCuts always converges
to a locally minimal seam length satisfying the prescribed distortion
bound. See Figures 3 and 5 for examples of our results as we vary
these terms and see our Supplemental materials for a detailed table
and visualization of all our OptCuts results, as well as animations
of the OptCuts iterations, on the benchmark set. In Table 1 we sum-
marize statistics for OptCuts on the benchmark set and observe
that as we increase constraint on the examples by tightening dis-
tortion bounds and/or enforcing additional bijectivity constraints,
longer seams at convergence and comparably longer running times
result as expected; see also Figure 3. In Figure 4 we additionally
run OptCuts to convergence on two higher-genus surfaces (buddha
with genus 6 and feline with genus 2), enforcing global bijectivity
constraints and distortion constraint of by = 4.1.

OptCuts Evaluation

OptCuts: Joint Optimization of Surface Cuts and Parameterization « 247:9

OptCuts without bijectivity OptCuts with bijectivity

E,= 4.099, E,= 8.387

E,=4.100, = 9.437

Fig. 5. UV maps generated by OptCuts both without (left) and with (right)
bijectivity enforcement enabled with the distortion bound set to bz = 4.1.

AutoCuts

E4=4.076, E=11.728
time: 538s

Eg= 4.076, E= 18.129

°

OptCuts with bijectivity

E4=4.075, E=8.073
time: 532s

E4=4.076, E=12.527
time: 374s

Fig. 6. Comparisons between parameterizations generated by AutoCuts
(top) and OptCuts with bijectivity enabled (bottom) on Armadillo (left) and
Camel (right) model. Here OptCuts obtains improved seam length mea-
sures for the same distortion bound while maintaining additional bijectivity
constraints.

7.2 Comparisons to AutoCuts

As discussed in Section 2, AutoCuts [Poranne et al. 2017] couples
the optimization of a weighted sum of a seam-penalty term that tries
to pull triangles together, scaled by a scalar A, and the symmetric-
Dirichlet distortion energy for parameterization. AutoCuts runs
in two modes: one interactively driven by direct user guidance
throughout, and the second is fully automated. AutoCuts is generally
most effective in interactive mode with a user in-the-loop and this is
what is currently supported in the official AutoCuts implementation.
To recreate the automated-mode version of AutoCuts we began with
the official AutoCuts implementation and, with guidance from the
authors of AutoCuts, set their parameters for recreating their fully
automated method to those that performed best across the full set

Table 2. Distortion, seam length, and performance statistics comparing
automated-mode AutoCuts (which does not provide bijectivity enforcement)
and our OptCuts algorithm (both with and without bijectivity constraints
enabled) on all input surfaces in our benchmark dataset. For each example
we set the OptCuts target distortion (by) to the achieved (uncontrollable)
AutoCuts output distortion on the same example (ranging from 4.016 to
4.187). OptCuts in both modes (without and with bijectivity) obtains shorter
seam lengths and faster run times when compared to AutoCuts.

method | bijectivity | avg. Eq | avg. Es | avg. time (s)
AutoCuts N/A 4.077 7.9572 592.6
OptCuts ON 4.075 5.9182 344.4
OFF 4.075 5.4450 156.5
257
I AutoCuts
20 | [OptCuts (WB)
[1OptCuts (NB)
L 15¢
i
10 |
coneI N
5 L J— u il o I |
o A5 I [I I I I | |
0 10 20 30 40 50 60 70

Input Surface

Fig. 7. A per-example comparison of seam lengths achieved by AutoCuts
and OptCuts sorted by total seam length. OptCuts without bijectivity con-
straints in red achieves shorter seams than AutoCuts in blue for all except
for two inputs (see text for details on these two examples) while OptCuts
with additional bijectivity constraints in green (AutoCuts does not apply
bijectvity constraints) still performs favorably in seam length despite the
added bijectivity constraints.

of benchmark examples. For details of this final automated-mode
AutoCuts implementation we evaluate with see our Supplement.

Recall that while AutoCuts enables control of distortion indirectly,
it can not and does not guarantee that it will achieve a particular
distortion bound. Thus, we perform a re-analysis to gain an under-
standing of the comparable performance and quality of AutoCuts
and OptCuts. We first run automated-mode AutoCuts on each ex-
ample in the benchmark data set to termination. For each of the
examples we then set the resulting distortion measure from the
AutoCuts output as the target bound b, for OptCuts. Here we run
OptCuts both with and without global-bijectivity constraints en-
abled (recall that AutoCuts does not provide bijectivity enforcement
in a fully automated mode).

As summarized in Table 2, both versions of OptCuts, both with-
out bijectivity and with bijectivity require less time to on average
to generate UV maps that have significantly shorter seam lengths
than AutoCuts, while achieving the same targeted level of distor-
tion. See Figure 6 for visual comparisons and our Supplemental for
details of all comparison examples. In Figure 7 we provide a more
detailed breakdown of the seam-length comparison for each model
in the benchmark with bars sorted by total seam length. AutoCuts
produced shorter seams than OptCuts without bijectivity for two
meshes: cathead (E5 =2.52 vs Es =3.67) and KingKong (Es =6.55 vs
Es =6.59). Cathead mesh is very coarse containing only 131 vertices,
thus starting with a triangle soup provides an effective strategy.

ACM Transactions on Graphics, Vol. 37, No. 6, Article 247. Publication date: November 2018.

247:10 « Li, M. et al

6000 . 8000
5000 * AutoCuts * AutoCuts
© OptCuts (WB) 6000 o OptCuts (WB)
4000 = OptCuts (NB) * OptCuts (NB)
z z L
] Py
#3000 : geooo
S st .
2000 .
. 2000 [3 .
1000 e .
[]
o 1]
2000 4000 6000 8000 10000 10000 20000 30000 40000 50000

Mesh Vertex Number

Mesh Vertex Number

Fig. 8. Runtime scatterplots for AutoCuts (blue) and OptCuts with bijec-
tivity enforcement (green) and OptCuts without bijectivity (red) across all
examples in our benchmark set (left) and for increasing resolutions of the
Lucy model (right). Here (left and right) we observe that as mesh resolution
increases, the performance gap between AuotCuts and OptCuts increases
while (right) for moderately large examples, e.g., the two higher resolution
Lucy models, at 24k and 48k vertices respectively, there is no data points
for AutoCuts as the official implementation is already out of memory; see
our discussion below.

KingKong mesh (10K vertices) obtains comparable seams lengths
from both methods, while AutoCuts is substantially slower than our
approach (t =1858s vs t =394s).

Scalability. AutoCuts in both automated and user-guided modes
duplicates all vertices in the UV mesh. We observe that this has a
significant impact on scalability. Here we analyze how vertex count
effects run-time (and implicitly) memory on our full benchmark
data-set in Figure 8a, and over the Lucy meshes with increasing
resolution in Figure 8b. This breakdown of the experiments largely
repeats our observations from above that both modes of OptCuts
generally outperform AutoCuts while providing better seam-length
measures. Here there are two added observations. First, as mesh res-
olution increases, the performance gap between AuotCuts and Opt-
Cuts increases. Second, for moderately large examples, e.g., the two
higher resolution Lucy models, at 24k and 48k vertices respectively,
the official AutoCuts implementation is already out of memory for
both automated and user-guided modes, with their system already
6x larger upon initialization. On the other hand OptCuts increases
vertex counts slowly along cuts and actively seeks to reduce seam
lengths, thus, reducing the number of duplicated vertices and overall
system size.

7.3 Comparisons to Other Methods

Comparison to the Geometry Images Cutting Strategy. As discussed
above our topology descent step leverages a small subset of local
topological operations that we have so far found most expressive,
efficient and effective. In choosing this subset we experimented
with a number of options. In particular we found a subset of more
aggressive topological operations taken from Geometry Images [Gu
et al. 2002] very effective. Geometry Images leverages extrema-to-
boundary (EB) cuts that connect the current boundary to the most
distorted point, under current parameterization, using the shortest
geodesic path. The advantage of this cutting strategy in the OptCuts
setting is that it introduces more extreme topological updates at each
iteration, potentially saving computational effort. We experimented
with replacing our topological search in OptCuts with the EB cuts.
As expected we find that the resulting optimization does indeed

ACM Transactions on Graphics, Vol. 37, No. 6, Article 247. Publication date: November 2018.

AutoCuts with user assistance OptCuts with bijectivity

[Sorkine et al. 2002]

E,= 4.045, E= 14.599 E,= 4.044, E=12.512

Fig. 9. Here we recreate a comparison with Sorkine et al’s parameterization
[2002] (left) and an interactive-mode AutoCuts example created to compare
with it from Poranne et al. [2017] (middle). Right: we run OptCuts with
bijectivity constraints enabled, setting its distortion bound (b;) to match
the distortion of the interactively user-assisted AutoCuts output. OptCuts
satisfies the bound while improving seam-length over the interactively
created example.

converge faster, but we likewise find that the more aggressive EB
cutting converges to longer-seam solutions, especially when we
seek tighter distortion bounds and when iterations treat nearly-
isometric UV maps where extremities are less prominent. See Table 4
and Figure 12 for a comparison of OptCuts with these two cutting
strategies.

Comparison to interactive-mode AutoCuts and Sorkine et al. [2002].
Finally, in Figure 9 we repeat a comparison with Sorkine et al’s
parameterization [2002] and the interactive-mode AutoCuts exam-
ple created to compare with it from Poranne et al. [2017], Figure
11 in that paper. Here we run OptCuts, with bijectivity constraints
enabled, setting its distortion bound (b;) to match the distortion
achieved by the interactive user assisted AutoCuts output. We ob-
serve that OptCuts, Figure 9, right, then automatically achieves
improved seam-length over the interactively created AutoCuts ex-
ample, Figure 9d middle, as well as that of Sorkine et al. [2002],
Figure 9 left, and the automated-mode AutoCuts (not shown here).

7.4 Comparison to Commercial Software Tools

Commercial software tools currently offer a range of automated ap-
proaches for UV-map creation. We picked five complex models from
our dataset: Lucy, octopus, rgb_dragon, statue_5, and three_man,
and asked two experienced artists to create UV maps using the fully
automated modes of three commercial software tools: Unwrella?,
ZBrush?, and Maya®, with default parameter settings. ZBrush gen-
erates a single chart UV map and so generally produces higher
distortion but lower seam lengths. On the other hand Maya and Un-
wrella cut the surface into multiple charts to achieve low distortion
and efficient packing, generally at the cost of longer seam lengths.
ZBrush, and Unwrella in organic mode generally produced best UV
maps; the hard-surface mode of Unwrella and Maya both gener-
ally cut the surface into many small pieces with very long seams

Zhttps://www.unwrella.com/
3http://pixologic.com/
“https://www.autodesk.com/products/maya/overview

OptCuts: Joint Optimization of Surface Cuts and Parameterization « 247:11

Table 3. Summary of distortion and seam-length measures for compari-
son between five UV-maps created by artists with two commercial tools,
Unwrella (organic mode) and ZBrush, and the corresponding results ob-
tained by OptCuts (with bijectvity) when its distortion bound is set to the
commercial results’ map distortion.

Unwrella OptCuts OptCuts

Model Organic (Unwrella bg) ZBrush (ZBrush bg)

E; Es | Eq Es Eq; Es | Eq Es

Lucy 410 19.7 | 4.10 10.6 4.26 6.6 | 4.26 6.5
octopus 4.07 217 | 4.07 15.7 422 141 | 421 14.4
rgb_dragon | 4.22 335 | 4.22 16.1 474 9.2 | 474 8.6
statue_5 4.08 143 | 4.08 5.1 416 4.0 | 415 3.0
three_man | 4.03 19.2 | 4.03 13.5 415 9.0 | 415 9.3

-

Zbrush OptCuts ZBrush OptCuts
Ey=4.148, E=4.047 E,=4.147,E=2.950 E,=4.743,E=9.249 E,=4.743,E=8.633

Unwrella - Organic OptCuts Unwrella - Orga‘r;ic OptCuts
E,=4.075E=14.298 E,=4.075E=5092 E,=4.224,E=33.47 E4=4.224,E=16.13

Fig. 10. Commercial software tools comparison. Here we compare the results
generated by UV-mapping with commercial software tools ZBrush (top)
and Unwrella (bottom) with those obtained by OptCuts with bijectivity
constraints enabled. For each comparison example we set OptCuts to match
the tool’s obtained distortion bound, obtaining improved seam measures.

and occasionally produced UV meshes with local inversions and
non-manifold vertices. We thus took just the output of ZBrush and
Unwrella, in organic mode, for all five examples. Since the details of
these methods are not public, and they might optimize for a slightly
different distortion objective, we make comparisons more favorable
to them and improve their output with respect to our evaluation
metrics by minimizing the distortion energy E; while keeping their
seams. In Table 3 we compare this improved output to OptCuts for
each mesh/tool pairing. In each row we respectively give the dis-
tortion and seam measure of each distortion-optimized commercial
output, followed by the result obtained by OptCuts when we set
the OptCuts distortion bound to match the commercial method’s
final, optimized distortion. Across all examples for the same level of
distortion, we observe that OptCuts obtains shorter seams in eight
out of the ten comparisons; see also Figure 10 for visual comparisons
and our Supplemental for all results.

7.5 Variations

Regional Seam Placement. Discontinuities produced by seams
make texture assignment challenging and can lead to unpleasant
rendering artifacts. Thus, UV artists often place seams away from

E, = 4.100, .= 3.185

/ E, = 4.100, E = 6.337

Fig. 11. OptCuts can also enforce additional constraints allowing users to

E, = 4.091, E.= 3.740

bias or even fully prevent the resulting parameterization from placing cuts
in salient regions by painting a map over the three-dimensional surface
showing where seams are more or less desirable. Middle: a user-painted
salience map goes from blue (no seams) to green (seams allowed). With
these additional provided constraints OptCuts continues to yield low seam
length and to satisfy the distortion bounds while also enabling additional
controls on seam placement to avoid salient regions (bottom); compare with
the results obtained from our undirected OptCuts (top). Note as well that
here we happen to achieve shorter seams with additional user constraints
for the dinosaur model as OptCuts computes local minimizers.

the salient surface regions, e.g., a face. We extend OptCuts to directly
enable users to bias or even fully prevent the resulting parameteriza-
tion from placing cuts in specified regions by painting an intensity
weight, w € [1.0, +00] over the three-dimensional surface. As inten-
sities grow we correspondingly penalize the cost of seam lengths
in those regions. Correspondingly, in OptCuts we update the seam-
length measure by looking up, per-edge i, the local painted weight,
wi, and then simply updating the edge measure to sum to

S — (12)

Eg Z wileil.
VSier 1AD7 &L

We demonstrate the results of OptCuts with these additional user-
directed constraints in Figure 11 bottom, where the user-painted
salience map goes from blue with w = 100 to green with w = 1 in
Figure 11 middle, and compare with the results obtained from our
undirected OptCuts results in Figure 11 top. Notice that with the
addition of these constraints, OptCuts continues to yield low seam
length and to satisfy the distortion bound, but now also enables
additional controls on seam placement.

OptCuts Polishing. In many cases artists and users may have
pre-existing UV-mappings, methods and/or pipelines that would
benefit from further improvement. Here we observe that OptCuts
can take any valid embedding as a starting point to improve seam
length and/or distortion. To improve just seam length we can set
the input map’s distortion as an input bound for OptCuts and then
optimize the input map for improved seam-length. Alternately, to
also improve distortion, we can also apply a lower distortion bound.
Likewise, as discussed earlier, constrained distortion optimization is
highly nonconvex with many local minima; thus polishing multiple
warm-started solutions can be an effective way to use OptCuts to
explore many interesting locally optimal embeddings.

Here, we first explore taking UV-mappings that are quickly gen-
erated by Seamster [Sheffer and Hart 2002] as input. Seamster is a
highly efficient seam cutting strategy that detects local curvature

ACM Transactions on Graphics, Vol. 37, No. 6, Article 247. Publication date: November 2018.

247:12 « Li, M. et al

Table 4. Here we summarize statistics for our benchmark set comparing
performance and resulting seam-lengths obtained by our standard OptCuts
topology operations as compared with an alternative version of OptCuts em-
ploying the more aggressive topology operation of cutting from extrema-to-
boundary (EB) from Geometry Images [Gu et al. 2002]. We run all examples
both with and without bijectivity enforcement. As the EB strategy is more
aggressive, we observe faster runtimes at the cost of longer seam-lengths.
Note that here min E; gives the minimum nonzero seam length.

by | OptCuts]?S time ©
avg min max | avg min max
42 Standard | 3.936 0.289 14.545 | 92.5 0.3 417.8
EB 3971 0.754 14.929 13.6 0.1 72.1
41 Standard | 4.919 0.752 17.980 | 1446 4.0 886.9
EB 5.026 1.207 16.895 17.9 0.1 87.2
405 Standard | 6.416 1.035 21.566 | 2233 39 1398.1

EB 6.608 1.207 23.051 25.3 0.1 1154

OptCuts without bijectivity

OptCuts with EB strategy

by =4.20

1199, E,= 1.860 (a)

by =4.10

E,=4.099, E;= 2.290 (b)

by =4.05

E,= 4.049, E,= 3.100 (0

Fig. 12. Comparisons between OptCuts using our standard topology op-
erations (left), and OptCuts using the extrema-to-boundary (EB) cutting
strategy from Geometry Images [Gu et al. 2002] (right). Here we decrease
distortion bounds (top to bottom). EB cuts are aggressive—leading to faster
convergence but at the cost of larger seam-length measures at convergence.

E,=4.035, E= 4.232

extrema and connects them with a minimal spanning tree. This
approach can be sensitive to the user-set parameters such as size
of surface regions for computing local extrema, which is a shape-
dependent parameter that can require parameter tuning. In this
experiment, we pick two models, cow and a triceratops, that have
been successfully cut by hand-tuning Seamster [Sheffer and Hart
2002]. We then apply OptCuts to these two Seamster-generated
maps, setting the OptCuts distortion bound to the original distor-
tion of the Seamster-generated maps. In Figure 13 we compare
the original hand-tuned Seamster output in (a), with the resulting
OptCuts-polished results in (b), and finally with the direct results
of optimizing OptCuts from scratch > on these examples while sat-
isfying the same distortion bound in (c).

5L, directly starting from the Tutte embedding of each mesh.

ACM Transactions on Graphics, Vol. 37, No. 6, Article 247. Publication date: November 2018.

g
%
£
s
L7
"
o
=
£
2
S
a
2
= af-,
3 i
e
5 :
o E,= 4.087, E,= 8.100 (b) E4=4.107, E= 7.646
8 & >
= 0
£ -
o
E,=4.088, E=9.013 (c) E,=4.108, E,=8.837

Fig. 13. UV-map Polishing with OptCuts starting with Seamster [Sheffer
and Hart 2002]. OptCuts can take any valid embedding as a starting point
to improve seam length and/or distortion. Here we improve seam length
starting from an input map obtained from Seamster (a). We preserve dis-
tortion quality while improving seam length by taking the initial map’s
distortion as an input bound for OptCuts. Then we optimize the input map
improving seam length while preserving distortion (b). As constrained dis-
tortion optimization is highly nonconvex, with many local minima, polishing
warm-started solutions like these can be an effective way to use OptCuts to
explore many interesting locally optimal embeddings aside from the default
one we gain from initializing with a Tutte embedding (c).

<~
5
:
o o o
N / . 7
\‘ E,=4.221, E.= 14.053
. ¥
i=4
£
2
©
a
2
S y
S
5 f‘ 7|
E,= 4.146, E= 8. 051 (b) E = 4.216, E,= 14.029

Fig. 14. UV-map Polishing with OptCuts starting from ZBrush results. Here
OptCuts is initialized with UV maps produced by artists using the com-
mercial software tool ZBrush. OptCuts shortens seams for both models,
while respecting the original distortion bound and maintaining bijectivity
constraints.

As a second example, we take the output of the best-performing
commercial tool from our experiments, ZBrush. Starting with the
two models in Table 3 where OptCuts generated slightly longer
seams when starting from Tutte’s embedding (three_man and octo-
pus.) we use the ZBrush outputs as an input embeddings for OptCuts.
OptCuts then produces new outputs that maintain the initial distor-
tion bound while in both cases shortening the seams even further;
see Figure 14. In all cases OptCuts-polished examples achieve the
shortest seam length while maintaining both the distortion bound
and bijectivity—highlighting both the utility of polishing and the
value of exploiting warm-starts with OptCuts.

8 CONCLUSIONS

In this work we have proposed OptCuts, a new discrete-continuous
optimization algorithm for mesh parameterization that jointly mini-
mizes seam length while satisfying a target distortion bound. Here

OptCuts: Joint Optimization of Surface Cuts and Parameterization « 247:13

our focus has been to automatically generate these high-quality
parameterizations and likewise to add versatility by further sup-
porting globally bijective maps and enabling user constraints on
seam placement when desired. Along with generating high-quality
maps from scratch, across our testing with state-of-the art methods
and commercial tools we find that OptCuts typically yields shorter
seams while achieving all targeted distortions.

8.1 Limitations and Future Work

Looking ahead we note that there are a number of promising direc-
tions to improve and explore. Numerically, in each inner iteration
OptCuts is explicitly designed to decrease the Lagrangian. As a
result we observe that OptCuts so far efficiently converges in all
examples to either a fixed or cyclical stationary point satisfying a
rough numerical optimality without any need to apply standard
heuristic upper bounds on iteration counts. While OptCuts works
well in practice, we have by no means proven its optimality nor
convergence. Further analysis and understanding of both cyclical
points and the overall convergence behavior are important future
work here. Likewise, we also note that there can be locally mini-
mizing seam-length solutions that are strictly on the interior of the
distortion bound, i.e. with E; < b;. Here perturbation of vertex
positions could find additional, nearby optimal points that offer
further reduction of distortion. Such improved distortion points are
seen as equivalent by problem statement (1) and so are not required
for optimality. However, OptCuts always ends with a final smooth
optimization step and so will obtain these locally improved points
in practice. In terms of efficiency, OptCuts could support a range
of additional parallelism, for example, many topological operations
could be executed simultaneously in partitioned regions of the mesh,
while linear system solves seem reasonable to decompose. Finally, in
many cases we envision incorporating important additional priors
to, for example, favor seamless parameterization, seam smoothness,
and the creation of charts that efficiently use texture space.

ACKNOWLEDGEMENT

We thank Roi Poranne for guidance on automating AutoCuts, Justin
Patton, Daichi Ito, and Jeanette Mathews for creating our commer-
cial software examples, and Zhongshi Jiang for valuable discus-
sions. This work has been supported in part by the NSERC, the NSF
(grant I1S-1838071), the MIT Research Support Committee, the Army
Research Office (grant W911NF-12-R-0011), an Amazon Research
Award, the MIT-IBM Watson Al Laboratory, and the Skoltech-MIT
Next Generation Program.

REFERENCES

Shmuel Agmon. 1954. The relaxation method for linear inequalities. Canadian Journal
of Mathematics 6, 3 (1954), 382-392.

Noam Aigerman and Yaron Lipman. 2015. Orbifold Tutte Embeddings. ACM Trans.
Graph. 34, 6, Article 190 (Oct. 2015), 12 pages.

Noam Aigerman, Roi Poranne, and Yaron Lipman. 2015. Seamless Surface Mappings.
ACM Trans. Graph. 34, 4 (2015), 72:1-72:13.

Larry Armijo. 1966. Minimization of functions having Lipschitz continuous first partial
derivatives. Pacific Journal of mathematics 16, 1 (1966), 1-3.

Dimitri P. Bertsekas. 2016. Nonlinear Programming. Athena Scientific.

S Claici, M Bessmeltsev, S Schaefer, and J Solomon. 2017. Isometry-Aware Precondition-
ing for Mesh Parameterization. In Computer Graphics Forum, Vol. 36. Wiley Online
Library, 37-47.

Michael S. Floater. 2003. Mean Value Coordinates. Comput. Aided Geom. Des. 20, 1
(March 2003), 19-27.

Xianfeng Gu, Steven] Gortler, and Hugues Hoppe. 2002. Geometry images. ACM
Transactions on Graphics (TOG) 21, 3 (2002).

Kai Hormann and Giinther Greiner. 2000. MIPS: An efficient global parametrization
method. Technical Report.

Kai Hormann, Bruno Lévy, and Alla Sheffer. 2007. Mesh Parameterization: Theory and
Practice. In SIGGRAPH 2007 Course Notes. ACM Press, San Diego, CA.

Alec Jacobson, Daniele Panozzo, and others. 2017. libigl: A simple C++ geometry
processing library. (2017). http://libigl.github.io/libigl/.

Zhongshi Jiang, Scott Schaefer, and Daniele Panozzo. 2017. Simplicial complex aug-
mentation framework for bijective maps. ACM Transactions on Graphics (TOG) 36,
6 (2017), 186.

Dan Julius, Vladislav Kraevoy, and Alla Sheffer. 2005. D-Charts: Quasi-Developable
Mesh Segmentation. In Computer Graphics Forum, Vol. 24.

Liliya Kharevych, Boris Springborn, and Peter Schréder. 2006. Discrete Conformal
Mappings via Circle Patterns. ACM Trans. Graph. 25, 2 (2006), 412-438.

Bruno Lévy, Sylvain Petitjean, Nicolas Ray, and Jérome Maillot. 2002. Least Squares
Conformal Maps for Automatic Texture Atlas Generation. ACM Trans. Graph. 21,3
(July 2002), 362-371.

Songrun Liu, Zachary Ferguson, Alec Jacobson, and Yotam Gingold. 2017. Seamless:
Seam erasure and seam-aware decoupling of shape from mesh resolution. ACM
Transactions on Graphics (TOG) 36, 6 (2017), 216:1-216:15.

Ashish Myles and Denis Zorin. 2013. Controlled-distortion Constrained Global
Parametrization. ACM Trans. Graph. 32, 4 (2013), 105:1-105:14.

Cosmin G. Petra, Olaf Schenk, and Mihai Anitescu. 2014a. Real-time stochastic optimiza-
tion of complex energy systems on high-performance computers. IEEE Computing
in Science & Engineering 16, 5 (2014), 32-42.

Cosmin G. Petra, Olaf Schenk, Miles Lubin, and Klaus Géartner. 2014b. An augmented in-
complete factorization approach for computing the Schur complement in stochastic
optimization. SIAM Journal on Scientific Computing 36, 2 (2014), C139-C162.

Roi Poranne, Marco Tarini, Sandro Huber, Daniele Panozzo, and Olga Sorkine-Hornung.
2017. Autocuts: Simultaneous Distortion and Cut Optimization for UV Mapping.
ACM Transactions on Graphics (proceedings of ACM SIGGRAPH ASIA) 36, 6 (2017).

M.J.D. Powell. 1973. On Search Directions for Minimization Algorithms. Mathematical
Programming 4 (1973).

Michael Rabinovich, Roi Poranne, Daniele Panozzo, and Olga Sorkine-Hornung. 2017.
Scalable Locally Injective Mappings. ACM Transactions on Graphics 36, 2 (April
2017), 16:1-16:16.

Nicolas Ray, Wan Chiu Li, Bruno Lévy, Alla Sheffer, and Pierre Alliez. 2006. Periodic
Global Parameterization. ACM Trans. Graph. 25, 4 (2006), 1460-1485.

Nicolas Ray, Vincent Nivoliers, Sylvain Lefebvre, and Bruno Lévy. 2010. Invisible seams.
In Computer Graphics Forum, Vol. 29. Wiley Online Library, 1489-1496.

James Reinders. 2007. Intel threading building blocks: outfitting C++ for multi-core
processor parallelism. " O’Reilly Media, Inc.".

Pedro V Sander, John Snyder, Steven J Gortler, and Hugues Hoppe. 2001. Texture map-
ping progressive meshes. In Proceedings of the 28th annual conference on Computer
graphics and interactive techniques. ACM, 409-416.

Rohan Sawhney and Keenan Crane. 2017. Boundary First Flattening. ACM Trans. Graph.
37, 1, Article 5 (Dec. 2017).

Alla Sheffer and John C Hart. 2002. Seamster: inconspicuous low-distortion texture
seam layout. In Proceedings of the conference on Visualization’02.

Alla Sheffer, Bruno Lévy, Maxim Mogilnitsky, and Alexander Bogomyakov. 2005. ABF++:
fast and robust angle based flattening. ACM Transactions on Graphics (TOG) 24, 2
(2005), 311-330.

Alla Sheffer, Emil Praun, and Kenneth Rose. 2007. Mesh Parameterization Methods and
Their Applications. Foundations and TrendsA6 in Computer Graphics and Vision 2, 2
(2007), 105-171.

Jonathan Richard Shewchuk. 1996. Triangle: Engineering a 2D quality mesh generator
and Delaunay triangulator. In Applied computational geometry towards geometric
engineering. Springer, 203-222.

Anna Shtengel, Roi Poranne, Olga Sorkine-Hornung, Shahar Kovalsky, and Yaron Lip-
man. 2017. Geometric Optimization via Composite Majorization. ACM Transactions
on Graphics (proceedings of ACM SIGGRAPH issue) 36, 4 (2017), 38:1-38:11.

Jason Smith and Scott Schaefer. 2015. Bijective parameterization with free boundaries.
ACM Transactions on Graphics (TOG) 34, 4 (2015).

John Snyder, Pedro V Sander, Zoe] Wood, Steven Gortler, and Hugues Hoppe. 2003.
Multi-chart geometry images. (2003).

Olga Sorkine, Daniel Cohen-Or, Rony Goldenthal, and Dani Lischinski. 2002. Bounded-
distortion piecewise mesh parameterization. In Proceedings of IEEE Visualization.
IEEE Computer Society, 355-362.

Joseph Teran, Eftychios Sifakis, Geoffrey Irving, and Ronald Fedkiw. 2005. Robust
quasistatic finite elements and flesh simulation. In Proceedings of the 2005 ACM
SIGGRAPH/Eurographics symposium on Computer animation.

William Thomas Tutte. 1963. How to draw a graph. Proceedings of the London Mathe-
matical Society 3, 1 (1963), 743-767.

Bruno Vallet and Bruno Lévy. 2009. What you seam is what you get. Technical Report.

ACM Transactions on Graphics, Vol. 37, No. 6, Article 247. Publication date: November 2018.

	Abstract
	1 Introduction
	2 Related Work
	3 Problem Statement
	3.1 Dual Objective
	3.2 Embedding Energy
	3.3 Adding Global Bijectivity

	4 Optimization Framework for OptCuts
	4.1 Primal Update
	4.2 Dual Update

	5 Coupled Discrete-Continuous Descent
	5.1 Energy Model for Topology Updates
	5.2 Local Topological Operations
	5.3 Topology Search Candidates
	5.4 Iterated Search, Propagation and Descent

	6 The OptCuts Algorithm
	6.1 Termination and Convergence
	6.2 Initialization
	6.3 Minimizing Distortion
	6.4 Global Bijectivity

	7 Evaluation
	7.1 OptCuts Evaluation
	7.2 Comparisons to AutoCuts
	7.3 Comparisons to Other Methods
	7.4 Comparison to Commercial Software Tools
	7.5 Variations

	8 Conclusions
	8.1 Limitations and Future Work

	References

