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ABSTRACT

Applications in computer vision, simulation, and computer-aided design motivate
interest in deep learning methods that operate directly on triangle meshes. As
an analogy to convolutional filters on images, these methods successively apply
local geometric operators like the Laplacian and the Dirac operator to per-element
features; this pipeline can be interpreted as applying a filter to features written in
the operators’ spectral bases. Such a technique is analogous to using convolutional
filters with fixed kernels on images, which severely limits representation capacity.
As a flexible alternative, we propose learning geometric operators from data in
a task-specific fashion. Inspired by numerical algorithms operating on irregular
domains, our framework learns from meshes using a parametric learnable family
of linear operators, generalizing previous architectures.

1 INTRODUCTION

While deep learning has long been applied to grid-structured domains, there has been increasing in-
terest in methods that operate on triangle meshes, a natural representation in geometric deep learn-
ing (Bronstein et al., 2017). It may appear that graph-based deep learning methodologies apply
directly to meshes, but key added structure distinguishes meshes from general graphs. In particular,
graph-based learning is designed to capture combinatorial structures like node degrees; combina-
torial information, however, is irrelevant to mesh geometry and is likely to differ among multiple
representations of the same shape. Indeed, in some sense the goal of geometric learning is to ex-
tract information that is invariant to irrelevant combinatorial structure, fundamentally distinguishing
problems in this domain.

Early attempts in graphics and shape analysis use the Laplacian of the vertex adjacency graph of the
triangle mesh. These methods, however, were quickly replaced due to dependency and sensitivity
to sampling. As an alternative, more recent methods use discretizations of geometric operators
like the surface (cotangent) Laplacian, which converges to the manifold Laplace–Beltrami operator
under refinement; this property alleviates some sensitivity to meshing. A recent example, Surface
Networks (Kostrikov et al., 2018), follows this pattern and uses the Dirac and Laplacian operators to
diffuse and propagate information to neighboring mesh vertices in a local geometry-aware fashion.
Backed by theoretical understanding and physical interpretation, these operators have been proven
powerful for a variety of tasks. These methods, however, implicitly use fixed kernels, which severely
limits their representation capacity. The choice and/or design of appropriate operators is carried out
manually, requiring domain knowledge and empirical testing.

In this paper, we pursue an alternative approach: We learn the appropriate operator for a specific
task from a parametric family, generalizing existing methods. In particular, we propose a framework
capable of learning a family of discretized operators via the finite element methods (FEM), including
the Laplacian and Dirac operators.
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A challenge when learning geometric operators is to parameterize their entries consistently, ensuring
domain independence and discretization invariance. We design a parametric family of discretized
operators encouraging these principles. With our novel “operator layer” as the basic building block,
we propose an end-to-end trainable deep learning architecture combining operators in a fashion that
reflects information flows in numerical geometry processing algorithms. Layers of our network
resemble steps of iterative methods used e.g. to compute eigenvalues or solve linear systems. This
design—combined with our generalization of operators previously used to design successful hand-
crated and learned features—benefits from and improves upon the success of algorithms in both
learning and classical geometry processing.

Related Work. A large number of methods for geometric deep learning have been proposed in
recent years, including: Volumetric grid-based methods (Wu et al., 2015; Qi et al., 2016b); Multiple-
view image-based methods (Su et al., 2015; Huang et al., 2018); Spectral domain methods (Bruna
et al., 2014; Defferrard et al., 2016; Yi et al., 2016); Chart-based spatial methods: Geodesic CNN
(GCNN) (Masci et al., 2015), Anisotropic CNN (ACNN) (Boscaini et al., 2015), and Tangent Convo-
lutions (TC) (Tatarchenko et al., 2018); Global parameterization-based methods (Sinha et al., 2016)
(Maron et al., 2017); Point cloud-based methods: PointNet (Qi et al., 2016a), point convolution (Atz-
mon et al., 2018), continuous convolution (Wang et al., 2018a), dynamic graph layers (Wang et al.,
2018c); Graph-based methods: (Monti et al., 2016; Qi et al., 2017; Verma et al., 2018; Litany et al.,
2018). There are also very recent work for learning on triangle meshes (Kostrikov et al., 2018;
Ranjan et al., 2018; Tan et al., 2018; Gao et al., 2018; Hanocka et al., 2018).

2 LEARNABLE OPERATORS AND LEARNING ARCHITECTURE

Desiderata. Many transformations can be applied to meshes without affecting their interpretation.
Geometric learning algorithms must be invariant to these changes, motivating a list of considerations
for design of a mesh-based learning pipeline:

1. Permutation invariance: Since there is no canonical ordering of mesh vertices, the learning pro-
cedure should not depend on the permutation of vertices and faces.

2. Representation invariance: The procedure should produce similar results when vertices are
shifted along the surface or when the mesh topology is perturbed.

3. Transformation invariance: It may be necessary to ignore certain classes of geometric transfor-
mations. In image analysis, common invariances are to in-plane translation or (less frequently)
rotation. For shapes, invariance to rigid motion or isometry is often desirable; the latter is com-
monly enforced for articulated shapes.

4. Domain independence: The algorithm should generalize across different shape categories rather
than remaining specific to deformations of a single base object.

These requirements are not unfamiliar in geometry processing. Laplacian shape analysis is such a
solution enjoys all the desiderata, having been successfully applied to various tasks including shape
descriptor, segmentation, and correspondence (Reuter et al., 2009; 2006; Kokkinos et al., 2012;
Bronstein et al., 2011; Ovsjanikov et al., 2012) and integrated into learning pipelines (Litman &
Bronstein, 2014; Litany et al., 2017). Recently (Cosmo et al., 2018) study the inverse problem of
recovering surface from eigenvalues. A popular way to address these desiderata in geometry pro-
cessing is to construct eigenvalue problems for carefully-designed operators whose spectra capture
geometric information.

We consider the following two common settings in geometric learning:
• Global tasks learn a function f(·) taking a mesh T to a latent embedding in Rk.
• Vertex-wise tasks learn a function F(·) from a mesh T to k-dimensional per-vertex features.
The following proposition indicates that operator-based methods for these learning tasks can only
depend on spectral structure:

Proposition 1 Under appropriate assumptions on the invariant structure of f and F, there is some
geometric operator A discretized on the mesh T with the eigendecomposition A = QΛQ>, such
that f(T ) only depends on Λ, and F(T ) only depends on Λ and Q.
Proposition 1 suggests that learning architectures on meshes should learn functions of operator spec-
tra; detailed reasoning can be found in the supplementary document. Spectra of individual fixed
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operators, however, have limitations. For example, the intrinsic Laplacian is insensitive to bend-
ing without stretching. It has been shown that the Dirac spectrum is sensitive to high-frequency
detail, suitable for tasks like texture detection but not higher-level tasks like classification (Wang
et al., 2018b). Fixed operators also imply irreversible assumptions about the data: The Laplacian is
intrinsic, and the Dirac is rigid-motion invariant. Ideally, the level of invariance to assorted trans-
formations should be learned from data. For these reasons, we propose to learn the appropriate
operators given a dataset and learning task.

2.1 OPERATOR PARAMETERIZATION

Convolutional neural networks (LeCun et al., 1989) are built on (linear) convolutional operators. In
theory, each operator can be obtained by creating a #pixels×#pixels sparse matrix and filling in
entries from the convolution kernel. Analogously we parameterize linear operators on meshes as
#face×#vertex sparse matrices, whose entries are domain-dependent. Extra complexity comes from
the fact that we have to handle irregular domains; local geometry is used to “realize” the operator
kernel, resulting in domain-dependent matrix entries.

As with graph neural networks (Scarselli et al., 2009) and their adaptations to meshes, in each layer
of our architecture we allow each vertex to communicate to its immediate neighbors on the mesh.
Hence, we consider operators whose discrete form has sparsity determined by the mesh.

Ci Ci′
Ej,i Ej′,i′

j j′

Parameterization of a single operator. We begin by describing
the form of our parameterized operator. Each layer of our network
involves a set of c operators H1, . . . ,Hc ∈ Rf×n, where c is the
number of channels, and n, f are numbers of vertices and faces,
respectively. Each Hk ∈ Rf×n is a rectangular matrix taking one
value per vertex to one value per face. We will use Hk

j,i to refer to
the element at position (j, i) of matrix Hk, and we will use Hj,i (no superscript) to refer to the vector
in Rc of values Hk

j,i over all k. We will use i for vertices and j for triangles. Figure 2.1 illustrates
how we gather features from the mesh to construct each operator Hk. We prescribe Hk

j,i = 0 any
time triangle j is not adjacent to vertex i; that is, Hk has a sparsity pattern determined by the mesh
topology. Features for constructing Hk are gathered from two sources:

• Directed edge features, which are associated to an orientation of each edge. As shown in Fig-
ure 2.1, there are two directed edges per edge on the mesh, and three directed edges per triangle
ordered by (counterclockwise) orientation. We store these features in a tensor E ∈ Rf×3×d,
where d is the edge feature dimension.

• Vertex features, which are associated to individual vertices, stored in a matrix C ∈ Rn×d′
, where

d′ denotes the vertex feature dimension.
We will describe how these features are obtained from the input mesh in §2.2. Let Ci ∈ Rd′

denote
the vertex feature of vertex i (i-th row of C), and take j to be the index of a triangle adjacent to
vertex i. Define Ej,i ∈ Rd to be the directed edge feature associated to the directed edge of triangle
j opposite from vertex i, as labelled in the figure above. Also note the Ej,i and Ej′,i′ as in the figure
do not necessarily have the same value. Then, the corresponding element of H is computed as:

Hj,i = MLPθ(Ci,Ej,i) ∈ Rc, (1)
where MLPθ denotes a multi-layer perceptron with parameters θ to be learned. The same θ is
applied to all directed edges across all meshes. Note Hj,i can depend not only on features at the
opposite vertex i, but also on features at the other vertices of triangle j; these features can be stored
in Ej,i. Indeed, it is possible to argue that any operator with our prescribed sparsity pattern and
input features must take this form. In particular, in the supplementary document, we show that usual
operators like the Dirac operator, the gradient operator, the Laplacian, and—importantly—a general
linear operator discretized using first-order finite elements can be written in this form.

2.2 LEARNING ARCHITECTURE

Our next step is to combine the parameterized operators above into a learning architecture. The
design of our architecture is inspired by numerical algorithms for geometry processing; our method
mimics information flows in these techniques.
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LINEAR NONLINEAR

PER-ELEMENT

(a) PER-ELEMENT module

APPLY-OPERATOR APPLY-OPERATOR

NORMALIZECONCATENATE

INNER

SPREAD

CONCATENATE OPERATOR-BLOCK

(b) OPERATOR-BLOCK module

Figure 1: Modules used to con-
struct our deep network architecture.
Blue boxes in the OPERATOR-BLOCK
module (b) refer to instances of the
PER-ELEMENT module (a). Our full
OPERATOR-BLOCK module takes as
input a multi-channel signal per ver-
tex and outputs another such signal.

Building Block Operations and Architecture We intro-
duce a few very simple building blocks common in numer-
ical solvers, which we will combine to formulate our learn-
ing architecture:

• INNER: C1∈Rn×c,C2∈Rn×c 7→ diag(C>1 C2)∈Rc

• SPREAD: λ ∈ R 7→ λ1n×1

• NORMALIZE: C ∈ Rn×c 7→ S ∈ Rn×c, where S:,i ←
C:,i/‖C:,i‖M and ||C||2M := trace(C>MC), where M
is the mass matrix computed on the mesh

• LINEAR: C ∈ Rn×c,T ∈ Rc×t 7→ CT ∈ Rn×t

• NONLINEAR: Applies batch normalization and ReLU
per vertex to C ∈ Rn×c; in Figure 1(a), this nonlinearity
is denoted using the function f

• PER-ELEMENT: Combined linear and nonlinear per-
element operations; see Figure 1(a)

• CONCATENATE: Concatenates columns of two matrices
• APPLY-OPERATOR: Applies an instance of the operator

H as obtained using Eq. 1 in §2.1 as C∈Rn×c 7→ HC∈
Rf×c, by multiplying the operator matrix H by the input
signal matrix C; when Hi ∈ Rf×n, i = 1, ..., k and k >
1, i.e., there are multiple channels, we apply each channel Hi independently and stack the results
{HiC}ki=1 into a matrix Rf×ck. If the input signal C has f rather than n rows, the transpose of
Hi is applied. The output of this matrix-vector multiply is then scaled by triangle areas or inverse
per-vertex areas if the operator is transposed.

A complete layer of our network, titled OPERATOR-BLOCK, is shown in Figure 1. The structure
of this layer is similar to the one proposed for Surface Networks (Kostrikov et al., 2018, Figure 2).
It is also straightforward to show that a single iteration of conjugate gradients or eigenvalue power
iteration can be implemented using the steps in OPERATOR-BLOCK, allowing for the possibility
that our network learns steps of these well-known numerical algorithms. Then our method are
capable to replicate and generalize the very successful spectral shape and image analysis methods,
which extract principal components and information insensitive to noises, graph combinatorics, and
remeshing. Our overall learning architecture simply applies the OPERATOR-BLOCK multiple times;
and for global tasks, our architecture additionally performs max pooling over vertices and transforms
the result using a fully-connected layer.

Mesh features for operator parameterization. MLPθ in (1) is a multi-layer perceptron with 3
hidden layers, each with width of 32 or 48; this amounts to applying four PER-ELEMENT modules
from Figure 1(a) to each of the directed edge features. In (1), the linear transformation weights and
bias in the perceptron are reused three times, once for each directed edge in a given triangle.

3 RESULTS Method #Parameters Accuracy (%)
Ours 30k + 40k 99.0
Dirac 30k + 0 97.8

Dirac (large) 90k + 0 98.3

Table 1: MNIST classification accuracy
(testing) for each method. #Parameters
counts those outside and inside operators
separately and does not include those used in
the fully-connected layer.

Mesh MNIST classification. We convert the 28×
28 images from the MNIST handwritten digit dataset
to meshes, so that each pixel becomes a vertex in the
mesh, and the additional z coordinate is proportional
to the pixel intensity. We build a simple architecture:
The input per-vertex signal is the z coordinate; we
apply three OPERATOR-BLOCK modules, each out-
putting a 48-dimensional per-vertex feature. Then,
we apply a fully-connected layer, which flattens the
28× 28× 48 features and successively reduces its dimension following (28× 28× 48)→ 512→
256 → 128 → 10. We test the resulting architecture for both our method and the Dirac Surface
Networks. Note if we replace MLPθ with a fixed formula, our architecture becomes a Dirac net-
work. The table above summarizes the results, in which the parameters outside and inside operators
are counted separately. Since our method uses more parameters than the Dirac networks due to
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its learnable operators, for the Dirac networks, we additionally test a larger Dirac network, by in-
creasing the output dimensions of the OPERATOR-BLOCK to 96. We see that our method, with a
moderate number of parameters, outperforms Dirac networks in both setups.

Method Setup Accuracy (%)
PointNet++ Raw Feature 60.18

Ours Raw Feature 78.75
PointNet++ Global Feature 96.06

Ours Global Feature 97.90

Nonrigid shape classification. We apply our
method to the SHREC15 nonrigid shape classifica-
tion task. We downsample the original meshes to
2000 faces. We compare our method with Point-
Net++ in setups similar to theirs, using an architec-
ture which applies eight OPERATOR-BLOCK mod-
ules, each outputting a 32-dimensional per-vertex feature. PointNet++ takes in raw features (posi-
tions) as the input signal; accordingly, we set up our method to use raw mesh features for operator
learning and random noise as the input signal. Another setting of PointNet++ uses auxiliary features
including (PCA-reduced) multi-scale curvature, the heat kernel signature, and the wave kernel sig-
nature as input; accordingly we set up our method with heat kernel signatures as input and again use
extrinsic raw features (positions, edge vectors, lengths and angles) to learn operators. We see that in
both cases, our method outperforms PointNet++.

Method #Parameters Reconstruction Error
Laplacian 1019k 17.34

Dirac 1019k 16.84
Ours 1089k 12.98

Animation prediction. We compare our
method with Surface Networks on the task of
temporal prediction of nonlinear dynamics. We
test our operator within their proposed architec-
ture, with the same learning setup detailed in their §6.2. The table above shows that with the few
parameters introduced by our learnable operator, we are able to outperform Surface Networks by a
large margin.

Visualization of learned operator. While previous geo-
metric deep learning algorithms rely on prescribed opera-
tors, our method learns new operators motivated by a task or
dataset. Although the space of all possible operators is high-
dimensional, we can use indirect means to visualize their ac-
tion. Here we visualize operators learned in our animation prediction experiment. On the left we
show a dominant eigenfunction of the operators. Since these eigenfunctions are difficult to dis-
tinguish visually from Laplacian eigenfunctions, on the right we use the framework of shape dif-
ferences (Rustamov et al., 2013) to highlight regions where our operators are different from the
cotangent Laplacian operator, which is probably responsible for the improvement. Interpretability
of the learned geometric operators is an interesting next step for future work.

4 CONCLUSION

Learning from meshes is fundamentally different than learning from images. When processing mesh
data, we must cope with irregular structures and the fact that changes as innocuous as rotation affect
the coordinates of every vertex. Rather than shoehorning meshes into existing networks designed
for images or graphs, our work is a step toward geometric deep learning built end-to-end for shapes.
Drawing inspiration from geometry processing workflows, our procedure remains sensible from
the perspective of classical and data-oriented mesh processing, with the flexibility of a parametric
model. Our method essentially implements a generic linear operator assembler and learns from a
family of sensible operators. In the future, we would like to solidify the connection of our framework
to the finite element method (FEM) and experiment with function bases whose support reaches over
a larger region on the mesh, leading to architectures that are dramatically different from GNNs
and less sensitive to mesh discretization. We are also interested in drawing connections to discrete
exterior calculus (DEC) (Hirani, 2003).
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Or Litany, Tal Remez, Emanuele Rodolà, Alexander M Bronstein, and Michael M Bronstein. Deep
functional maps: Structured prediction for dense shape correspondence. In ICCV, pp. 5660–5668,
2017.

Or Litany, Alex Bronstein, Michael Bronstein, and Ameesh Makadia. Deformable shape completion
with graph convolutional autoencoders. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 1886–1895, 2018.

Roee Litman and Alexander M Bronstein. Learning spectral descriptors for deformable shape cor-
respondence. IEEE transactions on pattern analysis and machine intelligence, 36(1):171–180,
2014.

Hsueh-Ti Derek Liu, Alec Jacobson, and Keenan Crane. A Dirac operator for extrinsic shape anal-
ysis. In Computer Graphics Forum, volume 36, pp. 139–149. Wiley Online Library, 2017.

H. Maron, M. Galun, N. Aigerman, M. Trope, N. dym, , E. Yumer, V. Kim, and Y. Lipman. Con-
volutional neural networks on surfaces via seamless toric covers. ACM Transactions on Graphics
(Proceedings of SIGGRAPH 2017), 2017.

Jonathan Masci, Davide Boscaini, Michael Bronstein, and Pierre Vandergheynst. Geodesic con-
volutional neural networks on riemannian manifolds. In Proceedings of the IEEE international
conference on computer vision workshops, pp. 37–45, 2015.

Federico Monti, Davide Boscaini, Jonathan Masci, Emanuele Rodolà, Jan Svoboda, and Michael M
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SUPPLEMENTARY MATERIAL

A EXTENDED DISCUSSION OF RELATED WORK

The success of deep learning for image analysis and vision has inspired interest in developing analo-
gous methods for geometric data. Unlike images, however, a key consideration in geometry involves
the choice and manipulation of representations. The most straightforward extension of image-based
methods uses a volumetric grid (Wu et al., 2015; Qi et al., 2016b) or using multiple-view images (Su
et al., 2015; Huang et al., 2018), benefiting from classical grid-based deep learning. These ap-
proaches, however, have many drawbacks, including high complexity and a lack of invariance to
transformations like deformation or rotation.

A new class of geometric deep learning algorithms directly operates on 3D representations like
meshes and point clouds (Bronstein et al., 2017); this field is part of a broader program to generalize
deep networks to graph-structured data. In this paper, we are primarily interested in geometric deep
learning on meshes; we summarize related methods below.

Spatial approach. Spatial domain methods are chart-based, applying filters after parameteriz-
ing to a local coordinate system. Examples include Geodesic CNN (GCNN) (Masci et al., 2015),
Anisotropic CNN (ACNN) (Boscaini et al., 2015), MoNet (Monti et al., 2016), and Tangent Con-
volutions (TC) (Tatarchenko et al., 2018). A central issue with these methods is that there exists no
canonical parametrization or coordinate system for most surfaces, making it hard to resolve angular
ambiguities. ACNN and TC align planar filters to principal curvature directions, which may not be
continuous and are sensitive to noise. To resolve this issue, GCNN uses angular pooling all polar
directions equally; this restricts the possible filters, in analogy to rotationally-symmetric kernels on
images. This difficulty has recently been addressed with the equivariant convolution construction
(Poulenard & Ovsjanikov, 2018).

Global parameterization-based methods map 3D surfaces to domains with shift-invariant structure
such as the plane (Sinha et al., 2016) or a torus (Maron et al., 2017), in which CNN machinery is
be applied to pushed-forward geometric signals. Planar mapping induces distortion and potentially
requires cutting; furthermore, most parameterization methods do not consistently map the same parts
of a surface to the same planar locations, creating artificial challenges.

Point cloud-based methods like PointNet (Qi et al., 2016a; 2017) operate without topological in-
formation, receiving as input an unordered collection of disconnected points. While point con-
volution (Atzmon et al., 2018), continuous convolution (Wang et al., 2018a), dynamic graph lay-
ers (Wang et al., 2018c), and other methods define convolution-like operations on point clouds to
transfer information between samples, they discard topological cues afforded by meshes.

Operator approach. Laplacian shape analysis algorithms use the intrinsic Laplace–Beltrami
(Laplacian) operator or its eigenfunctions and eigenvalues (which generalize Fourier bases and fre-
quencies, resp.), achieving state-of-the-art shape classification results in non-learning settings. This
methodology has been successfully applied to tasks including segmentation (Reuter et al., 2009),
description (Reuter et al., 2006; Kokkinos et al., 2012), retrieval (Bronstein et al., 2011), and corre-
spondence (Ovsjanikov et al., 2012). By construction, the Laplacian is invariant to rigid and nonrigid
isometries and robust to remeshing; these properties make it a desirable choice for mesh processing.

Surface Networks (Kostrikov et al., 2018) generalize Graph Neural Networks (Scarselli et al., 2009)
by replacing the adjacency matrix with the Laplacian or Dirac operators; the Dirac operator is used to
add sensitivity to extrinsic deformation ignored by the (isometry-invariant) Laplacian operator. This
method in some sense generalizes 2D CNNs to curved meshes using fixed kernels (stencils), which
limits their representation capacity. Generalizing these methods, our method provides a framework
to make the kernel learnable.
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While Surface Networks apply operators directly as sparse matrices, they also can be applied in the
spectral domain. This idea was proposed for graphs in (Bruna et al., 2014; Defferrard et al., 2016),
and was extended to 3D shapes in (Yi et al., 2016); it allows for efficient application of certain opera-
tors and the application of learned filters to operator eigenvalues. Pointed out in e.g. (Bronstein et al.,
2017), spectral coefficients do not adapt across domains when shapes are from different categories
and cannot be put into pointwise correspondence. This issue aside, the Optimal Spectral Descrip-
tor (Litman & Bronstein, 2014) learns spectral filter coefficients, and Deep Functional Maps (Litany
et al., 2017) learn to refine the SHOT descriptor (Tombari et al., 2010); they are specifically for
correspondence.

B PROPOSITION 1 USING AN OPERATOR VIEW OF GEOMETRIC LEARNING

We represent surfaces as triangle meshes (X,T), where X ∈ Rn×3 contains the (x, y, z) coordi-
nates of one vertex per row and T ∈ {1, . . . , n}f×3 contains a triplet of indices into the rows of X
for each triangle in the mesh. Here, n is the number of vertices, and f is the number of triangles.

We consider learning from collections of meshes as (X,T) pairs, where the T’s are not necessarily
the same—that is, meshes can be triangulated differently. While one can endow the shape with
additional per-vertex properties in X (e.g. texture, normal, or descriptors), we assume no extra
information is provided beyond connectivity and coordinates.

B.1 OPERATOR REPRESENTATION

Just as a graph can be described using its adjacency or Laplacian matrices, there are many ways in
which a shape can be expressed as an operator, i.e., a matrix A ∈ Rn×n assembled from (X,T).

Operator constructions can provide a bijection between meshes (X,T) and operators A. That is,
given a mesh (X,T), we can construct an operator A by some deterministic procedure, and con-
versely given the operator A we can recover (X,T), possibly up to rigid/nonrigid isometry, from
A. For example, the mesh Laplacian encodes edge lengths up to global scaling (Zeng et al., 2012),
providing a means of recovering shape from an operator; (Boscaini et al., 2015; Corman et al., 2017;
Chern et al., 2018) recover vertex coordinates up to isometry from Laplacians and related objects,
providing a (nonconvex) way to invert this encoding. Another example is the single layer potential,
which encodes the inverse distance between pairs of vertices (Wang et al., 2018b). The discrete
Dirac operator (Crane et al., 2011; Liu et al., 2017; Ye et al., 2018; Kostrikov et al., 2018), though
potentially not square, is another example.

In the language of operators, our two learning tasks can be equivalently written as finding functions
of operators f(A) : Rn×n → Rk and F(A) : Rn×n → Rn×k, respectively.

Our use of the term operator (rather than, e.g., “matrix”) is suggestive of a long-standing dual-
ity in spectral geometry. A key realization in modern geometry is that operators like the Lapla-
cian acting on functions—the Laplacian in Rn takes a function f(x) to the second derivative
−
∑n

k=1
∂2f/∂x2

i (x)—encode geometric information in their eigenvalues and eigenfunctions. As
is common in geometry processing, we design operators as matrices acting as functions represented
using one value per mesh vertex. Many operators we will consider have sparsity determined by
vertex adjacency, similar to a derivative operator in the smooth case.

Typical geometric deep learning architectures employ layers of the form F(∆), where ∆ is the
Laplacian and F is a learnable function interpretable as a spectral filter applied to the eigenvalues:
F(∆) = VF(Λ)V>. If F is expressible in terms of matrix-matrix/matrix-vector products, it can
be applied with linear complexity without explicit eigedecomposition. Popular choices for F in-
clude polynomial (Defferrard et al., 2016) or rational functions (Levie et al., 2017) with learnable
coefficients.

B.2 IMPLICATIONS OF INVARIANCE

We now explore the implications of the desiderata in §2 on the operator representation from §B.1.
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Given any permutation π of {1, . . . , n}, denote the corresponding permutation matrix as P ∈
{0, 1}n×n. Applying π to our mesh (X,T) yields a mesh (P−1X, π(T)), where π(T) substitutes
entries in F with value k with π(k); P−1AP is its corresponding operator representation.

In operator language, requiring the learned functions f ,F to be permutation-invariant is equivalent
to constraining:

f(A) = f(P−1AP)

P−1F(A) = F(P−1AP)
(2)

For settings with a fixed A (e.g. the graph Laplacian), permutation invariance leads to some the-
oretical properties; for example, if f is convex it can only depend on the “pseudo-eigenvalues” of
A (Chandrasekaran et al., 2012).

Now let us consider the more general case. We apply the language of functional maps (Ovsjanikov
et al., 2012), in which maps between meshes are expressed as operators taking functions on one
mesh to functions on another. To establish notation, given the original mesh (X,T) and remeshed
version (X̃, T̃), denote their operator representations as A and Ã, resp.; let M and M̃ denote the
respective (diagonal) mass matrices, representing the local area elements on the two meshes. A
functional map is a linear operator C ∈ Rñ×n mapping a per-vertex function u ∈ Rn on (X,T) to
a function ũ = Cu ∈ Rñ on (X̃, T̃).

Given an operator representation A of (X,T), we can generate an operator representation Ã of
(X̃, T̃) by mapping a function to (X,T), applying A, and mapping it back: Ã = CAC−1. Suppose
S denotes some set of functional maps, e.g. those that preserve areas or angles. Invariance to the
transformations in S can be written symbolically as

f(A) = f(CAC−1)

F(A) = C−1F(CAC−1)
whenever C ∈ S. (3)

A consequence of (Rustamov et al., 2013, Theorem 1) is that C is area-preserving exactly when
the C is orthogonal with respect to the mass matrices (M, M̃), that is, when C>M̃C = M. The
challenge in our framework is that (M, M̃) are not known; we only receive A as input. Enforcing (3)
for any semidefinite (M, M̃) is too strong for S and implies extremely restrictive constraints on f
and F.

As an alternative generalizing (2), we consider the case M, M̃ = I, that is, when the mass matrices
are both the identity; in this case C>C = I, that is C ∈ O(n). This is roughly the case after
isotropic remeshing, since typical triangulation algorithms lead to nearly identical masses assigned
to all the vertices. As a way to understand the implications of assumptions like invariance under
area-preserving transformation, we consider the following result for symmetric operators like the
Laplacian:

Proposition 2 Suppose S = O(n) in (3), and apply eigendecomposition to write A = QΛQ>.
Then,

f(A) = f(Λ) and F(A) = QF(Λ). (4)

This proposition follows from straightforward arguments about orthogonal matrices.

Roughly this proposition indicates that invariance to simple geometric transformations and permuta-
tion implies that the learned functions involve just the eigenstructure of A. Indeed, functions made
from the spectra of discretized operators such as Laplacian have been proven in practice to be robust
to mesh discretization and perturbation. Furthermore, deep learning architectures on graphs such as
those in §B.1 explicitly learn functions of the Laplacian eigenvalues.

Several results from spectral geometry support some species of the converse to the discussion
above. A landmark article in differential geometry poses the question, “Can one hear the shape of a
drum?” (Kac, 1966), that is, given the eigenvalues of an operator like the Laplacian, can the shape
be reconstructed? While the Laplacian does not have this property thanks to existence of isospectral
non-isometric shapes (Gordon et al., 1992), in practice one can approximately reconstruct shapes
from Laplacian spectra under mild assumptions (Cosmo et al., 2018).

11



Published as a workshop paper at ICLR 2019

Besides the Laplacian, there are other operators whose spectra determine a shape completely up
to rigid motion. For example, 2D curves (polylines) can be recovered from eigenvalues of the
Poincaré-Steklov operator (Levitin et al., 2017). As a corollary, cylindrical shapes (i.e. with straight
parallel sides) can be recovered from eigenvalues of certain related operator. As another corollary,
for shapes (e.g. convex polygon meshes) that can be recovered from projected outlines from finitely
many views, the shape can be recovered from the Steklov eigenvalues of the projected outlines.

In these cases, if f inputs eigenvalues of the corresponding operator, it in effect has access to all
possible information about the shape. These results support the intuition that eigendecomposition
provides the relevant information about a shape after converting to an operator representation.

Our discussion implies a limit on the learning capacity of algorithms designed to be invariant to
changes like permutation and deformation. Learning from quantities other than the spectrum is
likely indicative of overfitting to the representation rather than the underlying geometry.

B.3 WHY SHOULD THE OPERATOR BE LEARNED?

Our formulation suggests that learning architectures on meshes should learn functions of operator
spectra; common practice is to explicitly parametrize such functions e.g. as polynomials (§B.1) and
apply them to a fixed operator such as the Laplacian. Here, we argue for the value of degrees of
freedom afforded by making the operator learnable.

The best operator is problem-specific; different operators are sensitive to different features. Our
analysis should be understood as showing that f information-theoretically depends largely on the
spectrum of any invertible operator representation, but it implies nothing computationally. As indi-
cated by the diverse set of operator representations applied in previous work, there are many ways
to represent a shape as an operator that are all in some sense equivalent. The optimal function f ,
however, may take an extremely complicated form for one operator while being simple for another.
As an example, the diameter (largest pairwise distance) of a shape can be trivially obtained as the re-
ciprocal of the smallest eigenvalue of the single layer potential operator, but it is less straightforward
to obtain this quantity from the Dirac operator even if technically it can be recovered.

Individual fixed operators have limitations. The Laplacian is intrinsic, making it insensitive to
bending without stretching. While the Dirac operator introduces extrinsic terms useful for learn-
ing (Kostrikov et al., 2018) and shape analysis (Liu et al., 2017), its spectrum is sensitive to high-
frequency detail, suitable for tasks like texture detection but not higher-level tasks like classifica-
tion (Wang et al., 2018b).

Fixed operators imply irreversible assumptions about the data: The Laplacian is intrinsic, and the
Dirac is rigid-motion invariant. It is not clear, e.g., how to design operators invariant only to hori-
zontal motion or specific directions of deformation. Ideally, the level of invariance to assorted trans-
formations should be learned from data. Also, as mentioned earlier, fixed operators are analogous
to 2D CNN with fixed stencils, whose representation capacity is limited.

C ON THE REPRESENTATION CAPACITY OF LEARNABLE OPERATORS

Consider the learnable operators with the formula in Eq. 1:

Hj,i = MLPθ(Ci,Ej,i) ∈ Rc,

A number of indexing/slicing operations is needed to capture our construction efficiently. There are
two types of tensors in our implementation: real-valued feature tensors and integer-valued index ten-
sors. Index tensors never undergo floating point computations but rather are used as indices to slice
into the rows and columns of other tensors; they play the role of pointers. In this sense, our operator
layer can be thought of as a careful application of pointer networks or structured learning (Vinyals
et al., 2015), with structures prescribed by the mesh topology. The MLPθ(·) essentially bypasses
and learns the combined steps of the quadrature points selection, bilinear form evaluation at quadra-
ture points, and averaging by quadrature weights, which are variable and tweakable parts in finite
element methods.

As mentioned earlier that Ej,i can store all features in triangle j including features correspond to
the three directed edges of triangle j, these features are stored in an ordered fashion: Ej,i stacks
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features correspond to the directed edge O(i, j), features correspond to the directed edge P (i, j),
and features correspond to the directed S(i, j), in order. Here O(i, j) refers to the directed edge in
triangle j that is opposite to vertex i, and P (i, j) and S(i, j) refer to direct edges anticlockwisely
preceding and succeeding to O(i, j) within triangle j, respectively.

C.1 RELATIONSHIP TO GEOMETRY PROCESSING

Our construction above is by no means heuristic, but rather is reflective of typical operator con-
structions in geometry processing. Below we document how our model for H encapsulates previous
fixed-operator representations of meshes, including those appearing in geometric deep learning. Be-
yond demonstrating the flexibility of our approach, these examples show how we can expect our
architecture to learn operators that match the performance or outperform previous work prescribing
a single operator for all tasks.

Dirac operator. The Dirac operator, used to build Surface Networks (Kostrikov et al., 2018), can
be written in the form (1) by taking:

Hj,i = −
1

2
eij , (5)

where eij ∈ R3 is the directed edge vector opposite vertex i in triangle j. The Dirac operator is
valued in the complex quaternions, explaining the right-hand side in R3.

Gradient operator. We can interpolate per-vertex features to the interiors of triangles linearly to
obtain a function along the entire triangulated surface. This piecewise-linear interpolant—written
in the “hat function” basis from the finite element method (FEM) (Brenner & Scott, 2007)—can
be differentiated; since the interpolant is linear on each face, the gradient is a constant vector per
triangle. Hence, the (x, y, z) components of the gradient each can be obtained using a linear operator
that takes in a value per vertex and outputs vector per triangle

Hj,i = NORMALIZE

(
eij,2 × eij,3

eij,1

)
, (6)

where eij,` gives the edge vector opposite vertex i in triangle j (` = 1), its successor edge vector
(` = 2), and its predecessor edge vector (` = 3). This operator appears in directional field design
(Vaxman et al., 2016) and discretization of partial differential equations.

Cotangent Laplacian. The cotangent Laplacian (Pinkall & Polthier, 1993) is the best-known op-
erator in geometry processing; Zeng et al. (2012) show that it encodes a shape up to rigid motion and
global scaling. This n× n operator can be obtained as ∆ =

∑3
k=1 Hk>MHk, where Hk ∈ Rf×n

denotes k-th dimension of the gradient operator (6). This example provides an operator that is
captured by taking products of operators in our parameterized form for Hk.

FEM operator. The finite element method (FEM) discretizes a bilinear form (i.e. linear operator)
H : (L2(M),L2(M)) → R operating on functions over a surface M by representing them in a
weak (integrated) fashion. Take {φi}ni=1 and {ψj}fj=1 to be two bases for functions on the mesh,
indexed by vertices and triangles, resp. Then, Galerkin FEM approximates

Hj,i =

∫
H[φi, ψj ](x) dx.

For our matrix dimensions, we can take the φi’s to be piecewise-linear “hat” basis functions per
vertex and the ψj’s to be piecewise-constant functions per triangle.

D FUTURE WORK

This departure from conventional deep learning shows practical benefit in our experiments, but more
importantly it suggests a breadth of research directions in geometric learning. Some directions are
straightforward; we can incorporate additional geometric features, introduce additional layers, and
train on larger datasets. Better interpreting of the learned operators can possibly inspire the design
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of new fixed operators for shape analysis. More speculative extensions may yield larger jumps
in performance and interpretability. For instance, currently our receptive field is limited by the
number of layers; each layer induces communication between a vertex and its neighboring elements.
Classical methods employ sparse linear algebra (e.g. inverting the operator rather than applying it);
incorporating sparse linear algebra into the deep learning pipeline using methods like (Rennich
et al., 2014) would enable a full receptive field but requires challenging algorithmic developments
incorporating operations like sparse factorization into back propagation. It may also be valuable to
develop a stronger link between our operator construction and methods for constructing operators in
geometry processing, e.g. FEM (Brenner & Scott, 2007) or discrete exterior calculus (DEC) (Hirani,
2003).

Combining insight from data with best practices from geometry processing holds potential to formu-
late well-posed techniques for geometric deep learning. By acknowledging the challenges specific
to mesh data, we can develop theory and practice of geometric deep learning, articulating its rela-
tionship to and differences from 2D vision.
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