
Neural Puppet: Generative Layered Cartoon Characters

Omid Poursaeed1,2 Vladimir G. Kim3 Eli Shechtman3 Jun Saito3 Serge Belongie1,2

1Cornell University 2Cornell Tech 3Adobe Research

Abstract

We propose a learning based method for generating new
animations of a cartoon character given a few example im-
ages. Our method is designed to learn from a traditionally
animated sequence, where each frame is drawn by an artist,
and thus the input images lack any common structure, cor-
respondences, or labels. We express pose changes as a de-
formation of a layered 2.5D template mesh, and devise a
novel architecture that learns to predict mesh deformations
matching the template to a target image. This enables us
to extract a common low-dimensional structure from a di-
verse set of character poses. We combine recent advances
in differentiable rendering as well as mesh-aware models
to successfully align common template even if only a few
character images are available during training. In addi-
tion to coarse poses, character appearance also varies due
to shading, out-of-plane motions, and artistic effects. We
capture these subtle changes by applying an image trans-
lation network to refine the mesh rendering, providing an
end-to-end model to generate new animations of a charac-
ter with high visual quality. We demonstrate that our gen-
erative model can be used to synthesize in-between frames
and to create data-driven deformation. Our template fitting
procedure outperforms state-of-the-art generic techniques
for detecting image correspondences.

1. Introduction
Traditional character animation is a tedious process that

requires artists meticulously drawing every frame of a mo-
tion sequence. After observing a few such sequences, a
human can easily imagine what a character might look in
other poses, however, making these inferences is difficult
for learning algorithms. The main challenge is that the in-
put images commonly exhibit substantial variations in ap-
pearance due to articulations, artistic effects, and viewpoint
changes, significantly complicating the extraction of the un-
derlying character structure. In the space of natural images,
one can rely on extensive annotations [48] or vast amount
of data [52] to extract the common structure. Unfortunately,

this approach is not feasible for cartoon characters, since
their topology, geometry, and drawing style is far less con-
sistent than that of natural images of human bodies or faces.

To tackle this challenge, we propose a method that learns
to generate novel character appearances from a small num-
ber of examples by relying on additional user input: a de-
formable puppet template. We assume that all character
poses can be generated by warping the deformable tem-
plate, and thus develop a deformation network that encodes
an image and decodes deformation parameters of the tem-
plate. These parameters are further used in a differentiable
rendering layer that is expected to render an image that
matches the input frame. Reconstruction loss can be back-
propagated through all stages, enabling us to learn how to
register the template with all of the training frames. While
the resulting renderings already yield plausible poses, they
fall short of artist-generated images since they only warp a
single reference, and do not capture slight appearance varia-
tions due to shading and artistic effects. To further improve
visual quality of our results, we use an image translation
network that synthesizes the final appearance.

While our method is not constrained to a particular
choice for the deformable puppet model, we chose a lay-
ered 2.5D deformable model that is commonly used in aca-
demic [15] and industrial [2] applications. This model
matches many traditional hand-drawn animation styles, and
makes it significantly easier for the user to produce the tem-
plate relative to 3D modeling that requires extensive exper-
tise. To generate the puppet, the user has to select a single
frame and segment the foreground character into constituent
body parts, which can be further converted into meshes us-
ing standard triangulation tools [50].

We evaluate our method on animations of six characters
with 70%-30% train-test split. First, we evaluate how well
our model can reconstruct the input frame and demonstrate
that it produces more accurate results than state-of-the-art
optical flow and auto-encoder techniques. Second, we eval-
uate the quality of correspondences estimated via the regis-
tered templates, and demonstrate improvement over image
correspondence methods. Finally, we show that our model
can be used for data-driven animation, where synthesized

animation frames are guided by character appearances ob-
served at training time. We build prototype applications
for synthesizing in-between frames and animating by user-
guided deformation where our model constrains new im-
ages to lie on a learned manifold of plausible character de-
formations. We show that the data-driven approach yields
more realistic poses that better match to original artist draw-
ings than traditional energy-based optimization techniques
used in computer graphics.

2. Related Work

Deep Generative Models. Several successful paradigms
of deep generative models have emerged recently, including
the auto-regressive models [21, 42, 59], Variational Auto-
encoders (VAEs) [33, 32, 47], and Generative Adversar-
ial Networks (GANs) [20, 44, 49, 26, 6]. Deep genera-
tive models have been applied to image-to-image translation
[27, 66, 65], image superresolution [36], learning from syn-
thetic data [10, 51], generating adversarial images [43], and
synthesizing 3D volumes [58, 53]. These techniques usu-
ally make no assumptions about the structure of the training
data and synthesize pixels (or voxels) directly. This makes
them very versatile and appealing when a large number of
examples are available. Since these data might not be avail-
able in some domains, such as 3D modeling or character
animation, several techniques leverage additional structural
priors to train deep models with less training data.

Learning to Generate with Deformable Templates. De-
formable templates have been used for decades to address
analysis and synthesis problems [5, 9, 3, 4, 40, 67]. Synthe-
sis algorithms typically assume that multiple deformations
of the same template (e.g., a mesh of the same character in
various poses) is provided during training. Generative mod-
els, such as variational auto-encoders directly operate on
vertex coordinates to encode and generate plausible defor-
mations from these examples [57, 35, 38]. Alternative rep-
resentations, such as multi-resolution meshes [45], single-
chart UV [7], or multi-chart UV [24] is used for higher res-
olution meshes. This approaches are limited to cases when
all of the template parameters are known for all training ex-
amples, and thus cannot be trained or make inferences over
raw unlabeled data.

Some recent work suggests that neural networks can
jointly learn the template parameterization and optimize for
the alignment between the template and a 3D shape [22] or
2D images [29, 25, 60]. While these models can make infer-
ences over unlabeled data, they are trained on a large num-
ber of examples with rich labels, such as dense or sparse
correspondences defined for all pairs of training examples.

To address this limitation, a recent work on deform-
ing auto-encoders provides an approach for unsupervised

group-wise image alignment of related images (e.g. hu-
man faces) [52]. They disentangle shape and appearance
in latent space, by predicting a warp of a learned template
image as well as its texture transformations to match every
target image. Since their warp is defined over the regular
2D lattice, their method is not suitable for strong articula-
tions. Thus, to handle complex articulated characters and
strong motions, we leverage an user-provided template and
rely on regularization terms that leverage the rigging as well
as mesh structure. Instead of synthesizing appearance in a
common texture space, we do the final image translation
pass that enables us to recover from warping artifacts and
capture effects beyond texture variations, such as out-of-
plane motions.

Mesh-based models for Character Animation. Many
techniques have been developed to simplify the produc-
tion of traditional hand-drawn animation using comput-
ers [12, 16]. Mesh deformation techniques, enable novice
users to create animations by manipulating a small set of
control points of a single puppet [54, 28]. To avoid overly-
synthetic appearance, one can further stylize these defor-
mations by leveraging multiple co-registered examples to
guide the deformation [61], and final appearance synthe-
sis [17, 18]. These methods, however, require artist to
provide the input in a particular format, and if this input
is not available rely on image-based correspondence tech-
niques [11, 56, 14, 19, 55] to register the input. Our de-
formable puppet model relies on a layered mesh represen-
tation [18] and mesh regularization terms [54] used in these
optimization-based workflows. Our method jointly learns
the puppet deformation model as it registers the input data
to the template, and thus yields more accurate correspon-
dences than state-of-the-art flow-based approach [55] and
state-of-the-art feature-based method trained on natural im-
ages [14].

3. Approach
Our goal is to learn a deformable model for a cartoon

character given an unlabeled collection of images. First,
the user creates a layered deformable template puppet by
segmenting one reference frame. We then train a two-stage
neural network that first fits this deformable puppet to ev-
ery frame of the input sequence by learning how to warp a
puppet to reconstruct the appearance of the input, and sec-
ond, it refines the rendering of deformed puppet to account
for texture variations and motions that cannot be expressed
with a 2D warp.

3.1. A Layered Deformable Puppet

The puppet geometry is represented with a few triangular
meshes ordered into layers and connected at hinge joints.
For simplicity, we denote them as one mesh with vertices

(a) (b)

Figure 1: Deformable Puppet. a) For each body part a sep-
arate mesh is created, and joints (shown with circles) are
specified. b) The meshes are combined into a single mesh.
The UV-image of the final mesh consists of translated ver-
sions of separate texture maps.

V and faces F , where every layer is a separate connected
component of the mesh. Joints are represented as {(pi, qi)}
pairs, connecting vertices between some of these compo-
nents. The puppet appearance is captured as texture image
Iuv , which aligns to some rest pose V̂ . New character poses
can be generated by modifying vertex coordinates, and the
final appearance can be synthesized by warping the original
texture according to mesh deformation.

Unlike 3D modeling, even inexperienced users can cre-
ate the layered 2D puppet. First, one selects a reference
frame and provides the outline for different body parts and
prescribes the part ordering. We then use standard triangu-
lation algorithm [50] to generate a mesh for each part, and
create a hinge joint at the centroid of overlapping area of
two parts. We can further run midpoint mesh subdivision to
get a finer mesh that can model more subtle deformations.
Figure 1 illustrates a deformable puppet.

3.2. Deformation Network

After obtaining the template, we aim to learn how to de-
form it to match a target image of the character in a new
pose. Figure 2 illustrates our architecture. The inputs to
the Deformation Network are the initial mesh and a target
image of the character in a new pose. An encoder-decoder
network takes the target image, encodes it to a bottleneck
via convolutional filters, and then decodes it to vertex po-
sition offsets via fully connected layers. Thus, it learns to
recognize the pose in the input image and then infer ap-
propriate template deformation to reproduce the pose. We
assume the connectivity of vertices and the textures remain
the same compared to the template. Hence, we pass the
faces and textures of the initial mesh in tandem with the pre-
dicted vertex positions to a differentiable renderer R. The
rendered image is then compared to the input image using
L2 reconstruction loss:

Lrec = ‖x−R(Vpred, F, Iuv)‖2 (1)

in which x represents the input image. We use the Neural
Mesh Renderer [30] as our differentiable renderer, since it
can be easily integrated into neural network architectures.

Regularization. The model trained with only the re-
construction loss does not preserve the structure of the ini-
tial mesh, and the network may generate large deformations
to favor local consistency. In order to prevent this, we use
the ARAP regularization energy [54] which penalizes devi-
ations of per-cell transformations from rigidity:

Lreg =

|V |∑
i=1

∑
j∈Ni

wij ‖(v̂i − v̂j)−Ri(vi − vj)‖2 (2)

in which vi and v̂i are coordinates of vertex i before and af-
ter deformation, Ni denotes neighboring vertices of vertex
i, wij are cotangent weights and Ri is the optimal rotation
matrix as discussed in [54].

Joints Loss. If we do not constrain vertices of the lay-
ered mesh, different limbs can move away from each other,
resulting in unrealistic outputs. In order to prevent this, we
specify ‘joints’ (pi, qi), i = 1, . . . , n as pairs of vertices in
different layers that must remain close to each other after
deformation. We manually specify the joints, and penalize
the sum of distances between vertices in each joint:

Ljoints =

n∑
i=1

‖pi − qi‖2 (3)

Our final loss for training the Deformation Network is a
linear combination of the aforementioned losses:

Ltotal = Lrec + λ1 · Lreg + λ2 · Ljoints (4)

We use λ1 = 2500 and λ2 = 104 in the experiments.

3.3. Appearance Refinement Network

While articulations can be mostly captured by deforma-
tion network, some appearance variations such as artistic
stylizations, shading effects, and out-of-plane motions can-
not be generated by warping a single reference. To ad-
dress this limitation, we propose an appearance refinement
network that processes the image produced by rendering
the deformed puppet. Our architecture and training proce-
dure is similar to conditional Generative Adversarial Net-
work (cGAN) approach that is widely used in various do-
mains [41, 64, 27]. The corresponding architecture is shown
in Figure 2. The generator refines the rendered image to
look more natural and more similar to the input image. The
discriminator tries to distinguish between input frames of
character poses and generated images. These two networks
are then trained in an adversarial setting [20], where we use
pix2pix architecture [27] and Wasserstein GAN with Gra-
dient Penalty for adversarial loss [6, 23]:

LG = −E
[
D(G(xrend))

]
+ γ1 ‖G(xrend)− xinput‖1 (5)

Figure 2: Training Architecture. An encoder-decoder network learns the mesh deformation and a conditional Generative
Adversarial Network refines the rendered image to capture texture variations.

And the discriminator’s loss is:

LD = E
[
D(G(xrend))

]
− E

[
D(xreal)

]
+

γ2 E
[
(‖∇x̂D(x̂)‖2 − 1)2

]
(6)

in which D(·) and G(·) are the discriminator and the gen-
erator, γ1, γ2 ∈ R are weights, xinput and xrend are the in-
put and rendered images, xreal is an image sampled from
the training set, and x̂ = ε G(xrend) + (1 − ε) xreal with
ε uniformly sampled from the [0, 1] range. The cGAN is
trained independently after training the Deformation Net-
work as this results in more stable training.

4. Results and Applications
We evaluate how well our method captures (i.e., encodes

and reconstructs) character appearance. We use six charac-
ter animation sequences from various public sources. Fig-
ure 3 shows some qualitative results where for each in-
put image we demonstrate output of the deformation net-
work (rendered) and the final synthesized appearance (gen-
erated). The first three characters are from Dvoroznak et
al. [18] with 1280/547, 230/92 and 60/23 train/test images
respectively. The last character (robot) is obtained from
Adobe Character Animator [2] with 22/9 train/test images.
Other characters and their details are given in the supple-
mentary material. The rendered result is produced by warp-
ing a reference puppet, and thus it has fewer degrees of free-
dom (e.g., it cannot change texture or capture out-of-plane
motions). However, it still provides fairly accurate recon-
struction even for very strong motions, suggesting that our
layered puppet model makes it easier to account for signif-
icant character articulations, and that our image encoding
can successfully predict these articulations even though it
was trained without strong supervision. Our refinement net-
work does not have any information from the original image
other than the re-rendered pose, but, evidently, adversarial

loss provides sufficient guidance to improve the final ap-
pearance and match the artist-drawn input. To confirm that
these observations hold over all characters and frames, we
report L2 distance between the target and generated images
in Table 1. See supplemental material for more examples.

We compare our method to alternative techniques for re-
synthesizing novel frames (also in Figure 3). One can use
optical flow method, such as PWC-Net [55] to predict a
warping of a reference frame (we use the frame that was
used to create the puppet) to the target image. This method
was trained on real motions in videos of natural scenes and
tends to introduce strong distortion artifacts when matching
large articulations in our cartoon data. Various autoencoder
approaches can also be used to encode and reconstruct ap-
pearance. We compare to a state-of-the-art approach that
uses deforming auto-encoders [52] to disentangle deforma-
tion and appearance variations by separately predicting a
warp field and a texture. This approach does not decode
character-specific structure (the warp field is defined over
a regular grid), and thus also tends to fail at larger artic-
ulations. Another limitation is that it controls appearance
by altering a pre-warped texture, and thus cannot correct
for any distortion artifacts introduced by the warp. Both
methods have larger reconstruction loss in comparison to
our rendered as well as final results (see Table 1).

One of the key advantages of our method is that it pre-
dicts deformation parameters, and thus can retain resolution
of the artist-drawn image. To illustrate this, we render the
output of our method as 1024 × 1024 images using vanilla
OpenGL renderer in Figure 4. We show full-size images in
the supplementary material. The final conditional genera-
tion step can also be trained on high-resolution images.

4.1. Inbetweening
In traditional animation, a highly-skilled artist creates a

few sparse keyframes and then in-betweening artists draw
the other frames to create the entire sequence. Various com-

Figure 3: Input images, our rendered and final results, followed by results obtained with PWC-Net [55] and DAE [52] (input
images for the first three characters are drawn by c©Zuzana Studená. The fourth character c©Adobe Character Animator).

putational tools have been proposed to automate the second
step [34, 56, 8, 62], but these methods typically use hand-
crafted energies to ensure that intermediate frames look
plausible, and rely on the input data to be provided in a

particular format (e.g., deformations of the same puppet).
Our method can be directly used to interpolate between two
raw images, and our interpolation falls on the manifold of
deformations learned from training data, thus generating in-

Char1 Char2 Char3 Char4 Avg
Rendered 819.8 732.7 764.1 738.9 776.1
Generated 710.0 670.5 691.7 659.2 695.3
PWC-Net 1030.4 1016.1 918.3 734.6 937.1

DAE 1038.3 1007.2 974.8 795.1 981.6

Table 1: Average L2 distance to the target images from the
test set. Rendered and generated images from our method
are compared with PWC-Net [55] and Deforming Auto-
encoders [52]. The last column shows the average distance
across six different characters.

Figure 4: Output of our method rendered into 1024× 1024
images (zoom in for details).

betweens that look similar to the input sequence.
Given two images x1 and x2 we use the encoder in de-

formation network to obtain their features, zi = E(xi).
We then linearly interpolate between z1 and z2 with uni-
form step size, and for each in-between feature z we ap-
ply the rest of our network to synthesize the final appear-
ance. The resulting interpolations are shown in Figure 5.
The output images smoothly interpolate the motion, while
mimicking poses observed in training data. This suggests
that the learned manifold is smooth and can be used di-
rectly for example-driven animation. We further confirm
that our method generalizes beyond training data by show-
ing nearest training neighbor to the generated image (using
Euclidean distance as the metric).

4.2. User-constrained Deformation

Animations created with software assistance commonly
rely on deforming a puppet template to target poses. These
deformations are typically defined by local optima with re-
spect to user-prescribed constraints (i.e., target motions)
and some hand-crafted energies such as rigidity or elas-
ticity [54, 37, 13]. This is equivalent to deciding on what
kind of physical material the character is made of (e.g.,
rubber, paper), and then trying to mimic various deforma-
tions of that material without accounting for artistic styl-
izations and bio-mechanical priors used by professional an-
imators. While some approaches allow transferring these

effects from stylized animations [18], they require artist
to provide consistently-segmented and densely annotated
frames aligned to some reference skeleton motion. Our
model does not rely on any annotations and we can directly
use our learned manifold to find appropriate deformations
that satisfy user constraints.

Given the input image of a character x, the user clicks
on any number of control points {pi} and prescribes their
desired target positions {ptrg

i }. Our system then produces
the image x′ that satisfies the user constraints, while adher-
ing to the learned manifold of plausible deformations. First,
we use the deformation network to estimate vertex parame-
ters to match our puppet to the input image: v = D(E(x))
(where E(·) is the encoder and D(·) is the decoder in Fig-
ure 2). We observe that each user-selected control point pi
can now be found on the surface of the puppet mesh. One
can express its position as a linear combination of mesh ver-
tices, pi(v), where we use barycentric coordinates of the
triangle that encloses pi. The user constrained can be ex-
pressed as an energy, penalizing distance to the target:

Luser =
∑
i

∥∥pi(v)− ptrg
i

∥∥2 (7)

For the deformation to look plausible, we also include the
regularization terms:

Ldeform = Luser + α1 · Lreg + α2 · Ljoints (8)

We use α1 = 25, α2 = 50 in the experiments.
Since our entire deformation network is differentiable,

we can propagate the gradient of this loss function to the
embedding of the original image z0 = E(x) and use gradi-
ent descent to find z that optimizes Ldeform:

z ←− z − η∇zLdeform (9)

where η = 3× 10−4 is the step size. In practice, a few (2 to
5) iterations of gradient descent suffice to obtain satisfactory
results, enabling fast, interactive manipulation of the mesh
by the user (in the order of seconds).

The resulting latent vector is then passed to the decoder,
the renderer and the refinement network. Figure 6 (left)
illustrates the results of this user-constrained deformation.
As we observe, deformations look plausible and satisfy the
user constraints. They also show global consistency; for
instance, as we move one of the legs to satisfy the user con-
straint, the torso and the other leg also move in a consistent
manner. This is due to the fact that the latent space encodes
high-level information about the character’s poses, and it
learns that specific poses of torso are likely to co-occur with
specific poses of legs, as defined by the animator.

We compare our method with optimizing directly in the
vertex space using the regularization terms only (Figure 6,
right). This approach does not use the latent representation,

Figure 5: Inbetweening results. Two given images (first row) are encoded. The resulting latent vectors are linearly inter-
polated yielding the rendered and generated (final) images. For each generated image, the corresponding Nearest Neighbor
image from the training set is retrieved.

Figure 6: User-constrained deformation. Given the starting vertex and the desired location (shown with the arrow), the model
learns a plausible deformation to satisfy the user constraint. Our approach of searching for an optimal latent vector achieves
global shape consistency, while optimizing directly on vertex positions only preserves local rigidity.

and thus does not leverage the training data. It is similar
to traditional energy-based approaches, where better energy
models might yield smoother deformation, but would not
enforce long-range relation between leg and torso motions.

4.3. Correspondence Estimation
Many video editing applications require inter-frame cor-

respondence. While many algorithms have been proposed
to address this goal for natural videos [14, 39, 31, 63, 46],

Figure 7: Characters in the wild. The model learns both the outline and the pose of the character (input frames and the
character c©Soyuzmultfilm).

α = 0.1 α = 0.05 α = 0.025
Ours 67.18 46.39 24.17
UCN 67.07 43.84 21.50

PWC-Net 62.92 40.74 18.47

Table 2: Correspondence estimation results using PCK as
the metric. Results are averaged across six characters.

they are typically not suitable for cartoon data, as it usu-
ally lacks texture and exhibits strong expressive articula-
tions. Since our Deformation Network fits the same tem-
plate to every frame, we can estimate correspondences be-
tween any pair of frames via the template. Table 2 compares
correspondences from our method with those obtained from
a recent flow-based approach (PWC-Net [55]), and with a
supervised correspondence method, Universal Correspon-
dence Networks (UCN) [14]. We use the Percentage of
Correct Keypoints (PCK) as the evaluation metric. Given
a threshold α ∈ (0, 1), the correspondence is classified as
correct if the predicted point lies within Euclidean distance
α ·L of the ground-truth, in which L = max(width, height)
is the image size. Results are averaged across pairs of im-
ages in the test set for six different characters. Our method
outperforms UCN and PWC-Net in all cases, since it has a
better model for underlying character structure. Note that
our method requires a single segmented frame, while UCN
is trained with ground truth key-point correspondences, and
PWC-Net is supervised with ground truth flow.

4.4. Characters in the Wild

We also extend our approach to TV cartoon characters
“in the wild”. The main challenge posed by these data is
that the character might only be a small element of a com-
plex scene. Given a raw video1, we first use the standard
tracking tool in Adobe After Effects [1] to extract per-frame
bounding boxes that encloses the character. Now we can use
our architecture to only analyze the character appearance.
However, since it still appears over a complex background,

1e.g. https://www.youtube.com/watch?v=hYCbxtzOfL8

we modify our reconstruction loss to be computed only over
the rendered character:

Lmasked
rec =

∥∥x�R(Vpred, F, I1)−R(Vpred, F, Iuv)∥∥2∑
R(Vpred, F, I1)

(10)
where x is the input image,� is the Hadamard product, and
R(Vpred, F, I

1) is a mask, produced by rendering a mesh
with 1-valued (white) texture over a 0-valued (black) back-
ground. By applying this mask, we compare only the rel-
evant regions of input and rendered images, i.e. the fore-
ground character. The term in the denominator normalizes
the loss by the total character area. To further avoid shrink-
ing or expansion of the character (which could be driven by
a partial match), we add an area loss penalty:

Larea =
∣∣∣∑R(Vpred, F, I

1)−
∑

R(Vinit, F, I
1)
∣∣∣2
(11)

Our final loss is defined similarly to Equation 4 but uses the
masked reconstruction lossLmasked

rec and addsLarea loss with
weight 2 × 10−3 (Lreg and Ljoints are included with orig-
inal weights). We present our results in Figure 7, demon-
strating that our framework can be used to capture character
appearance in the wild.

5. Conclusion and Future Work
We present novel neural network architectures for learn-

ing to register deformable mesh models of cartoon charac-
ters. Using a template-fitting approach, we learn how to
adjust an initial mesh to images of a character in various
poses. We demonstrate that our model successfully learns
to deform the meshes based on the input images. Layering
is introduced to handle occlusion and moving limbs. Vary-
ing motion and textures are captured with a Deformation
Network and an Appearance Refinement Network respec-
tively. We show applications of our model in inbetweening,
user-constrained deformation and correspondence estima-
tion. In the future, we consider using our model for appli-
cations such as motion re-targetting.

References
[1] Adobe. Adobe after effects, 2019. 8
[2] Adobe. Adobe character animator, 2019. 1, 4
[3] B. Allen, B. Curless, and Z. Popović. The space of hu-

man body shapes: reconstruction and parameterization from
range scans. In ACM transactions on graphics (TOG), vol-
ume 22, pages 587–594. ACM, 2003. 2

[4] B. Allen, B. Curless, Z. Popović, and A. Hertzmann. Learn-
ing a correlated model of identity and pose-dependent body
shape variation for real-time synthesis. In Proceedings of the
2006 ACM SIGGRAPH/Eurographics symposium on Com-
puter animation, pages 147–156. Eurographics Association,
2006. 2

[5] Y. Amit, U. Grenander, and M. Piccioni. Structural image
restoration through deformable templates. Journal of the
American Statistical Association, 86(414):376–387, 1991. 2

[6] M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein gan.
arXiv preprint arXiv:1701.07875, 2017. 2, 3

[7] T. Bagautdinov, C. Wu, J. Saragih, P. Fua, and Y. Sheikh.
Modeling facial geometry using compositional vaes. In prac-
tice, 1:1, 2018. 2

[8] W. Baxter, P. Barla, and K. Anjyo. N-way morphing for 2d
animation. Computer Animation and Virtual Worlds, 20(2-
3):79–87, 2009. 5

[9] V. Blanz and T. Vetter. Face recognition based on fitting a 3d
morphable model. IEEE Transactions on pattern analysis
and machine intelligence, 25(9):1063–1074, 2003. 2

[10] K. Bousmalis, N. Silberman, D. Dohan, D. Erhan, and D. Kr-
ishnan. Unsupervised pixel-level domain adaptation with
generative adversarial networks. In The IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), vol-
ume 1, page 7, 2017. 2

[11] C. Bregler, L. Loeb, E. Chuang, and H. Deshpande. Turn-
ing to the masters: Motion capturing cartoons. In Proceed-
ings of the 29th Annual Conference on Computer Graph-
ics and Interactive Techniques, SIGGRAPH ’02, pages 399–
407, 2002. 2

[12] E. Catmull. The problems of computer-assisted animation.
In ACM SIGGRAPH Computer Graphics, volume 12, pages
348–353. ACM, 1978. 2

[13] I. Chao, U. Pinkall, P. Sanan, and P. Schröder. A simple geo-
metric model for elastic deformations. In ACM transactions
on graphics (TOG), volume 29, page 38. ACM, 2010. 6

[14] C. B. Choy, J. Gwak, S. Savarese, and M. Chandraker. Uni-
versal correspondence network. In Advances in Neural In-
formation Processing Systems, pages 2414–2422, 2016. 2,
7, 8

[15] W. T. Corrêa, R. J. Jensen, C. E. Thayer, and A. Finkel-
stein. Texture mapping for cel animation. pages 435–446,
July 1998. 1

[16] F. Di Fiore, P. Schaeken, K. Elens, and F. Van Reeth. Auto-
matic in-betweening in computer assisted animation by ex-
ploiting 2.5 d modelling techniques. In Proceedings Com-
puter Animation 2001. Fourteenth Conference on Computer
Animation (Cat. No. 01TH8596), pages 192–200. IEEE,
2001. 2

[17] M. Dvorožňák, P. Bénard, P. Barla, O. Wang, and D. Sỳkora.
Example-based expressive animation of 2d rigid bodies.
ACM Transactions on Graphics (TOG), 36(4):127, 2017. 2

[18] M. Dvorožnák, W. Li, V. G. Kim, and D. Sỳkora. Toon-
synth: example-based synthesis of hand-colored cartoon an-
imations. ACM Transactions on Graphics (TOG), 37(4):167,
2018. 2, 4, 6

[19] X. Fan, A. Bermano, V. G. Kim, J. Popovic, and
S. Rusinkiewicz. Tooncap: A layered deformable model for
capturing poses from cartoon characters. Expressive, 2018.
2

[20] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,
D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Gen-
erative adversarial nets. In Advances in neural information
processing systems, pages 2672–2680, 2014. 2, 3

[21] K. Gregor, I. Danihelka, A. Mnih, C. Blundell, and D. Wier-
stra. Deep autoregressive networks. arXiv preprint
arXiv:1310.8499, 2013. 2

[22] T. Groueix, M. Fisher, V. G. Kim, B. C. Russell, and
M. Aubry. Shape correspondences from learnt template-
based parametrization. arXiv preprint arXiv:1806.05228,
2018. 2

[23] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and
A. C. Courville. Improved training of wasserstein gans. In
Advances in Neural Information Processing Systems, pages
5767–5777, 2017. 3

[24] H. B. Hamu, H. Maron, I. Kezurer, G. Avineri, and Y. Lip-
man. Multi-chart generative surface modeling. SIGGRAPH
Asia, 2018. 2

[25] P. Henderson and V. Ferrari. Learning to generate and recon-
struct 3d meshes with only 2d supervision. arXiv preprint
arXiv:1807.09259, 2018. 2

[26] X. Huang, Y. Li, O. Poursaeed, J. E. Hopcroft, and S. J. Be-
longie. Stacked generative adversarial networks. In CVPR,
volume 2, page 3, 2017. 2

[27] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros. Image-
to-image translation with conditional adversarial networks.
arXiv preprint, 2017. 2, 3

[28] A. Jacobson, I. Baran, J. Popović, and O. Sorkine. Bounded
biharmonic weights for real-time deformation. ACM Trans-
actions on Graphics (proceedings of ACM SIGGRAPH),
30(4):78:1–78:8, 2011. 2

[29] A. Kanazawa, S. Tulsiani, A. A. Efros, and J. Malik. Learn-
ing category-specific mesh reconstruction from image col-
lections. arXiv preprint arXiv:1803.07549, 2018. 2

[30] H. Kato, Y. Ushiku, and T. Harada. Neural 3d mesh renderer.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 3907–3916, 2018. 3

[31] J. Kim, C. Liu, F. Sha, and K. Grauman. Deformable spatial
pyramid matching for fast dense correspondences. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 2307–2314, 2013. 7

[32] D. P. Kingma, S. Mohamed, D. J. Rezende, and M. Welling.
Semi-supervised learning with deep generative models. In
Advances in Neural Information Processing Systems, pages
3581–3589, 2014. 2

[33] D. P. Kingma and M. Welling. Auto-encoding variational
bayes. arXiv preprint arXiv:1312.6114, 2013. 2

[34] A. Kort. Computer aided inbetweening. In Proceedings of
the 2nd international symposium on Non-photorealistic ani-
mation and rendering, pages 125–132. ACM, 2002. 5

[35] I. Kostrikov, Z. Jiang, D. Panozzo, D. Zorin, and B. Joan.
Surface networks. In 2018 IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2018, 2018. 2

[36] C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Cunningham,
A. Acosta, A. P. Aitken, A. Tejani, J. Totz, Z. Wang, et al.
Photo-realistic single image super-resolution using a genera-
tive adversarial network. In CVPR, volume 2, page 4, 2017.
2

[37] Z. Levi and C. Gotsman. Smooth rotation enhanced as-rigid-
as-possible mesh animation. IEEE transactions on visualiza-
tion and computer graphics, 21(2):264–277, 2015. 6

[38] O. Litany, A. Bronstein, M. Bronstein, and A. Makadia. De-
formable shape completion with graph convolutional autoen-
coders. arXiv preprint arXiv:1712.00268, 2017. 2

[39] C. Liu, J. Yuen, and A. Torralba. Sift flow: Dense correspon-
dence across scenes and its applications. IEEE transactions
on pattern analysis and machine intelligence, 33(5):978–
994, 2011. 7

[40] M. Loper, N. Mahmood, J. Romero, G. Pons-Moll, and M. J.
Black. Smpl: A skinned multi-person linear model. ACM
Transactions on Graphics (TOG), 34(6):248, 2015. 2

[41] M. Mirza and S. Osindero. Conditional generative adversar-
ial nets. arXiv preprint arXiv:1411.1784, 2014. 3

[42] A. v. d. Oord, N. Kalchbrenner, and K. Kavukcuoglu. Pixel
recurrent neural networks. arXiv preprint arXiv:1601.06759,
2016. 2

[43] O. Poursaeed, I. Katsman, B. Gao, and S. Belongie. Genera-
tive adversarial perturbations. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pages 4422–4431, 2018. 2

[44] A. Radford, L. Metz, and S. Chintala. Unsupervised repre-
sentation learning with deep convolutional generative adver-
sarial networks. arXiv preprint arXiv:1511.06434, 2015. 2

[45] A. Ranjan, T. Bolkart, S. Sanyal, and M. J. Black. Generat-
ing 3d faces using convolutional mesh autoencoders. arXiv
preprint arXiv:1807.10267, 2018. 2

[46] J. Revaud, P. Weinzaepfel, Z. Harchaoui, and C. Schmid.
Deepmatching: Hierarchical deformable dense matching. In-
ternational Journal of Computer Vision, 120(3):300–323,
2016. 7

[47] D. J. Rezende, S. Mohamed, and D. Wierstra. Stochastic
backpropagation and approximate inference in deep genera-
tive models. arXiv preprint arXiv:1401.4082, 2014. 2

[48] I. K. R{i1
za Alp Güler, Natalia Neverova. Densepose: Dense human
pose estimation in the wild. arXiv, 2018.

[49] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Rad-
ford, and X. Chen. Improved techniques for training gans. In
Advances in Neural Information Processing Systems, pages
2234–2242, 2016. 2

[50] J. R. Shewchuk. Triangle: Engineering a 2d quality mesh
generator and delaunay triangulator. In Applied computa-
tional geometry towards geometric engineering, pages 203–
222. Springer, 1996. 1, 3

[51] A. Shrivastava, T. Pfister, O. Tuzel, J. Susskind, W. Wang,
and R. Webb. Learning from simulated and unsupervised
images through adversarial training. In CVPR, volume 2,
page 5, 2017. 2

[52] Z. Shu, M. Sahasrabudhe, A. Guler, D. Samaras, N. Para-
gios, and I. Kokkinos. Deforming autoencoders: Unsuper-
vised disentangling of shape and appearance. arXiv preprint
arXiv:1806.06503, 2018. 1, 2, 4, 5, 6

[53] A. A. Soltani, H. Huang, J. Wu, T. D. Kulkarni, and J. B.
Tenenbaum. Synthesizing 3d shapes via modeling multi-
view depth maps and silhouettes with deep generative net-
works. In The IEEE conference on computer vision and pat-
tern recognition (CVPR), volume 3, page 4, 2017. 2

[54] O. Sorkine and M. Alexa. As-rigid-as-possible surface mod-
eling. In Symposium on Geometry processing, volume 4,
pages 109–116, 2007. 2, 3, 6

[55] D. Sun, X. Yang, M.-Y. Liu, and J. Kautz. Pwc-net: Cnns
for optical flow using pyramid, warping, and cost volume.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 8934–8943, 2018. 2, 4, 5, 6,
8

[56] D. Sỳkora, J. Dingliana, and S. Collins. As-rigid-as-
possible image registration for hand-drawn cartoon anima-
tions. In Proceedings of the 7th International Symposium on
Non-Photorealistic Animation and Rendering, pages 25–33.
ACM, 2009. 2, 5

[57] Q. Tan, L. Gao, Y.-K. Lai, and S. Xia. Variational autoen-
coders for deforming 3d mesh models. In The IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
June 2018. 2

[58] M. Tatarchenko, A. Dosovitskiy, and T. Brox. Octree gen-
erating networks: Efficient convolutional architectures for
high-resolution 3d outputs. In Proc. of the IEEE Interna-
tional Conf. on Computer Vision (ICCV), volume 2, page 8,
2017. 2

[59] A. van den Oord, N. Kalchbrenner, L. Espeholt, O. Vinyals,
A. Graves, et al. Conditional image generation with pixel-
cnn decoders. In Advances in Neural Information Processing
Systems, pages 4790–4798, 2016. 2

[60] A. Venkat, S. S. Jinka, and A. Sharma. Deep textured 3d
reconstruction of human bodies. 2

[61] K. Wampler. Fast and reliable example-based mesh ik
for stylized deformations. ACM Transactions on Graphics
(TOG), 35(6):235, 2016. 2

[62] B. Whited, G. Noris, M. Simmons, R. W. Sumner, M. Gross,
and J. Rossignac. Betweenit: An interactive tool for tight
inbetweening. In Computer Graphics Forum, volume 29,
pages 605–614. Wiley Online Library, 2010. 5

[63] H. Yang, W. Lin, and J. Lu. Daisy filter flow: A generalized
approach to discrete dense correspondences. CVPR, 2014. 7

[64] D. Yoo, N. Kim, S. Park, A. S. Paek, and I. S. Kweon. Pixel-
level domain transfer. In European Conference on Computer
Vision, pages 517–532. Springer, 2016. 3

[65] J.-Y. Zhu, P. Krähenbühl, E. Shechtman, and A. A. Efros.
Generative visual manipulation on the natural image mani-
fold. In European Conference on Computer Vision, pages
597–613. Springer, 2016. 2

[66] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros. Unpaired image-
to-image translation using cycle-consistent adversarial net-
works. arXiv preprint, 2017. 2

[67] S. Zuffi and M. J. Black. The stitched puppet: A graphical
model of 3d human shape and pose. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 3537–3546, 2015. 2

Supplementary material for “Neural Puppet: Generative Layered Cartoon
Characters”

We provide results for new characters and additional samples of existing characters in Figure A. The top-left character
is from Textoons [4], and the top-right one is from ToonSynth [1]. We use 33/10 and 22/8 train/test samples respectively.
As we observe, our method clearly outperforms the baselines in all cases. We also show generated images for the character
in the wild (corresponding to Section 4.4. and Figure 7 in the main paper). In this case, we feed masked input images to
the discriminator of the conditional GAN. Figure B illustrates additional in-betweening results, and corresponds to Section
4.1. and Figure 5 in the main paper. Figure C depicts character deformations based on various constraints (corresponding
to Section 4.2. and Figure 6 in the main paper). As we observe, our approach achieves global shape consistency, while
optimizing directly on vertex positions (as in ARAP) only preserves local rigidity. Note that since we predict the vertex
positions, we can render images with arbitrary resolutions. Using a better renderer can further improve the results. In Figure
D we show full-resolution output of our method as 1024× 1024 images using vanilla OpenGL renderer.

References
[1] M. Dvorožnák, W. Li, V. G. Kim, and D. Sỳkora. Toonsynth: example-based synthesis of hand-colored cartoon animations. ACM

Transactions on Graphics (TOG), 37(4):167, 2018. 1
[2] Z. Shu, M. Sahasrabudhe, A. Guler, D. Samaras, N. Paragios, and I. Kokkinos. Deforming autoencoders: Unsupervised disentangling

of shape and appearance. arXiv preprint arXiv:1806.06503, 2018. 2, 3
[3] D. Sun, X. Yang, M.-Y. Liu, and J. Kautz. Pwc-net: Cnns for optical flow using pyramid, warping, and cost volume. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition, pages 8934–8943, 2018. 2, 3
[4] D. Sỳkora, M. Ben-Chen, M. Čadı́k, B. Whited, and M. Simmons. Textoons: practical texture mapping for hand-drawn cartoon

animations. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Non-Photorealistic Animation and Rendering,
pages 75–84. ACM, 2011. 1

1

Input

Rendered
 (Ours)

Generated
 (Ours)

PWC-Net
(Baseline)

 DAE
(Baseline)

Input

Rendered
 (Ours)

Generated
 (Ours)

PWC-Net
(Baseline)

 DAE
(Baseline)

Figure A: Input images, our rendered and final results, followed by results obtained with PWC-Net [3] and DAE [2] (charac-
ters in the first row c©Anifilm Studio, bottom-left character c©Adobe Character Animator, bottom-right character c©Zuzana
Studená).

Figure A: (cont.) Input images, our rendered and final results, followed by results obtained with PWC-Net [3] and DAE [2]
(Top character c©Zuzana Studená, bottom character c© Soyuzmultfilm).

Figure B: Inbetweening results. Two given test images (first row) are encoded. The resulting latent vectors are linearly
interpolated yielding the resulting rendered images (input drawings c©Zuzana Studená).

Figure C: User-constrained deformation. Given the starting vertex and the desired location (shown with the arrow), the model
learns a plausible deformation to satisfy the user constraint (input drawings c©Zuzana Studená).

Figure D: Output of our method rendered into 1024× 1024 images.

