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Fig. 1: Our system synthesizes novel 3D shapes by assembling them from parts. Internally, it
represents shapes as a graph of the regions where parts connect to one another (which we call
slots). It generates such a graph by retrieving part subgraphs from different shapes in a dataset.
Once a full graph has been generated, the system then optimizes for affine part transformations
to produce a final output shape.

Abstract. We present the Shape Part Slot Machine, a new method for assembling
novel 3D shapes from existing parts by performing contact-based reasoning. Our
method represents each shape as a graph of “slots,” where each slot is a region
of contact between two shape parts. Based on this representation, we design a
graph-neural-network-based model for generating new slot graphs and retriev-
ing compatible parts, as well as a gradient-descent-based optimization scheme
for assembling the retrieved parts into a complete shape that respects the gener-
ated slot graph. This approach does not require any semantic part labels; inter-
estingly, it also does not require complete part geometries—reasoning about the
slots proves sufficient to generate novel, high-quality 3D shapes. We demonstrate
that our method generates shapes that outperform existing modeling-by-assembly
approaches regarding quality, diversity, and structural complexity.

1 Introduction

There is increasing demand for high-quality 3D object models across multiple fields:
gaming and virtual reality; advertising and e-commerce; synthetic training data for com-
puter vision and robotics; and more. The traditional practice of manual 3D modeling is
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time-consuming and labor-intensive and is not well-suited to scaling to this demand.
Thus, visual computing researchers have pursued data-driven methods which can aug-
ment human creative capabilities and accelerate the modeling process.

One promising technology in this space are generative models of 3D shapes. Such
generative models could suggest new, never-before seen shapes, freeing users from te-
dious and time-consuming low-level geometric manipulations to focus on high-level
creative decisions. Recent work in this space has focused on deep generative models
of shapes in the form of volumetric occupancy grids, point clouds, or implicit fields.
While these methods demonstrate impressive abilities to synthesize the bulk shape of
novel objects, the local geometry they produce often exhibits noticeable artifacts: over-
smoothing, bumpiness, extraneous holes, etc. At present, none of these generative
models has achieved geometric output quality resembling the shapes they are trained
on. An alternative approach would be to avoid synthesizing novel geometry altogether
and instead learn how to re-combine existing high-quality geometries created by skilled
modeling artists. This paradigm is known in the computer graphics literature as model-
ing by assembly, where it once received considerable attention. Since the deep learning
revolution, however, the focus of most shape generation research has shifted to novel
geometry synthesis. The few post-deep-learning methods for modeling by assembly
have shown promise but have not quite lived up to it: handling only coarse-grained as-
semblies of large parts, as well as placing parts by directly predicting their world-space
poses (leading to ‘floating part’ artifacts).

In this paper, we present a new generative model for shape synthesis by part as-
sembly which addresses these issues. Our key idea is to use a representation which
focuses on the connectivity structure of parts. This choice is inspired by several recent
models for novel geometry synthesis which achieve better structural coherence in their
outputs by adopting a part-connectivity-based representation [15, 10, 25]. In our model,
the first-class entities are the regions where one part connects to another. We call these
regions slots and our model the Shape Part Slot Machine.

In our model, a shape is represented by a graph in which slots are nodes and edges
denote connections between them. We define shape synthesis as iteratively construct-
ing such a graph by retrieving parts and connecting their slots together. We propose
an autoregressive generative framework for solving this problem, composed of several
neural network modules tasked with retrieving compatible parts and determining their
slot connections. Throughout the iterative assembly process, the partial shape is repre-
sented only by its slot graph: it is not necessary to assemble the retrieved parts together
until the process is complete, at which point we use a gradient-descent-based optimiza-
tion scheme to find poses and scales for the retrieved parts which are consistent with
the generated slot graph.

We compare the Shape Part Slot Machine to other modeling-by-assembly and part-
connectivity-based generative models. We find that our approach consistently outper-
forms the alternatives in its ability to generate visually and physically plausible shapes.

In summary, our contributions are:
– The Slot graph representation for reasoning about part structure of shapes.
– An autoregressive generative model for slot graphs by iterative part retrieval and

assembly.
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– A demonstration that local part connectivity structure is enough to synthesize globally-
plausible shapes: neither full part geometries nor their poses are required.

2 Related Work

Modeling by Part Assembly: The Modeling By Example system pioneered the paradigm
of modeling-by-assembly with interactive system for replacing parts of an object by
searching in database [4]. The Shuffler system added semantic part labels, enabling
automatic ‘shuffling’ of corresponding parts [13]. Later work handled more complex
shapes by taking symmetry and hierarchy into account [9]. Other modes of user inter-
action include guiding exploration via sketches [23] or abstract shape templates [1],
searching for parts by semantic attributes [2], or having the user play the role of fit-
ness function in an evolutionary algorithm [24]. Probabilistic graphical models have
been effective for suggesting parts [3] or synthesizing entire shapes automatically [12].
Part-based assembly has also been used for reconstructing shapes from images [18].

Our work is most closely related to ComplementMe, which trains deep networks to
suggest and place unlabeled parts to extend a partial shape [19]. Our model is different
in that we use a novel, part-contacts-only representation of shapes, which we show
enables handling of more structurally complex shapes.
Deep Generative Models of Part-based Shapes: Our work is also related to deep gen-
erative models which synthesize part-based shapes. One option is to make voxel-grid
generative models part-aware [20, 22]. Many models have been proposed which gener-
ate sets of cuboids representing shape parts [27]; some fill the cuboids with generated
geometry in the form of voxel grids [14] or point clouds [15, 10, 11]. Other part-based
generative models skip cuboid proxies and generate part geometries directly, as point
clouds [17], implicit fields [21], or deformed genus zero meshes [5, 25]. All of these
models synthesize part geometry. In contrast, our model synthesizes shapes by retriev-
ing and assembling existing high-quality part meshes.
Estimating Poses for 3D Parts: Many part-based shape generative models must pose
the generated parts. Some prior work looks at this problem on its own: given a set of
parts, how to assemble them together? One method predicts a 6DOF pose for each part
such that they become assembled [8]; another predicts per-part translations and scales
and also synthesizes geometry to make the transformed parts connect seamlessly [26].
Rather than predict part poses directly, we solve for per-part poses and scales that sat-
isfies contact constraints encoded in a slot graph. This approach has its root in early
work in modeling by assembly [12] but without the need for part labels and separate
steps computing how parts should attach. It is also similar in spirit to that of Sha-
peAssembly [10], working with part meshes rather than cuboid abstractions.

3 Overview

Assembling novel shapes from parts requires solving two sub-problems: finding a set
of compatible parts, and computing the proper transforms to assemble the parts. These
tasks depend on each other, e.g. replacing a small chair seat with a large one will shift
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Fig. 2: A slot graph. Nodes are part-to-part contact regions called slots and describe the contact
geometry with bounding boxes. Contact edges connect two slots on two adjacent parts, while
part edges connect all slots of the same part.

the chair legs further away from the center. Instead of solving these sub-problems sep-
arately, we propose a system for solving them jointly. Specifically, our system synthe-
sizes shapes by iteratively constructing a representation of the contacts between parts.
The assembly transformations for each part can then be computed directly from this
representation.

In our system, a shape is represented as a slot graph: each node corresponds to a
“slot” (part-to-part contact region) on a part; each edge is either a part edge connecting
slots of the same part or a contact edge connecting slots on two touching parts. Section 4
defines this graph structure and describes how we extract them from available data.

This reduces the task of assembling novel shapes to a graph generation problem:
retrieving sub-graphs representing parts from different shapes and combining them into
new graphs. We solve this problem autoregressively, assembling part sub-graphs one-
by-one into a complete slot graph. At each iteration, given a partial slot graph, our
system inserts a new part using three neural network modules: the first determines where
a part be should connect to the current partial graph, the second decides what part to
connect, and third determines how to connect the part. We describe this generation
process in Section 5.

Finally, given a complete contact graph, the system runs a gradient-based optimiza-
tion process that assembles parts into shapes by solving for poses and scales of the
individual parts such that the contacts implied by the generated slot graph are satisfied.
We describe the process in Section 6.

4 Representing Shapes with Slot Graphs

In this section, we define slot graphs, describe how we extract them from segmented
shapes, and how we encode them with neural networks.

4.1 Slot-based Graph Representation of Shapes

A good shape representation that models how parts connect allows the generative model
to reason independently about part connectivity and part geometry. Given a shape S and



SPSM: Contact-based Reasoning for Generating 3D Shapes from Parts 5

its part decomposition {P1 . . . PN}, we call regions where parts connect “slots”, and use
them as nodes in a graph G = (V,Ec, Ep), as illustrated in Figure 2. Each pair of parts
may be connected with multiple slots, and each slot uij ∈ V on part Pi that connects
to Pj has a corresponding slot uji on part Pj that connects back to Pi. Each node uij

stores the following properties:
– The axis-aligned bounding box (AABB) of the slot, in a coordinate frame centered

on Pi.
– The same AABB, but normalized such that the bounding box of the entire part is a

unit cube. This provides a scale-invariant view of how parts connect.
A slot graph G has two types of edges: contact edges ecij ∈ Ec connect every pair of
contacting slots uij ,uji and part edges epijk ∈ Ep connect every pair of slots uij ,uik

in the same part Pi.
This representation encodes neither the geometry nor the pose of each part. Omitting

this information encourages generalization: the choice of parts will be based only on the
compatibility of their attachment regions and connectivity structure; it will not be biased
by a part’s world-space position in its original shape nor its complete geometry.

This representation also does not encode part symmetries; nevertheless, we demon-
strate in Section 7 that our model often generates appropriately symmetrical shapes. We
can also optionally include logic that enforces symmetries at test time (see Section 5).

4.2 Extracting Slot Graphs from Data

Given a set of part-segmented shapes, we follow StructureNet [15] to extract part ad-
jacencies and symmetries. We use adjacencies to define slots, and define connecting
regions as points within distance τ of the adjacent part. Additionally, we ensure that
symmetrical parts have symmetrical slots and prune excess slots where multiple parts
overlap at the same region. See supplemental for details.

4.3 Encoding Slots Graphs with Neural Networks

We encode a slot graph into a graph feature hG and per-slot features hu using messaging
passing networks [6].
Initializing Node Embeddings: We initialize slot features hu using a learned encoding
of the slot properties xu (two six-dimensional AABBs) with a three-layer MLP finit:
h0
u = finit(xu). As we discuss later, some of our generative model’s modules also

include an additional one-hot feature which is set to one for particular nodes that are
relevant to their task (effectively ‘highlighting’ them for the network).
Graph Encoder: The node embeddings are then updated with our message passing
network using an even number of message passing rounds. In each round, node embed-
dings are updated by gathering messages from adjacent nodes. We alternate the edge
sets E during each round, using only part edges E = Ep for odd rounds (t = 1, 3, 5 . . .)
and only contact edges E = Ec for even rounds (t = 2, 4, 6 . . .):

ht = f t
update

(
ht−1
u ,

∑
uv∈E

f t
msg(h

t−1
u , ht−1

v , h0
u, h

0
v)
)
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Fig. 3: Our slot graph generative model uses three neural network modules to build a graph step
by step. Where to Attach?: Predicts which slots on the current partial shape the next-retrieved
part should be attached to. What to Attach?: Learns an embedding space for part slot graphs and
predicts a probability distribution over this space in which parts which are compatible with the
highlighted slots have high probability. How to attach?: Determines which slots on the retrieved
part should connect to which slots on the current partial shape.

where fmsg is a multi-layer perceptron (MLP) that computes a message for each pair of
adjacent nodes, and fupdate is a MLP that updates the node embedding from the summed
messages. We also include skip connections to the initial node embeddings h0

u. All
MLPs have separate weights for each round of message passing.
Gathering Information from the Graph: To obtain the final node features hu, we
concatenate its initial embedding with as its embeddings after every even round of mes-
sage passing (i.e. those using contact edges) and feed them into an MLP fnode:

hu = fnode(h
0
u, h

2
u . . . hT

u )

To obtain the feature hG of an entire graph, we first perform a graph readout over the
embeddings at round t:

ht
G =

∑
u∈V

(fproject(h
t
u) · fgate(h

t
u))

where fproject projects node features into the latent space of graph features and fgate
assigns a weight for each of the mapped features. We then compute the final graph
feature hG similar to the way we compute the node features:

hG = fgraph(h
0
G , h

2
G . . . hT

G )

In cases where we need a feature for a subset of nodes V ′ ⊂ V in the graph, we simply
perform the readout over V ′ instead of V .

5 Generating Slot Graphs

Our system casts shape synthesis by part assembly as a problem of generating novel
slot graphs. To do so, we first extract a graph representation of each part: for every
shape S in a dataset of shapes, and for every part Pi ∈ S represented by a slot graph
G = (V,Ec, Ep), we create a part clique CPi

⊆ G representing this part by taking all
the slots uij ∈ V associated with this part, as well as all the part edges eijk ∈ Ep. We
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remove the all contact edges eij ∈ Ec that connects Pi to other parts in the shape. Our
goal, then, is find a set of part cliques C that can be connected together into a novel slot
graph G′ = (V ′, E′

c, E
′
p), where V ′ = {u ∈ C}, E′

p = {e ∈ C}, and E′
c is the set

of contact edges that need to be added to make all the slots attached i.e. connected to
exactly one other slot via a contact edge.

There can be thousands of parts in available shape datasets, each containing mul-
tiple slots that can be attached in different ways. Thus, it is infeasible to search this
combinatorial space exhaustively. Instead, we learn how to build novel slot graphs
autoregressively, attaching one part clique at a time to a partial slot graph, until it is
complete (i.e. all slots are attached). We learn this autoregressive process with teacher
forcing: for every training sample, we take a random, connected partial slot graph G′

consisting of one or more part cliques from a graph G = (V,Ec, EP ) extracted from a
dataset shape S. We then select a random part clique CPj

|Pj ∈ S (referred to as Ctarget
in the following sections) that is attached to G′ on one or more slots Vtarget = {uij |
uij ∈ G′,uji ∈ CPj} via set of contact edges Etarget = {ecij | uij ∈ Vtarget}. The goal
of a single generation step, then, is to maximize

p(Vtarget, Ctarget, Etarget | G′)

Rather than learn this complex joint distribution directly, we instead factor it into three
steps using the chain rule:

– Where to attach: maximizing p(Vtarget | G′)
– What to attach: maximizing p(Ctarget | G′, Vtarget)
– How to attach: maximizing p(Etarget | G′, Vtarget, Ctarget)

In the remainder of this section, we detail the formulation for the networks we use for
each of the three steps, as well as how we use them during test time. Figure 3 visually
illustrates these steps.
Where to Attach?: Given a partial slot graph G′, we first identify the slots Vtarget to
which the next-retrieved part clique should attach. We predict each element of Vtarget
autoregressively (in any order), where each step i takes as input G′ and the already-
sampled slots V i

target = {Vtarget,0 . . . Vtarget,i−1} (highlighted in G′ with a one-hot node
feature). We first use a MLP fcontinue to predict the probability pcontinue that another slot
should be added (pcontinue = 0 if V i

target = Vtarget and 1 otherwise). If more slots should
be included, then we use an MLP fnext to predict a logit for each of the unattached slots
Ṽ in G′ that are not already in V i

target. These logits are then fed into a softmax to obtain
a probability distribution over possible slots:

p(Vtarget|G′) =

|Vtarget|∏
i=1

picont · pinext[Vtarget,i]

picont =

{
pcontinue(hG′ |V i

target) i < |Vtarget|
1− pcontinue(hG′ |V i

target) i = |Vtarget|

pinext = softmax(
[
fnext(hu|V i

target)|u ∈ Ṽ /V i
target

]
)

What to Attach?: Having selected the slots Vtarget to attach to, we then retrieve part
cliques compatible with the partial graph G′ and the selected slots. Similar to prior
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Input Input + GT GT Best 2nd 5th 25th 50%

Fig. 4: Example outputs of the What to Attach? module. We visualize the input partial slot graph
within the parts that contain them (grey) and the center of the selected slots (red), as well as the
ground truth part (green, 2nd column). The parts and slots are in their ground truth world-space
pose, which is not available to the neural network. We then visualize, individually, the ground
truth part and the retrieved candidates ranked 1st, 2nd, 5th, 25th, and at the 50th percentile,
respectively, along with all of their slots (red).

work [19], we take a contrastive learning approach to this problem: the probability of
the ground truth part clique should be greater than that of randomly sampled other part
cliques (i.e. negative examples) by some margin m:

p(Ctarget | G′, Vtarget) > p(Cnegative | G′, Vtarget) +m

We use two neural networks to enforce this property. The first maps part cliques C into
an embedding space Remb.

XC = femb(hC)

where femb is the embedding MLP and hC is the graph feature computed from C alone.
The second network is a mixture density network (MDN) that outputs a probability
distribution over this embedding space:

P (X|G′, Vtarget, X ∈ Remb) = MDN(hG′ , hG′
target

)

Where Vtarget are highlighted in the input node features and hG′
target

is obtained by com-
puting graph features using Vtarget only.

We visualize the behavior of this module trained on Chair in Figure 4. When the
input demands a very specific type of structure (first 2 rows), our module can retrieve
the part cliques that match such structure. When the input has fewer constraints (3rd
row), our module retrieves a wide variety of partial cliques that can be attached. In the
4th row, our module retrieves chair legs that are structurally compatible. The legs are
not necessarily geometrically compatible, as geometry information is not available to
the module.
How to Attach?: The last module learns to connect the retrieved part clique Ctarget
to the partial slot graph G′. It predicts a probability for every pair of slots uij ∈
Vtarget,uji ∈ Ctarget that could be connected via a contact edge:

p(ecij | G, Vtarget, Ctarget) = fedge(huij
, h′

uji
)
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Fig. 5: Typical structural outliers detected at test time. From left to right: redundant compo-
nent (chair back), repetition of structures, inability to resolve local connections (chair base), not
enough slots to finish structure.

Where Vtarget are highlighted in input node features, fedge is a MLP and huij
and h′

uji

are computed with two neural networks, one over G′ and one over Ctarget. p(ecij) = 1 if
ecij ∈ Etarget and 0 otherwise. If both Vtarget and Ctarget contain one slot, then these slots
must be connected, and this module can be skipped. To encourage the networks to learn
more general representations, we augment Vtarget with random unattached slots in G′.
Generating New Slot Graphs at Test Time: At test time, we generate new slot graphs
by iteratively querying the three modules defined above. Although the modules we learn
are probabilistic and support random sampling, we find MAP inference sufficient to
produce a diverse range of shapes. We terminate the generation process when the slot
graph is complete i.e. when all slots in the graph are attached to exactly one slot from a
different part.

This stopping criterion, while simple, is not robust to errors: a random set of part
cliques can occasionally form a complete slot graph by chance. To combat these errors,
we reject any partial shapes for which the “how” module assigns low probabilities to
all candidate slot pairs. We also use one-class Support Vector Machines to reject other
structural outliers (see Figure 5 for examples).

Finally, we also include logic to enforce part symmetries. When retrieving a part
to connect with slots that were part of a symmetry group in their original shape, we
alter the rank order of parts returned by our “what” module to prioritize (a) parts that
occurred in symmetry groups in the dataset, followed by (b) parts that are approximately
symmetrical according to chamfer distance. See the supplemental for more details about
these test-time sampling strategies.

6 Assembling Shapes From Slot Graphs

A generated slot graph defines connectivity between shape parts but does not explicitly
give part poses. Thus, our system has an additional step to find world-space poses for
all the retrieved parts. In this section, we describe a simple gradient-descent-based op-
timization procedure for doing so, which takes a generated slot graph G = (V,Ec, Ep)
that describes N parts P1 . . . PN , and predicts an affine transformation matrix Ti for
each part Pi.
Objective Function: To assemble a shape from its slot graph, we want each slot to be
connected in the same way as it was in its original shape, which we approximate by
enforcing that the distance from any point on a slot to the contacting slot should stay
the same in the assembled shape. Formally, for each slot uij ∈ V , we select the set
of points Sij that the slot contains (from the point sample of Pi from Section 4). For
each point p ∈ Sij , we compute its distance do(p) to the closest point on the slot that
was originally connected to uij in the dataset. We then optimize for T1 . . . TN via the
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Translation Trans + scale

Fig. 6: Optimizing part affine transformations to satisfy a slot graph. We show the output of the
initial translation-only phase of optimization & the final output with both translation and scale.

following objective: for every slot uij ∈ V , every point sample p ∈ Sij should have
the same distance to the connecting slot uji as the original distance do(p):

f(T1 . . . TN ) =
∑

uij∈V

∑
p∈Sij

((
min
q∈Sji

d(Tip, Tjq)
)
− do(p)

)2

Optimization Process: We minimize this objective using gradient descent. Rather than
full affine transformations, we optimize only translation and anisotropic scale. This pre-
vents certain part re-uses from happening (e.g. re-using a horizontal crossbar as a ver-
tical crossbar), but we find that the space of possible outputs is nonetheless expressive.
To minimize unnecessary distortion, we prefer translation over scaling whenever pos-
sible: we optimize for translation only for the first 1000 iterations, and then alternate
between translation and scaling every 50 iterations for the next 500 iterations. Optimiz-
ing for scales is essential in cases where translation alone cannot satisfy the slot graph.
We show one such example in Figure 6, where the shelf layers are scaled horizontally
to match the V shape of the frame.

7 Results & Evaluation

In this section, we evaluate our method’s ability to synthesize novel shapes. We use
the PartNet [16] dataset, segmenting shapes with the finest-grained PartNet hierarchy
level and filtering out shapes with inconsistent segmentations and/or disconnected parts.
More implementation details are in the supplemental.
Novel Shape Synthesis: Figure 7 shows examples of shapes our method is capable of
assembling. Our model learns to generate shapes with complex structures specific to
each shape categories. Though it does not use global part position information during
graph generation, the resulting slot graphs lead to consistent global positions for the
individual parts once optimized. Although we choose not to encode full geometries, our
model is still able to generate shapes with interesting variations both structurally and
geometrically. We further quantitatively compare the results generated by our model
against against these alternatives:

– ComplementMe [19] is the previous state-of-art for modeling by part assembly. It
retrieves compatible parts and places them together by predicting per-part transla-
tion vectors. ComplementMe also does not implement a stopping criteria for gen-
eration, so we train a network that takes a partial shape point cloud as input and
predicts whether generation should stop. We also stop the generation early if the
output of the part retrieval network does not change from one step to the next.
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Fig. 7: Examples of range of shapes our method is able to generate. Each part has a different
color that correlates with the order they are inserted. The blue part is used for initialization. See
the supplementary material for more details about the color palette.

(a)

(b)

(c)

(d)

Fig. 8: (a): Chairs in the first row of Figure 7, where parts coming from the same source shape now
have the same color. (b): Geometric nearest neighbor of the the same chairs in the training set.
(c): Chairs generated without enforcing part symmetries. (d): Chairs generated with the explicit
rule that no parts coming from the same source shape can be attached together. Our method uses
parts from different shapes to generate novel shapes. It can generate approximately symmetric
shapes without explicit rules, and can connect parts from different shapes together plausibly.

,
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Table 1: Comparing our system to baselines and ablations on generating visually and physically
plausible shapes.

Category Method Root↑ Stab↑ Fool↑ FD↓ Parts

Chair

Ours 98.1 70.1 6.4 61.1 7.8
ComplementMe 90.2 41.1 6.6 83.0 5.7
StructureNet 81.0 61.3 4.0 37.5 12.1
Oracle 94.5 83.4 25.8 13.3 −

ComplementMe (w/sym) 88.3 79.1 21.9 21.6 4.3
Ground Truth 100.0 100.0 − − 11.1

Ours (no symmetry) 98.2 68.0 8.1 58.9 7.8
Ours (no duplicate) 97.5 67.4 13.8 61.2 7.7

Table
Ours 98.2 82.8 10.6 61.6 6.8
ComplementMe 90.2 62.0 7.7 93.5 4.7
StructureNet 82.8 78.5 2.3 85.2 7.8

ComplementMe (w/sym) 87.1 84.0 35.8 18.7 3.3
Ground Truth 100.0 100.0 − − 9.3

Storage
Ours 99.4 90.8 15.5 42.6 6.9
ComplementMe 91.4 72.4 8.9 89.8 3.4
StructureNet 89.6 82.2 6.8 105.5 8.3

ComplementMe (w/sym) 85.3 70.6 11.5 71.4 3.3
Ground Truth 100.0 99.4 − − 13.6

Lamp
Ours 89.6 − 21.5 42.4 3.4
ComplementMe 62.0 − 35.8 26.0 3.4
Ground Truth 92.6 − − − 4.2

Finally, ComplementMe relies on a part discovery process where most groups of
symmetrical parts are treated as a single part (e.g. four chair legs). We notice that,
when trained on our data, ComplementMe suffers from a significant performance
decrease on Chair and Table, and struggles to generate more complex Storage, as
is evident from the average number of parts (See Table 1). Therefore, for these cat-
egories, we also include results where parts are grouped by symmetry (w/sym) for
reference. We stress that, under this condition, both retrieving and assembling parts
are significantly easier, thus the results are not directly comparable.

– StructureNet [15] is an end-to-end generative model outputs a hierarchical shape
structure, where each leaf node contains a latent code that can either be decoded
into a cuboid or a point cloud. We modify it to output meshes by, for each leaf
node, retrieving the part in the dataset whose StructureNet latent code is closest to
the leaf node’s latent code and then transforming the part to fit the cuboid for that
leaf node.

– We also include an Oracle as an upper bound on retrieval-based shape genera-
tion. The oracle is an autoregressive model that takes as input at each step (a) the
bounding boxes for all parts in a ground-truth shape and (b) point clouds for parts
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retrieved so far. Retrieved parts are scaled so that they fit exactly to the bounding
box to which they are assigned.

See supplemental for more details about these baselines. We use an evaluation proto-
col similar to ShapeAssembly [10] which evaluates both the physical plausibility and
quality of generated shapes:

– Rootedness ↑ (Root) measures the percentage of shapes for which there is a con-
nected path between the ground to all parts;

– Stability ↑ (Stable) measures the percentage of shapes that remains upright under
gravity and a small force in physical simulation, we do not report this for lamps
because lamps such as chandeliers do not need to be stable;

– Realism ↑ (Fool) is the percentage of test set shapes classified as “generated” by a
PointNet trained to distinguish between dataset and generated shapes;

– Freschet Distance ↓ (FD) [7] measures distributional similarity between generated
and dataset shapes in the feature space of a pre-trained PointNet classifier.

– Parts is the mean number of parts in generated shapes.
Table 1 summarizes the results. By using a contact-based representation, our model is
able to generate shapes that are more physically plausible (rooted and stable) than the
baselines. while being comparable in terms of the overall shape quality, measured by
Frechet distance and classifier fool percentage. Our model performs particularly well
for storage furniture; we hypothesize rich connectivity information of this shape cate-
gory allows our model to pick parts that match particularly well. Our model fares less
well on lamps, where connectivity structure is simple and the geometric variability of
parts (which out model does not encode) is highly variable. ComplementMe works well
on lamps, thanks to its focus on part geometry. Its performance drops significantly on
all other categories with more complicated shape structures. We provide more details,
as well as random samples for all methods, in the supplementary material.
Generalization Capacity: It is important that a generative model that follows the mod-
eling by assembly paradigm learns to recombine parts from different sources into novel
shapes. We demonstrate our model’s capacity for this in Figure 8: it is able to assem-
ble parts from multiple source shapes together into novel shapes different from those
seen during training, with or without explicit restrictions whether parts from the same
source shape can be connected to each other. We also see that while including symme-
try reasoning improves geometric quality, our method is able to generate shapes that are
roughly symmetrical without it. This is also reflected in Table 1: removing symmetry
or prohibiting using multiple parts from the same source shape has minimal impact on
our metrics. We provide more analysis of generalization in the supplemental.
Performance of Individual Modules: Finally, we evaluate each individual model
module, using the following metrics:

– Attach Acc: How often the ”where” module correctly selects the slots to attach,
given the first slot.

– Average Rank: Average percentile rank of ground truth next part according to the
“what” module.

– Edge Acc: How often the “how” module recovers the the ground truth edge pairs.
Table 2 summarizes the results. Modules perform very well, with some lower num-

bers caused by inherent multimodality of the data.
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Table 2: Evaluating our neural network modules in isolation.

Attach Acc Avg Rank Edge Acc

Chair 96.70 99.05 94.79
Table 92.32 99.14 92.82
Storage 87.46 99.08 85.38
Lamp 98.87 91.36 91.89

Fig. 9: Typical failure cases of our method. From left to right: a chair with a tiny seat, two
opposite-facing lamps attached together awkwardly, a chair with a implausible back, a chair that
misses seat and legs completely.

Limitations: Even with outlier detection as mentioned in section 5, poor-quality out-
puts can still occur. Figure 9 shows typical examples. Most are caused by our model’s
lack of focus on geometry: chairs with a tiny seat, lamps that face opposite directions,
and chair backs that block the seat completely. Incorporating additional geometric fea-
tures when appropriate could help.

8 Conclusion

We presented the Shape Part Slot machine, a new modeling-by-part-assembly genera-
tive model for 3D shapes. Our model synthesizes new shapes by generating slot graphs
describing the contact structure between parts; it then assembles its retrieved parts by
optimizing per-part affine transforms to be consistent with this structure. The slot graph
encodes surprisingly little information, yet we demonstrated experimentally that our
model outperforms multiple baselines and prior modeling-by-assembly systems on gen-
erating novel shapes from PartNet parts.

There are multiple directions for future work. Parts could be repurposed in more
diverse ways if we had a method to transfer slot graphs between geometrically- and
contextually-similar parts (so e.g. a chair seat that had armrests originally does not have
to have them in all synthesized results). More variety could also be obtained by opti-
mizing for part orientations (so e.g. a vertical slat could be used as a horizontal one).
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1 Data Preparation

We use the PartNet [5] dataset for all our experiments, following the train/validation/test
split provided in the original paper.

1.1 Obtaining Part Level Geometry

Each shape in the PartNet data comes with a semantic hierarchy that decomposes the
shape into parts in a coarse-to-fine manner. We use the finest-grained level of parts in
this hierarchy. We filter the data using the following criteria:

– We remove shapes that contain only 1 part or more than 30 parts.
– We detect inconsistent shapes with parts that do not equal the union of their chil-

dren. For the chairs and tables dataset, we reject these inconsistent shapes. The
furniture and lamps dataset are smaller, so in these datasets, we keep the inconsis-
tent parts, but discard their children.

– We remove shapes with parts that contain floating geometry due to annotation
errors. We detect such cases by first clustering the part’s point cloud with DB-
SCAN [1]. If there exist any cluster that is significantly smaller than other clusters,
we reject the entire shape. (We cannot reject all parts that consist of multiple dis-
connected clusters, because some parts contain multiple symmetric disconnected
components).

– We remove shapes that are disconnected based on the adjacency edges we detect.

Table 1 summarizes the size of the dataset before and after filtering.

1.2 Extracting Relationships Between Parts

After obtaining the geometry of individual parts, we sample the surface of each part
uniformly to obtain a 3000-point representation. We then detect relationships between
parts based on the protocol of StructureNet [4]:
Detecting Symmetry: We detect symmetry based on the methods proposed by Wang
et al. [7]. We restrict the symmetry types to translational symmetry, reflectional symme-
try about planes parallel to the three coordinate planes, and 4-way rotational symmetry
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Table 1: Dataset statistics before and after our filtering process

Category Split Before After

Chair
Train 4489 3315
Val 617 438
Test 1217 886

Table
Train 5707 4254
Val 843 637
Test 1668 1257

Storage
Train 1588 1123
Val 230 152
Test 451 290

Lamp
Train 1554 1187
Val 234 181
Test 419 321

about the y(up)-axis. We create an undirected graph for each of the symmetry type,
where every edge is a detected symmetry between a pair of parts. We treat each con-
nected component in these graphs as a symmetry group.
Pruning Symmetry: We then prune the detected symmetries by enforcing that each
part belongs to at most one symmetry groups. We prioritize larger groups. If two groups
are of the same size, then we favor the simpler explanation: translational > rotational
> reflectional.
Detecting Adjacency: We regard two parts, A and B, as adjacent if the smallest dis-
tance between their respective points clouds is less than τ = θr, where r is the average
bounding sphere radius of the two parts. We first detect symmetries using θ = 0.05 i.e.
the orignal setting of StructureNet. We then do a second pass of adjacency detection
for parts involved in symmetry groups in order to recover any undetected adjancies to a
common neighbor: We set θ = 0.1 if A belongs to a symmetry group (before pruning)
and B is adjacent (using θ = 0.05) to any other parts in the same symmetry group, vice
versa; we further increase θ to 0.3 if the involved symmetry group has more than 3 parts
and at least 3 other parts are adjacent to B, vice versa. We use the same threshold τ for
computing the points for each slot (Section 4.2).
Pruning Adjacency: We then attempt to identify the set of adjancency relationships
that best describe the part structure. Note that this might not be necessary for a dataset
where the connections between parts are more clearly defined. We prune the adjacency
edges using the following set of heuristics, applied in order. All heuristics are only
applied if removing the edge does not disconnect the adjacency graph:

We first remove any edges between parts in the same symmetry group, prior to
symmetry pruning.

We then identify all triplet of parts A,B,C that overlap at the same area, and thus
pairwise adjacent. For each triplet, we check if there’s an edge that we can prune, using
the following heuristics, without loss of generality, applied in order:
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– If B and C shares a common parent in the PartNet hierarchy and A has a different
parent, then we store either AB or AC for deletion if we can break ties between
them: we store the edge for the part that is either significantly farther from A,
smaller in surface area, or with less adjacent parts. We do not store any edges if the
ties between B and C cannot be broken.

– We store AC for deletion if the y(up)-coordinate of the centroid of B is between
those of A and C, and is of at least a distance of 0.05 away from each.

– We store BC for deletion if the surface area of both part B and C is signifcantly
smaller than that of part A, or if B and C has roughly the same area but A does not.

We then sort all the candidate edges for deletion, prioritizing on those detected with
heuristics mentioned earlier, and then those belonging to parts with smaller surface
areas.

After finding all the candidates edges, we iterate over them and delete edges, while
respecting the detected symmetries. For each candidate AB, we check if A and/or B
belongs to any symmetry groups. If A is in a symmetry group, then we include all other
adjacency edges from any parts in that symmetry group to B. We do the same for B.
We proceed to remove all these edges if the following conditions are met:

– Removing these edges does not disconnect the graph.
– Removing these edges does not disconnect a symmetry group from its most fre-

quent neighbor i.e. the part that has the highest number of adjacency edges to parts
in the symmetry group. If multiple such neighbors exist, we prefer to keep the edges
to the neighbor that is not in any symmetry groups. If there are still multiple such
neighbors, we keep only 1 of them, and allow deleting edges to the rest. A spe-
cial case occurs when every neighbor to a symmetry group is adjacent to exactly
one part in the group. This often occurs when a group of symmetrical parts are
decomposed further into subparts (e.g. four symmetrical legs are decomposed into
four legs and for leg wheels). In such cases, we regard every part in the adjacent
symmetry group as a most frequent neighbor.

– Either A and B are still both connected to C in the original triplet, or if there exists
other parts in the region where A, B and C overlaps and a path can be found from
A to B via those parts or vice versa.

2 More Details on the “What” Module

We provide additional details on the What to Attach? module (Section 5) here.
Given the graph features hG′ , hG′

target
, the mixture density network (MDN) represents

the conditional probability distribution P (X|G′, Vtarget, X ∈ Remb) as a mixture of N
gaussians, with mixing coefficients π1 . . . πN , means µ1 . . . µN and standard deviations
σ1 . . . σN respectively. The probability of any embedding XC , then, can be expressed
as

p(XC) =

N∑
k=1

πk · N (XC | µk, σ
2
k)
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Input Input + GT GT Best 2nd 5th 25th 50%

Fig. 1: Additional outputs of the What to Attach? module. We visualize the input partial slot
graph within the parts that contain them (grey) and the center of the selected slots (red), as well
as the ground truth part (green, 2nd column). The parts and slots are in their ground truth world-
space pose, which is not available to the neural network. We then visualize, individually, the
ground truth part and the retrieved candidates ranked 1st, 2nd, 5th, 25th, and at the 50th per-
centile, respectively, along with all of their slots (red).

We omit the conditions (G′, Vtarget) for simplicity of notation. In practice, we use nega-
tive log likelihood to setup the triplet loss:

ℓ(XC) = − log

N∑
k=1

πk · N (XC | µk, σ
2
k)

Given a positive example Ctarget and a negative example Cnegative, we then obtain the
final triplet loss as

L(XCtarget , XCnegative) = max{m+ ℓ(XCtarget)− ℓ(XCnegative), 0}

Where m is a constant margin. We select the negative examples Cnegative at training time
by computing the triplet loss between the positive example and a set of randomly sam-
pled negative examples, and choose one that gives a non-zero loss, whenever possible
(i.e. using only semi-hard triplets).

In Figure 1, we provide additional examples of the learned module on chairs (see
also Figure 4 in the main paper). The first row shows another example of query that
demands a very specific type of structure. The second row shows another example of a
query that asks for chair legs. We show failure cases of our module in the last 2 rows,
where it fails to reason about the exact spatial structure of shapes and retrieves parts
that are oriented incorrectly.

3 Generating New Slot Graphs at Test Time

Although trained on all shapes with less than or equal to 30 parts, less than 5 percent
of the training shapes have more than 20 parts, and each of those shapes have rather
unique structures. Therefore, when generating new slot graphs, we only use parts from
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shapes with less than 20 parts. We start each shape by randomly selecting a part from
the candidate parts. We then iteratively query the three neural network modules, until
the slot graph is complete (when all slots are attached). During this generation process,
we use the output of the three neural modules to detect and reject partial slot graphs that
are outliers:

– If the Where module gives a probability pcontinue of less than 0.5 when there are no
slots selected.

– Not all part cliques retrieved by the What module are good candidates. We reject a
retrieved candidate Ctarget if |Vtarget| > |Ctarget|, or if one of the edge predicted by
the Where module has a probability less than 1/(max(|Vtarget|+1, |Ctarget|)+0.5).
If all candidates within a margin of 60 (100 for parts invovled in symmetry) from
the highest scoring candidate are rejected, we reject the partial slot graph.

We also reject the generated slot graph if any of the following conditions are met:
– The slot graph contains more than 20 parts.
– The slot graph is detected as an outlier. We perform outlier detection using one-

class Support Vector Machines (OCSVM). We fit one OCSVM for all graphs in the
training set with the same number of parts. For each OCSVM that fits graphs with
N nodes, we use a feature size of 3(N − 1), with the following features:
• Number of parts with an (adjacency) degree of 1 . . . N − 1.
• Number of parts where 1 . . . N − 1 other parts are within a distance of 2.
• Number of parts where the furthest part has a distance of 1 . . . N − 1.

Other commonly used graph summary statistics, such as clustering coefficient,
number of n-cycles, etc. are also possible candidates here, but we found the set
of features we use to be sufficient for our purposes.

4 Implementation Details

We set the rounds of message passing, T , to 10 for all our graph neural networks (GNN)
operating on partial slot graphs. We set T = 4 for GNNs operating on part cliques.
Since no adjacency edges exists, this effectively leads to 2 rounds of message passing.
We set the dimension of node embeddings to 64 and the dimension of graph embeddings
to 128. All MLP we use have 2 hidden layers and uses leaky ReLU as the activation
function. We use a mixture of 10 gaussians for the MDN and a margin m = 20 for the
triplet loss. We train all neural networks with the Adam [3] optimizer, and with a batch
size of 32. We select the negative examples for the What module from 32 randomly
selected slot graphs as well, for each training step.

5 Details on Baselines

We provide additional details on how we implemented the baselines.
ComplementMe: We re-implemented ComplentMe [6] in PyTorch. We mostly used
the original settings of ComplementMe, with the following exceptions:

– We set the maximum threshold for the standard deviation of the Gaussian Mix-
ture model to 50 instead of 0.05, since we found that the standard deviation of all
Gaussians saturate at the original threshold very quickly.



6 K. Wang et al.

– ComplementMe sampled random triplets originally, we instead sample only the
semi-hard triplets i.e. triplets that give a non-zero training loss.

– In the paper, ComplementMe suggests that the placement networks do not share
weights with the retrieval/embedding networks. This is not the case in their official
implementation. We followed the description in the paper.

– We removed all BatchNorm layers from the PointNet backbone since we observed
that including them hurts the evaluation performance.

We train ComplementMe until convergence.

StructureNet: We use the pre-trained models provided by StructureNet [4], which are
trained on the same split as what we use in the paper. Do note that StructureNet uses
a different data filtering strategy than ours, so the training set will differ slightly. We
encode every part in the test set using the pre-trained part encoder, with each part cen-
tered and normalized in the same way as they would be if used to train StructureNet. We
then use the provided evaluation script to randomly sample outputs. Instead of decoding
child-level latent code to point clouds, we directly retrieve the test set part that is the
closest in the latent space, and then apply the predicted transformations to the retrived
part.

6 More Results

We show random samples of our method and the baselines on all four categories in
Figure 2, 3, 4 and 5.

For the methods that are autoregressive (ours and ComplementMe), the color of the
parts correlate with the order in which they are inserted. We use the Tableu 10 color
palette4 for the first 10 parts, and add the remaining 10 colors in the Tableu 20 color
palette for shapes more than 10 parts: the blue part is used for initialization, and the
subsequent parts inserted are colored orange, green, red, purple, etc. respectively.

Overall, the quality and physical plausibility of the generated shapes correlate well
with the quantitative metrics. ComplementMe benefits considerably from grouping parts
by symmetry, as it simplifies the task of predicting global poses of shapes significantly.
When parts are not grouped by symmetry, it often fails to predict the right pose of parts,
and sometimes is not able to complete a shape at all. It also produces a lot of incorrect
and incomplete storages, even with the help of symmetry.

StructureNet is usually able to generate shapes that are plausible, though often with
a few missing parts. However, it has the tendency to generate only a subset of shape
types. This is most apparent for table and storage, when it generates mostly square
tables and storages with open shelves. Large gaps sometimes exist between the indi-
vidual parts, leading to problems with physical plausibility. Note that this problem is
not caused by us retrieving parts directly using the latent code — the box version of
StructureNet has similar issues (see the evaluation of ShapeAssembly [2]).

The behavior of our method is more polarizing: it generates a lot of high quality
shapes; however, some other generated shapes are totally incorrect. The high quality

4 https://public.tableau.com/views/TableauColors/ColorPaletteswithRGBValues
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shapes fare better than the baselines in terms of quality, physical plausibility, and diver-
sity to some extent. The incorrect shapes exhibit a wide range of failure mode, which
we hypothesize can be traced back to a few incorrect steps in the autoregressive gener-
ation process. Reducing the chance of these incorrect steps, and identifying them when
they happen, is an important future direction to take in order to further improve the
quality of the generated shapes. Our method also has the tendency to generate simpler
shapes when sampling randomly. This is not caused by the neural networks learning
biased distributions, but caused by the higher failure rate for more complex structure
during autoregressive sampling. We also notice a few repeated shapes, especially for
storages. This can be addressed by sampling the neural network modules randomly, as
opposed to doing MAP inference. In figure 6, we show examples of random sampling:
our method is able to produce multiple output per initialization (blue).

Finally, we show random samples from drawn the test set in Figure 7. We note that
none of the methods are able to generate shapes that are close to the dataset in terms
of quality and diversity. This is especially the case for shapes with unique and complex
structures: they are harder to learn, and there is often not enough training data for them.
Learning these structures correctly and efficiently remains an open problem.
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Fig. 2: Chair Unconditional Samples
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Fig. 3: Table Unconditional Samples
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Fig. 4: Storage Unconditional Samples
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Fig. 5: Lamp Unconditional Samples

Fig. 6: Multiple output per initialization, achieved by sampling the neural networks randomly
instead of doing MAP inference. Each row uses a different part as initialization.
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