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Figure 1: Equivariant convolutions require two ingredients: a frame operator and a density operator. Filters assign weights based
on the relative positions of points and the frame operator 𝔗 corrects for the deformation of the local “tangent space” under a
Möbius transformation 𝑔. Similarly, the density operator 𝜌 adjusts for the change in the area measure used for integration,
proportional to the conformal scale factor 𝜆2

𝑔 .

ABSTRACT
Möbius transformations play an important role in both geometry

and spherical image processing – they are the group of conformal

automorphisms of 2D surfaces and the spherical equivalent of ho-

mographies. Here we present a novel, Möbius-equivariant spherical

convolution operator which we call Möbius convolution; with it,

we develop the foundations for Möbius-equivariant spherical CNNs.

Our approach is based on the following observation: to achieve

equivariance, we only need to consider the lower-dimensional sub-

groupwhich transforms the positions of points as seen in the frames

of their neighbors. To efficiently compute Möbius convolutions at

scale we derive an approximation of the action of the transforma-

tions on spherical filters, allowing us to compute our convolutions

in the spectral domain with the fast Spherical Harmonic Trans-

form. The resulting framework is flexible and descriptive, and we

demonstrate its utility by achieving promising results in both shape

classification and image segmentation tasks.
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1 INTRODUCTION
Convolutional neural networks (CNNs) are effective because con-
volution responds to a contextualized window, forcing the learning

to be translation-equivariant. However, vanilla CNNs assume a fixed

coordinate frame and lose effectiveness in the presence of deforma-

tions that change the frame. This has lead to the development of

more general notions of convolution equivariant to transformation

groups including rotations [Cohen and Welling 2016; Worrall et al.

2017] and dilations [Finzi et al. 2020; Sosnovik et al. 2019; Worrall

and Welling 2019]. Critically, the notion of rotation-equivariance

has facilitated the generalization of CNNs to domains without a

canonical orientation at each point such as the sphere [Cohen et al.

2019b, 2018; Esteves et al. 2020] and arbitrary surfaces [de Haan

et al. 2020; Mitchel et al. 2021; Wiersma et al. 2020]. The resulting

networks are isometry-equivariant – able to repeatably characterize

local features in the presence of distance-preserving transforma-

tions – and have excelled in fundamental geometry processing tasks

such as shape classification, segmentation, and correspondence.

Despite their success, rotation- and isometry-equivariant CNNs

can fail to achieve adequate performance in the presence of the

kinds of complex deformations commonly found in real-world im-

age and shape data [Mitchel et al. 2021]. Such deformations may po-

tentially be better modeled by higher-dimensional transformation

groups. For example, homographies (projective transformations)
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better approximate changes in camera viewpoints than similari-

ties (rotations and dilations) [Hartley and Zisserman 2003] and,

for spherical images, can be represented using conformal trans-

formations [El Mir et al. 2014; Schleimer and Segerman 2016]. For

geometry processing, conformal (angle-preserving) transforma-

tions encompass a broader class of deformations than isometries

that still preserve the sense of “shape". [Crane et al. 2011; Gu et al.

2004; Lévy et al. 2002].

We present a novel spherical convolution operator, equivari-

ant to Möbius transformations, which we call Möbius convolution
(MC). Using this operator, we develop the foundations for Möbius-
equivariant spherical CNNs. Our convolutions are flexible, and we

demonstrate the utility of our Möbius-equivariant CNNs by achiev-

ing promising results on standard benchmarks in both genus-zero

shape classification and spherical image segmentation.

Our approach is based on a key observation: while the Möbius

group is six-dimensional, its action on the characterization of the

position of a point relative to its neighbor can be described by

a four-dimensional subgroup. By defining an equivariant frame

operator (Figure 1, left) at each point with which we align the

filter, we correct for the change in the relative positions induced

by this subgroup. To compute convolutions, input features are

mapped to a density distribution (Figure 1, right), controlling for

the change in area measure, and integrated against the aligned

filters over the sphere, rather than the group itself. To facilitate

efficient evaluations, we parameterize filters using log-polar basis

functions from which we derive an approximation of the action of

the frames, allowing us to compute our convolutions via the Fast

Spherical Harmonic Transform [Driscoll and Healy 1994; Kostelec

and Rockmore 2008]. Our implementation is publicly available at

github.com/twmitchel/MobiusConv.

2 RELATEDWORK
Group-equivariant CNNs were first introduced by [Cohen and

Welling 2016; Cohen et al. 2019a], wherein kernels are parame-

terized in terms of equivariant basis functions on the group itself.
Convolution is performed by lifting features from the domain and

searching over all possible transformations of the kernels. This

becomes intractable for non-compact groups where the domains

of integration are unbounded and the representations are infinite-

dimensional, though recent work by [Finzi et al. 2020] mitigates

these problems by considering only the origin-preserving sub-

groups and integrating with respect to an equivariant Monte Carlo

estimator to facilitate evaluations. This approach is flexible, and has

since been extended to handle general affine transformations and

homographies [MacDonald et al. 2021]. In tandem, several fully-
connected networks have been developed that achieve equivariance

to non-compact transformation groups including the Lorentz group

[Bogatskiy et al. 2020], the Poincaré group [Villar et al. 2021], and

the symplectic group [Finzi et al. 2021] – all closely related to

Möbius transformations.

Equivariant CNNs that integrate over the domain on which the

group acts generally parameterize kernels in terms of basis func-

tions that rotate or dilate with the local coordinate system [Sosnovik

et al. 2019; Weiler and Cesa 2019; Worrall et al. 2017; Worrall and

Welling 2019]. This approach has been extended to volumetric do-

mains [Weiler and Cesa 2019], point clouds [Qi et al. 2017], and

canonical domains such as the sphere [Cohen et al. 2018; Esteves

et al. 2020]. However, finite-dimensional equivariant bases often

don’t exist for non-commutative and non-compact transformation

groups of interest, precluding generalizations to groups that act

projectively.

Equivariance is a necessary condition for the transposition of

convolutional frameworks to domains without canonical coordinate

systems such as arbitrary 2D surfaces. Existing surface networks

can be broadly categorized into several emerging paradigms: Rep-
resentational methods [Hanocka et al. 2019; Lahav and Tal 2020]

exploit the ubiquitous representation of surfaces as triangle meshes

to form operators equivariant to local similarities; Diffusive ap-

proaches [Sharp et al. 2020; Smirnov and Solomon 2021; Yi et al.

2017] formulate convolution in terms of spectral kernels and accel-

erate computations in a low-frequency eigenbasis; and Transporting
networks [Mitchel et al. 2021; Wiersma et al. 2020] propagate tan-

gent vector features that transform with local coordinate systems.

Despite their success in a variety of tasks, existing surface networks

are only repeatable up to isometries, an we believe our approach to

be the first surface network equivariant to conformal transforma-

tions.

3 METHOD OVERVIEW
Our method is based on a powerful observation: instead of dealing

with the six-dimensional group of Möbius transformations, we only

need to consider a four-dimensional subgroup. We first review the

action of Möbius transformations on the sphere, and define a notion

of relative positions between points analogous to the logarithm

map on surfaces, and show how the latter transforms under the

former.

We then introduceMöbius convolutions, which provide amethod

for Möbius-equivariant spatial aggregations on the sphere. Möbius

convolutions are part of the extended convolution framework [Mitchel

et al. 2020a] which allows filters to adaptively transform as they

shift over a manifold by defining an equivariant frame at each point.

This framework forms the basis for recently proposed state-of-the

art surface descriptors [Mitchel et al. 2020b] and CNNs [Mitchel

et al. 2021]. We facilitate an efficient discretization by parameter-

izing filters using log-polar basis functions from which we derive

a linearized approximation of the action of the frames, allowing

us to compute our convolutions via the fast spherical harmonic

transform [Driscoll and Healy 1994; Kostelec and Rockmore 2008].

We complete the foundations for Möbius-equivariant CNNs by

introducing a conformally-equivariant normalization layer based

on filter response normalization [Singh and Krishnan 2020] and

we validate equivariance by direct experimental evaluation. The

principle module in applications is a simple Möbius convolution

ResNet (MCResNet) block [He et al. 2016], which is self-contained

and flexible. We demonstrate the utility of our framework by achiev-

ing promising results on standard benchmarks in both genus-zero

shape classification and spherical image segmentation.

https://github.com/twmitchel/MobiusConv
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4 MÖBIUS TRANSFORMATIONS
Möbius transformations can be understood by associating the two-

sphere with the Riemann sphere, Ĉ = C∪{∞}, via the stereographic
projection taking the north pole to the origin. Möbius transforma-

tions are described by the action of SL(2,C), the group of matrices

in C2×2
with unit determinant, on Ĉ by fractional linear transfor-

mations. That is, for any 𝑔 =
[
𝑎 𝑏
𝑐 𝑑

]
∈ SL(2,C) and 𝑧 ∈ Ĉ,

𝑔𝑧 ≡ 𝑎𝑧 + 𝑏
𝑐𝑧 + 𝑑 . (1)

4.1 Generalizing the logarithm and exponential
maps

To parameterize the sphere about a point 𝑧 ∈ Ĉ, we borrow the

notion of the exponential and logarithm maps from Riemannian

geometry, defining the generalized logarithm of 𝑧 as a rotation

log𝑧 ∈ SU(2) taking 𝑧 to the origin,

log𝑧 ≡ 1

|𝑐 |
√︁

1 + |𝑧 |2

(
𝑐 −𝑐𝑧
𝑐𝑧 𝑐

)
(2)

with 𝑐 =
√
𝑧. (Though any choice of 𝑐 gives a rotation taking 𝑧 to the

origin, the above choice ensures that the great circle going through

the origin and 𝑧 is mapped to the real line, enabling the use of the

fast Spherical Harmonic Transform in the implementation of §6.)

Then, for any point 𝑦 ∈ Ĉ, we can express the “position" of 𝑦 in

the frame of 𝑧 as log𝑧 𝑦 ∈ Ĉ. By analogy to Riemmannian geometry,

the generalized logarithm maps Ĉ to the “tangent space" at 𝑧. We

make this explicit by denoting the image of the logarithm map at 𝑧

as Ĉ𝑧 :

log𝑧 : Ĉ→ Ĉ𝑧
though formally Ĉ and Ĉ𝑧 are the same space – the Riemann sphere.

Similarly, we define the generalized exponential of 𝑧 as the inverse
of the generalized logarithm, exp𝑧 ≡ log

−1

𝑧 : Ĉ𝑧 → Ĉ.

4.2 Action of the origin-preserving subgroup
We will think of convolution filters as functions defined on a canon-

ical “tangent space” describing the weight with which a point con-

tributes to its neighbor in terms of the position of the neighbor in

the frame of that point. To design our network, we need to define a

Möbius-equivariant convolution operator. To this end we need to

understand how the position of a point in the frame of its neighbor

changes under the action of Möbius transformations.

Describing the transformation from one coordinate frame to

the other is straight-forward: Beginning in Ĉ𝑧 , we 1). Map to Ĉ by

applying exp𝑧 ; 2). Transform Ĉ by 𝑔; and 3). Map back to Ĉ𝑔𝑧 using
log𝑔𝑧 . Composing these give the Möbius transformation,

𝐷
𝑔
𝑧 ≡ log𝑔𝑧 ◦ 𝑔 ◦ exp𝑧 : Ĉ𝑧 → Ĉ𝑔𝑧 ∈ SL(2,C), (3)

with the notation chosen to reflect dependence on both 𝑧 and 𝑔.

From Equation (3) and the definitions of the generalized loga-

rithm and exponential, 𝐷
𝑔
𝑧 must belong to the origin-preserving

subgroup L ⊂ SL(2,C), consisting of the lower-triangular elements

of SL(2,C). This follows from the facts that 𝑧 maps to 𝑔𝑧 under the

action of 𝑔 and that both 𝑧 and 𝑔𝑧 are the origin in their respec-

tive tangent spaces. This simple but critical observation implies

that in defining equivariant convolution, we only need to consider

the four-dimensional origin-preserving subgroup, not the full, six-

dimensional group of Möbius transformations.

5 MÖBIUS CONVOLUTION
As in [Mitchel et al. 2020a] we implement convolution by shifting a

filter over the domain, aligning the shifted filter using a frame field,

and distributing the values of a density function to neighboring

points, with distribution weights given by the aligned filter.

Rather than have the user provide the transformation field and

density directly, our framework derives these from an input signal

in such a way so as to ensure the ensuant convolution is Möbius-

equivariant. Specifically, we construct a frame operator 𝔗 and den-
sity operator 𝜌 that take in a real-valued function on Ĉ and return a

lower-triangular frame field and a real-valued density field, respec-

tively,

𝔗 : 𝐿2 (Ĉ,R) → 𝐿2 (Ĉ, L)
𝜓 ↦→ 𝔗𝜓

and

𝜌 : 𝐿2 (Ĉ,R) → 𝐿2 (Ĉ,R)
𝜓 ↦→ 𝜌𝜓

(4)

Given a Möbius transformation 𝑔 ∈ SL(2,C) and a point on the

Riemann sphere, 𝑧 ∈ Ĉ, the frame operator corrects for the deforma-

tion of the tangent space resulting from 𝑔, as characterized by the

origin-preserving transformation 𝐷
𝑔
𝑧 from Equation (3) (Figure 1,

left). Similarly, the density operator adjusts for the change in the

area measure used for integration, given by the conformal scale

factor 𝜆2

𝑔 (𝑧) (Figure 1, right).
Given operators 𝔗 and 𝜌 , the Möbius convolution of a function

𝜓 with with a filter 𝑓 , both in 𝐿2 (Ĉ,R), can formally be expressed

as the function in 𝐿2 (Ĉ,R) with

(𝜓 ∗ 𝑓 ) (𝑦) =
∫
Ĉ
𝜌𝜓 (𝑧)

[
𝔗𝜓 (𝑧) 𝑓

] (
log𝑧 𝑦

)
𝑑𝑧, (5)

where 𝔗𝜓 (𝑧) 𝑓 ≡ 𝑓 ◦
[
𝔗𝜓 (𝑧)

]−1

denotes the standard action of

Möbius transformations on 𝑓 by left shifts.

That is, to get the value at a point 𝑦 ∈ Ĉ, we 1). Iterate over

all neighbors 𝑧; 2). Compute the position of 𝑦 in the frame at 𝑧;

3). Evaluate the filter at that point; and 4). Accumulate the density

at 𝑧 weighted by the filter value. Following [Mitchel et al. 2020a],

instead of aggregating features with respect to a single frame at each

point, the influence of each frame is spread across the neighbors,

making the construction robust to noise and other nuisance factors

affecting the stability of the frame field.

5.1 Equivariance
Following the above discussion, 𝔗 and 𝜌 must satisfy certain condi-

tions to ensure that Möbius convolutions are Möbius-equivariant;

i.e. that for any function𝜓 , filter 𝑓 , and Möbius transformation 𝑔,

Möbius convolution commutes with the action of 𝑔 by left shifts,

𝑔 (𝜓 ∗ 𝑓 ) = (𝑔𝜓 ∗ 𝑓 ) . (6)

A sufficient condition for the equation to hold is if for all 𝜓 ∈
𝐿2 (Ĉ,R) and 𝑔 ∈ SL(2,C), the operators 𝔗 and 𝜌 satisfy

𝐷
𝑔
𝑧 𝔗𝜓 (𝑧) = 𝔗𝑔𝜓 (𝑔𝑧) and 𝜆−2

𝑔 (𝑧) 𝜌𝜓 (𝑧) = 𝜌𝑔𝜓 (𝑔𝑧), (7)

for all 𝑧 ∈ Ĉ. The condition for 𝔗 follows from Equation (3), and

that on 𝜌 comes from the change of variables in the integral of
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Equation (5). In particular these conditions are satisfied when the

frame and density operators are defined as

𝔗𝜓 (𝑥) ≡


(
𝑑 log𝑥 𝜓

��
0

)− 1

2

0(
1

2
∇𝑑 log𝑥 𝜓

��
0

) (
𝑑 log𝑥 𝜓

��
0

)− 3

2

(
𝑑 log𝑥 𝜓

��
0

) 1

2

 (8)

and

𝜌𝜓 (𝑥) ≡
���𝑑 log𝑥 𝜓

��
0

��� 2

, (9)

where 𝑑 log𝑥 𝜓
��
0
, ∇𝑑 log𝑥 𝜓

��
0
∈ C are the differential and Hessian

of log𝑥 𝜓 evaluated at the origin. We note that at a point where

𝔗𝜓 (𝑥) is ill-defined – those at which 𝑑 log𝑥 𝜓
��
0
vanishes – 𝜌𝜓 (𝑥)

also vanishes and the point contributes nothing to the convolution.

Proof that the conditions in Equation (7) implyMöbius-equivariance,

and that the operators defined in Equations (8–9) satisfy the condi-

tions of Equation (7) is provided in the supplement (§B).

6 DISCRETIZATION
To efficiently compute Möbius convolutions at the scale necessary

to build CNNs, we develop an implementation based on the fast

Spherical Harmonic Transform [Driscoll and Healy 1994; Kostelec

and Rockmore 2008]. We give an outline of this process below and

leave the details to the supplement (§C).

Identity Convolution with the Spherical Harmonic Transform. To
simplify the calculation, we first consider a simpler non-equivariant

convolution, we call an identity convolution, where we replace the
frame and density operators from Equation (5) with the trivial frame

field 𝔗𝜓 (𝑧) = 𝑒 (with 𝑒 the identity) and the density 𝜌𝜓 (𝑧) = 𝜓 (𝑧),

(𝜓 ∗𝑒 𝑓 ) (𝑦) =
∫
Ĉ
𝜓 (𝑧) 𝑓

(
log𝑧 𝑦

)
𝑑𝑧, (10)

using ∗𝑒 to distinguish it from the equivariant convolution.

Assuming that𝜓 and 𝑓 are 𝐵 band-limited functions, they can

be expressed in terms of their spherical harmonic decompositions

as

𝜓 =

𝐵−1∑︁
𝑙=0

𝑙∑︁
𝑚=−𝑙

𝝍𝑙𝑚 𝑌𝑚
𝑙

and 𝑓 =

𝐵−1∑︁
𝑙 ′=0

𝑙 ′∑︁
𝑚′=−𝑙 ′

f𝑙 ′𝑚′ 𝑌𝑚
′

𝑙 ′ . (11)

Recalling that log𝑧 is a rotation, we know that it preserves the

frequency content and expand

𝑓 ◦ log𝑧 =

𝐵−1∑︁
𝑙 ′=0

∑︁
|𝑚′ | ≤𝑙 ′

∑︁
|𝑚′′ | ≤𝑙 ′

f𝑙 ′𝑚′𝐷𝑙 ′
−𝑚′𝑚′′

(
log𝑧

)
𝑌𝑚

′′

𝑙 ′

where 𝐷𝑙 ′
−𝑚′𝑚′′ is the Wigner-D function giving the (𝑙 ′,𝑚′′)-th

spherical harmonic coefficient of the rotation of 𝑌𝑚
′

𝑙 ′
. Furthermore,

using the fact that in the 𝑧−𝑦−𝑧 Euler angle notation our definition
of log𝑧 corresponds to a rotation described by an Euler triplet whose

first entry is zero, it follows that the integral vanishes

0 =

∫
Ĉ
𝑌𝑚
𝑙
(𝑧) · 𝐷𝑙 ′

−𝑚′𝑚′′
(
log𝑧

)
𝑑𝑧

𝑠 -�

𝑚

6

?

Figure 2: Spherical log-polar functions B𝑡𝑚𝑠 at integer expo-
nents with 𝑡 = 0.15.

whenever𝑚′′ ≠𝑚. Thus, expanding Equation (10) we get

(𝜓 ∗𝑒 𝑓 ) (𝑦) =
𝐵−1∑︁
𝑙 ′=0

𝑙 ′∑︁
𝑚′′=−𝑙 ′


𝐵−1∑︁

𝑙= |𝑚′′ |
𝝍𝑙𝑚′′

(
𝑙 ′∑︁

𝑚′=−𝑙 ′
f𝑙 ′𝑚′𝛥𝑚′𝑚′′

𝑙𝑙 ′

) 𝑌𝑚
′′

𝑙 ′

(12)

where the value of 𝛥𝑚′𝑚′′

𝑙𝑙 ′
is independent of𝜓 and 𝑓 ,

𝛥𝑚′𝑚′′

𝑙𝑙 ′ =

∫
Ĉ
𝑌𝑚

′′

𝑙
(𝑧) · 𝐷𝑙 ′

−𝑚′𝑚′′
(
log𝑧

)
𝑑𝑧. (13)

From this, we can compute identity convolutions efficiently by:

1). Computing the spherical harmonic coefficients of𝜓 and 𝑓 using

the fast SHT; 2). Summing the two sets of coefficients according

to Equation (12) to get the coefficients of the convolution; and 3).

Applying the fast inverse SHT to reconstruct the convolution.

The complexity of steps 1 and 3 are proportional to those of the

fast SHT, which is 𝑂 (𝐵2
log

2 𝐵). However, in our implementation

we compute the discrete Legendre transform via sparse matrix mul-

tiplication for a total complexity of proportional to 𝑂 (𝐵3
log𝐵),

which we find to be more efficient on the GPU. Step 2 has complex-

ity 𝑂 (𝐵4), and we show that this computation can be re-used in

computing the full (equivariant) convolution.

Spherical Log-Polar Bases. To efficiently compute arbitrary Möbius

convolutions as in Equation (5), we approximate them as sums of

identity convolutions. To do so, we choose a basis for our filters

that enables an approximation of the action of 𝔗𝜓 .

To this end we use linear combinations of log-polar (Fourier-

Mellin) basis functions [Vilenkin 1978; Vilenkin and Klimyk 1991],

B𝑡𝑚𝑠 (𝑧) ≡
|𝑧 |𝑖𝑠
|𝑧 |𝑡

(
𝑧

|𝑧 |

)𝑚
(14)

with𝑚 ∈ Z and 𝑠, 𝑡 ∈ R. These function are localized about 𝑧 = 0

(resp. 𝑧 = ∞) when 𝑡 > 0 (resp. 𝑡 < 0), are discontinuous at

𝑧 ∈ {0,∞} when𝑚 ≠ 0 (since the argument of 𝑧 is not defined), and

singular at 𝑧 = 0 (resp. 𝑧 = ∞) when 𝑡 > 0 (resp. 𝑡 < 0). We note that,

for the purposes of integration, the singularity can be ignored when

𝑡 < 1. Loosely, this follows from the fact that

∫
1

𝑥𝑡
= 1

1−𝑡 𝑥
1−𝑡 + 𝑐

which is bounded at 𝑥 = 0 whenever 𝑡 ∈ (0, 1). Noting also that
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B𝑡𝑚𝑠 (𝑧) = B−𝑡−𝑚−𝑠 (1/𝑧), it follows that the functions are continuous
away from {0,∞} and, for the purposes of integration, singularities
at {0,∞} can be ignored when |𝑡 | < 1.

The first several basis functions at integer frequencies |𝑚 | ≤ 2

and |𝑠 | ≤ 3, with 𝑡 = 0.15 are shown in Figure 2. The complex-

valued functions are visualized using the HSV scale: hue and value

are determined by the arguments and magnitudes of the function

values, and saturation is fixed at one.

Using these as basis functions, we consider filters in the span

𝑓 =

𝑀∑︁
𝑚=−𝑀

𝑁∑︁
𝑠=−𝑁

𝑏𝑚𝑠 B𝑡𝑚𝑠 (15)

where 𝑠 is constrained to be an integer and 𝑡 is positive so as to

localize the filter about the origin. As our filters are real-valued we

have 𝑏−𝑚−𝑛 = 𝑏𝑚𝑛 , giving (2𝑀 + 1) (2𝑁 + 1) real parameters.

Approximating the Transformation of Filters. Unfortunately, it is
not the case that the space of band-limited filters spanned by the

B𝑡𝑚𝑠 is fixed under the action of the lower-triangular subgroup.

This is because, in general, for non-compact, non-commutative

groups, a space of functions fixed under the action of the group (i.e.

a representation) will be infinite-dimensional.

However, we show in the supplement (§C) that, given a filter as

in Equation (15) and a lower-triangular matrix 𝐿 ∈ L, the transfor-

mation of the filter 𝑓 by 𝐿 can be expanded as

𝐿 𝑓 =

∞∑︁
𝑚=−∞

∫ ∞

−∞

3∑︁
𝑗=1

𝑗𝜻
𝑡𝜎 𝑗

𝑚𝑠

(
𝐿, b

)
B𝜎 𝑗

𝑚𝑠 𝑑𝑠, (16)

where b is the (2𝑀 + 1) × (2𝑁 + 1)-dimensional vector of coeffi-

cients of 𝑓 ,𝑚 is now summed over all integers, 𝑠 is continuous and

integrated over the real line, 𝜎1, 𝜎2, and 𝜎3 (the localization values)

are any real values satisfying 𝑡 < 𝜎1 < 2, 𝑡 − 1 < 𝜎2 < 0, and 𝜎3 = 𝑡 ,

and
𝑗
𝜻
𝑡𝜎 𝑗

𝑚𝑠 are functions taking a lower-triangular matrix and a set

of filter coefficients, and returning the coefficient of B𝜎 𝑗

𝑚𝑠 in the

expansion of the transformed filter. Here, the integral is equivalent

to an inverse Mellin transform with frequency variable 𝑠 , and the

bounds on 𝜎1 and 𝜎2 are necessary to ensure invertibility [Vilenkin

1978; Vilenkin and Klimyk 1991].

Obviously, the infinite summation and the integration in Equa-

tion (16) make evaluation unfeasible. We propose a practical imple-

mentation by truncating the summation over the angular frequency

𝑚, and replacing the integration over the real line with a discrete

approximation using quadrature. The summation is a result of the

addition theorem for Bessel functions [Watson 1995] which appear

in the derivation of
𝑗
𝜻
𝑡𝜎 𝑗

𝑚𝑠 ; it converges rapidly at low frequencies

and can be well-approximated with only several terms [Chirikjian

and Kyatkin 2016]. The use of quadrature is motivated by the ob-

servation that for a fixed transformation 𝐿 and filter coefficients b
the function

𝑗
𝜻
𝑡𝜎 𝑗

𝑚𝑠 tends to be smooth and falls off quickly away

from 𝑠 = 0. Using the approximation, we get

𝐿 𝑓 ≈
𝑀′∑︁

𝑚=−𝑀′

𝑄∑︁
𝑞=1

3∑︁
𝑗=1

𝑤𝑞 𝑗𝜻
𝑡𝜎 𝑗

𝑚𝑠𝑞

(
𝐿, b

)
B𝜎 𝑗

𝑚𝑠𝑞 (17)

where {𝑠𝑞} ⊂ R are the quadrature points and {𝑤𝑞} are the weights.

We remark that the principle idea behind the expansion in Equa-

tion (16) involves exploiting the symmetry of the spherical log-polar

basis functions underMöbius transformations taking 𝑧 to−𝑧−1
. This

allows us to replace the projective action of L with the affine action

of the upper-triangular matrices – the group of rotations, transla-

tions, and dilations – whose representations are better understood

[Vilenkin 1978; Vilenkin and Klimyk 1991].

Efficient Möbius Convolutions. Plugging the approximation in Equa-

tion (17) into the definition of Möbius convolution in Equation (5)

and moving the sums outside the integral gives

(𝜓 ∗ 𝑓 ) ≈
∑︁

−𝑀′≤𝑚≤𝑀′
1≤𝑞≤𝑄
1≤ 𝑗≤3

(
𝜌𝜓 𝑤𝑞 𝑗𝜻

𝑡𝜎 𝑗

𝑚𝑠𝑞

(
𝔗𝜓 , b

)
∗𝑒 B𝜎 𝑗

𝑚𝑠𝑞

)
. (18)

Thus, by approximating the pointwise action of the frame operator

𝔗𝜓 (𝑧), we can approximate an arbitrary Möbius convolution as a

sum of identity convolutions. The components of
𝑗
𝜻
𝑡𝜎 𝑗

𝑚𝑠𝑞 depending

only on 𝑠 can be pre-computed for a fixed set of quadrature points

so that, in practice, the complexity of evaluating the function at

run time is linear in the coefficients of b.

6.1 Complexity
In the approximation of Möbius convolution in Equation (18), the

right side of the identity convolutions are independent of the fil-

ter coefficients, so the innermost bracketed term in Equation (12)

can be pre-computed for a given band-limit 𝐵 (for every angular

frequency𝑚, quadrature point 𝑠𝑞 , and localization index 𝜎 𝑗 ). Thus,

the 𝑂 (𝐵4) computational bottle-neck in computing the identity

convolution need only be performed once and the total complex-

ity of computing the Möbius convolution is 𝑂 (𝑀 ′𝑄𝐵3
log𝐵). In

applications, we find that setting 𝑀 ′ = 𝑀 + 1 and using a 𝑄 = 30

point trapezoidal quadrature rule in Equation (17) allows us to both

suitably approximate the transformation of the filter and scale up

to 𝐵 = 64.

7 MÖBIUS-EQUIVARIANT SPHERICAL CNNS
Constructing Möbius-equivariant spherical CNNs with Möbius con-

volutions is straight-forward and requires no specialized archi-

tecture. The atomic units are the same as those found in regular

CNNs – a convolutional layer, followed by normalization and a

non-linearity.

7.1 Convolutional layers
For a Möbius convolution layer mapping 𝐶-channel input features

𝜓 ∈ 𝐿2 (Ĉ,R𝐶 ) to 𝐶 ′
-channel output features 𝜓 ′ ∈ 𝐿2 (Ĉ,R𝐶′),

the 𝑐 ′−th output feature 𝜓 ′
𝑐′ is computed in the usual manner by

summing the convolutions of the input features with the filters in

the 𝑐 ′−th row of the bank. However, the structure of Equation (18)

allows us to preform the reduction over the input channels before
computing the convolutions in the sum, such that

𝜓 ′
𝑐′ =

∑︁
−𝑀′≤𝑚≤𝑀′

1≤𝑞≤𝑄
1≤ 𝑗≤3

(
𝐶∑︁
𝑐=1

𝜌𝜓𝑐
𝑤𝑞 𝑗𝜻

𝑡𝜎 𝑗

𝑚𝑠𝑞

(
𝔗𝜓𝑐

, b𝑐𝑐
′ )

∗𝑒 B𝜎 𝑗

𝑚𝑠𝑞

)
, (19)
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where b𝑐𝑐
′
denotes the (2𝑀+1) (2𝑁 +1) parameters for the (𝑐, 𝑐 ′)-th

filter in the bank. Thus, for each convolutional layer mapping 𝐶

input features to 𝐶 ′
output features, we only need to compute 𝐶 ′

Möbius convolutions instead of 𝐶 ×𝐶 ′
.

This advantage is not without caveat. As discussed in the sup-

plement (§D), a naive implementation of the inner sum over the

input channels produces large intermediate tensors at high resolu-

tions (𝐵 ≥ 64), which can quickly fill GPU memory . Our layers are

implemented in PyTorch [Paszke et al. 2019], where we fuse this

operation to reduce its overhead.

7.2 Normalization and Non-linearities
Standard normalization techniques don’t commute with Möbius

transformations, since the mean and standard deviation of spheri-

cal signals are not invariant under dilations. Instead, we introduce

a conformally-equivariant normalization layer based on filter re-

sponse normalization [Singh and Krishnan 2020], replacing the

square mean with the Dirichlet energy which is invariant under
Möbius transformations. The normalization is applied on a per-

channel basis independent of the batch size via the mapping

𝜓𝑐 ↦→ 𝛼𝑐 𝜓𝑐√︂∫
Ĉ
𝜌𝜓 (𝑧) 𝑑𝑧 + 𝜖𝑐

+ 𝛽𝑐 , (20)

where 𝜌𝜓 is defined as in Equation (9) and 𝛼𝑐 , 𝛽𝑐 ∈ R and 𝜖𝑐 ∈ R>0

are learnable per-channel parameters.

Following normalization we apply thresholded activations as

non-linearities, which have been shown to better compliment filter

response normalization than other activation layers [Singh and

Krishnan 2020]. Here, we replace the ReLU with the Mish acti-

vation [Misra 2019] which we find improves training speed and

performance. Specifically, non-linearities are applied pointwise as,

𝜓𝑐 ↦→ Mish

(
𝜓𝑐 − 𝛾𝑐

)
+ 𝛾𝑐 , (21)

where 𝛾𝑐 ∈ R is a learnable per-channel threshold value. We note

that the thresholded activation is not fundamental to our frame-

work, and can be replaced with other activation layers if desired.

8 EVALUATION
We validate our claim of Möbius-equivariance empirically and

demonstrate the utility of Möbius-equivariant CNNs by achiev-

ing strong results in both geometry and spherical-image processing

tasks. In the former paradigm, we perform genus-zero shape classi-

fication by conformally mapping surfaces to the sphere; in the latter,

we consider the task of omni-directional image segmentation.

Our principal module in applications is an MCResNet block

[He et al. 2016] , consisting of two Möbius convolutions, each

followed by the normalization layer and non-linearity described in

Equations (20-21), with a residual connection between the input

and output streams. We use𝑀 = 𝑁 = 1 band-limited filters and set

𝑡 = 0.15, optimizing for 𝜎1 and 𝜎2 and the quadrature points {𝑠𝑞} as
described in the supplement (§C.3). Our framework is implemented

in PyTorch [Paszke et al. 2019], and we fit our networks using SGD

with Nesterov momentum [Sutskever et al. 2013], training for 60

epochs with an initial learning rate of 10
−2
, decaying to 10

−4
on a

cosine annealing schedule [Loshchilov and Hutter 2017].

Maximum Conformal Scale Factor

E
r
r
o
r
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U(1)
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L

Figure 3: The equivariance error plotted as a function of the
maximum conformal scale factor. Notably, moving fromU(1)
(rotations) to C≠0 (rotations and dilations) does not provide
a benefit – one must consider the full lower-triangular sub-
group L ⊂ SL(2,C) .

8.1 Equivariance
We empirically validate the equivariance of our framework by quan-

tifying the degree to which our layers commute with Möbius trans-

formations of increasing area distortion. We consider a 32-channel,

𝐵 = 64 band-limited MCResNet block with the equivariant residual

connection removed to avoid bias. We control the area distortion

of a Möbius transformation 𝑔 by composing a series of random

rotations and inversions so that the maximal scale factor over Ĉ
equals a fixed value [Baden et al. 2018]. Denoting R as the mapping

induced by passing features through the MCResNet layer, we follow

[de Haan et al. 2020; Sosnovik et al. 2019; Worrall andWelling 2019]

and define the equivariance error for a fixed maximum scale factor

𝛼 ∈ R≥0 as

Error =
E ( R( 𝑔𝜓 ) − 𝑔R(𝜓 ))2

Var 𝑔R(𝜓 ) with max

𝑧∈Ĉ
𝜆2

𝑔 (𝑧) = 𝛼, (22)

where E and Var denote the mean and variance computed over 100

randomly initialized models, Möbius transformations, and features.

As a baseline, we compare our proposed approach against three

other paradigms. In the first, we replace Möbius convolution with a

standard 5×5 convolution layer taking 𝜌𝜓 as input; in the second, we

restrict the transformation field to rotations so that 𝔗𝜓 (𝑧) ∈ U(1);
in the third, we loosen the restriction to include dilations with

𝔗𝜓 (𝑧) ∈ C≠0. We note that the second and third paradigms are

isometry-equivariant, and that the latter is also equivariant to the

conformal transformations of the (non-compactified) plane.

The results are shown in Figure 3, where the equivariance er-

ror in Equation (22) is plotted as a function of the maximum scale

factor. The green curve is our proposed method with 𝔗𝜓 (𝑧) ∈ L.

Using our method, the error stays very low, indicating that Möbius

convolution is approximately equivariant even in the presence of

significant changes in scale (𝜆2

𝑔 (𝑧) ≥ 12). Notably, we see no im-

provement moving from𝔗𝜓 (𝑧) ∈ U(1) to𝔗𝜓 (𝑧) ∈ C≠0, suggesting

that rotations and dilations alone fail to well-characterize the local

deformations induced by Möbius transformations.
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Table 1: Genus-zero shape classification. Several conformally
deformed meshes from the SHREC ’11 dataset [2011] are
shown below.

Method Orig. Accuracy Conf. Accuracy

MC (ours) 99.1% 86.5%

DiffusionNet [2020] 99.5% 64.9%

FC [2021] 99.2% 40.7%

CubeNet [2021] 47.1% 21.2%

Conf.

Orig.

8.2 Conformal Shape Classification
Next, we use Möbius convolutions to classify genus-zero shapes.

Over the last half-decade, the SHREC ’11 dataset [Lian et al. 2011]

has become a popular choice for evaluating network performance

in shape classification tasks and several recent approaches have

achieved near-perfect accuracy on the dataset [Milano et al. 2020;

Mitchel et al. 2021; Sharp et al. 2020; Wiersma et al. 2021]. However,

shapes within each of the 30 categories in the dataset differ only

by (approximate) isometric deformations. To better highlight the

strengths of our approach, we extend the dataset to include defor-

mations given by random conformal transformations with several

examples shown above Table 1.

To apply our framework, we conformally map each mesh to the

sphere via mean curvature flow [Kazhdan et al. 2012] and use a

simple network consisting of a single 16-channel, 𝐵 = 64 band-

limited MCResNet block followed by a global mean pool and a

fully-connected layer to give predictions for the 30 shape categories.

We fit our network on both the original SHREC ’11 dataset and

our conformally-augmented version using 10 samples per class.

For comparisons, we report the results of Field Convolutions (FC)

[Mitchel et al. 2021] and DiffusionNet [Sharp et al. 2020] – two

state-of-the-art surface networks – on the original dataset and train

both networks on the conformally-augmented version. We also

train CubeNet [Shakerinava et al. 2021], a top performing rotation-

equivariant spherical network, on both datasets. As inputs, each

network takes the Heat Kernel Signature (HKS) [Sun et al. 2009]

computed at 16 different timescales; since theHKS isn’t conformally-

invariant, we use the values computed on the original meshes when

training and testing on their conformally-augmented counterparts.

Results are shown in Table 1 in the form of the mean classifica-

tion accuracy over three randomly sampled test-train splits. Our

simple Möbius convolution network matches the state-of-the-art

performance of FC and DiffusionNet on the original dataset and sig-

nificantly outperforms both on the conformally augmented version,

despite the fact that the transformations between the spherically-

parameterized meshes aren’t perfect Möbius transformations. Like

Table 2: Omni-directional image segmentation

Method Accuracy IoU

MC (ours) 60.9% 43.3%
 SpectralSWSCNN [2020] 58.7% 43.4%

SphCNN [2018] 52.8% 40.2%

CubeNet [2021] 62.5% 45.0%
 SpatialHexNet [2019] 58.6% 43.3%

UGSCNN [2018] 54.7% 38.3%

FC and DiffusionNet, our method is equivariant to isometric de-

formations of the meshes as they manifest as Möbius transfor-

mations after parameterization to the sphere, serving to explain

our strong performance on the original dataset. However, Möbius-

equivariance allows our rudimentary network to better account

for conformal deformations between similar shapes and suggests

that a new class of conformally-equivariant surface networks may

outperform existing isometry-equivariant networks in challenging

shape analysis and recognition tasks. CubeNet performs poorly

on both datasets, indicating that Möbius-equivariance isn’t easily

learned in a rotation-equivariant framework.

8.3 Omni-directional Image Segmentation
Last, we demonstrate the utility of Möbius convolutions by mov-

ing from geometry to image processing, where we apply them to

semantically segment omni-directional images from the Stanford

2D3DS dataset [Armeni et al. 2017]. Here, we use MCResNet blocks

to construct a U-Net [Ronneberger et al. 2015] architecture with

32, 64, 128, 256, 128, 64, 32 channels per layer, applying max pooling

or nearest neighboring upsampling before each increase or decrease

in channel width. As with other state-of-the-art equivariant spheri-

cal networks [Esteves et al. 2020; Shakerinava et al. 2021], we find

our method performs best as a feature extractor for a small network

of standard convolutional layers due to the consistent latitudinal

orientation of the images; we append six 3 × 3 2D convolutions

to the end of our network to predict labels. To measure perfor-

mance, we report the mean per-class segmentation accuracy and

intersection over union (IoU) averaged over the three official folds.

Results are shown in Table 2, and we attain performance compa-

rable to the state-of-the-art. Existing spherical networks compute

convolutions either in the spatial domain [Jiang et al. 2018; Shak-

erinava et al. 2021; Zhang et al. 2019] or, like our method, in the

spectral domain via expansions in spherical basis functions. In the

latter case, efficiency and scalable filter support come at the cost

of fidelity, as some high-frequency information is lost when com-

puting the forward SHT due to the fixed band-limit assumption.

This puts spectral methods at a disadvantage in precision labeling

tasks with a large class imbalance, where spectral aliasing can blur

sharp boundaries and over-smooth localized features necessary

to make accurate predictions. Compounded by the devaluation of

equivariance due to the consistent orientation of the images, this is

a challenging task for our framework. However, we outperform ex-

isting rotation-equivariant spectral approaches, demonstrating that

we are able to achieve Möbius-equivariance without sacrificing de-

scriptiveness. A visualization of our results and further discussion

are provided in the supplement (§E).
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9 CONCLUSION
We present a novel, Möbius-equivariant spherical convolution op-

erator which we call Möbius convolution. With it, we develop the

foundations for Möbius-equivariant spherical CNNs and demon-

strate the utility of this framework by achieving strong results in

both geometry and spherical-image processing tasks.

More generally, this work represents an effort to move both

image and surface convolutional neural networks beyond stan-

dard rotation- and isometry-equivariance and into the realm of

conformal-equivariance. In particular, our experiments suggest

that the latter transition may be especially relevant in the context

of shape analysis and recognition and we hope this work serves to

catalyze the development of a new generation of surface networks

better able to handle the kinds of complex deformations found in

real-world shape data.
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A INTEGRATION AND DIFFERENTIATION
We view Ĉ as a Riemannian manifold under the round metric 𝑠 ,

expressed at 𝑧 = 𝑧1 + 𝑖 𝑧2 ∈ Ĉ as

𝑠𝑧 =
4(

1 + |𝑧 |2
)
2
(𝑑𝑧2

1
+ 𝑑𝑧2

2
) . (23)

A.1 Integration
The area element is

𝑑𝑧 =
4𝑑𝑧1 𝑑𝑧2(
1 + |𝑧 |2

)
2
, (24)

and for 𝑔 =
[
𝑎 𝑏
𝑐 𝑑

]
∈ SL(2,C), the scale factor 𝜆2

𝑔 (𝑧) associated with
the change of variables

𝑧 ↦→ 𝑔𝑧

𝑑𝑧 ↦→ 𝜆2

𝑔 (𝑧) 𝑑𝑧
(25)

is given by [Carmeli 2000]:

𝜆2

𝑔 (𝑧) =
(1 + |𝑧 |2)2

(1 + |𝑔𝑧 |2)2 |𝑐𝑧 + 𝑑 |4
=

(1 + |𝑧 |2)2(
|𝑎𝑧 + 𝑏 |2 + |𝑐𝑧 + 𝑑 |2

)
2
. (26)

A.2 Differentiation
For any𝜓 ∈ 𝐿2 (Ĉ,R), we express the differential of𝜓 with respect

to the complex variable 𝑧 = 𝑧1 + 𝑖 𝑧2 as the complex number

𝑑 𝜓 =
1

2

(
𝜕𝜓

𝜕𝑧1

− 𝑖
𝜕𝜓

𝜕𝑧2

)
. (27)

Similarly, we can define the Hesssian of 𝜓 as a complex number

whose coefficients are related to the covariant Hessian. The terms

depend on the first and second partial derivatives of𝜓 in addition to

the Christoffel symbols corresponding to the round metric. At the

origin, the terms depending on the first derivatives and Christoffel

symbols vanish, and the Hessian becomes

∇𝑑 𝜓
��
0
=

1

4

(
𝜕2𝜓

𝑑𝑧2

1

− 𝜕2𝜓

𝜕𝑧2

2

− 2𝑖
𝜕2𝜓

𝜕𝑧1𝜕𝑧2

)�����
0

. (28)

Given an element 𝑔 =
[
𝑎 𝑏
𝑐 𝑑

]
∈ SL(2,C), the differential of 𝑔 at

𝑥 ∈ Ĉ and the Hessian of 𝑔 at the origin are the complex numbers

𝑑 𝑔
��
𝑥
=

1

(𝑐𝑥 + 𝑑)2
and ∇𝑑 𝑔

��
0
= − 2𝑐

𝑑3
. (29)

B EQUIVARIANCE OF MÖBIUS
CONVOLUTIONS

Here we provide detailed proofs of the claims made in Section 5

regarding sufficient conditions for Möbius-equivariance and the

construction of the frame and density operators.

B.1 Conditions for Equivariance
Suppose we are given a frame operator 𝔗 and a density operator

𝜌 taking a real-valued function and returning a frame-field and

density, respectively

𝔗 : 𝐿2 (Ĉ,R) → 𝐿2 (Ĉ, L)
𝜓 ↦→ 𝔗𝜓

and

𝜌 : 𝐿2 (Ĉ,R) → 𝐿2 (Ĉ,R)
𝜓 ↦→ 𝜌𝜓

.

Claim 1. If for all 𝜓 ∈ 𝐿2 (Ĉ,R) and 𝑔 ∈ SL(2, C), the operators
𝔗 and 𝜌 satisfy the condition of Equation (7)

𝐷
𝑔
𝑧 𝔗𝜓 (𝑧) = 𝔗𝑔𝜓 (𝑔𝑧) and 𝜆−2

𝑔 (𝑧) 𝜌𝜓 (𝑧) = 𝜌𝑔𝜓 (𝑔𝑧),

then for any filter 𝑓 ∈ 𝐿2 (Ĉ,R),
𝑔 (𝜓 ∗ 𝑓 ) = (𝑔𝜓 ∗ 𝑓 ) .

Proof. Suppose 𝔗 and 𝜌 satisfy the condition and consider any

𝜓 ∈ 𝐿2 (Ĉ,R) and 𝑔 ∈ SL(2,C). For any filter 𝑓 ∈ 𝐿2 (Ĉ,R), we can
relate the expression of the filter over Ĉ𝑧 to the expression of the

filter over Ĉ𝑔𝑧 :[
𝔗𝜓 (𝑧) 𝑓

]
◦ log𝑧 = 𝑓 ◦

[
𝔗𝜓 (𝑧)

]−1

log𝑧

(7)
= 𝑓 ◦

[
𝔗𝑔𝜓 (𝑔𝑧)

]−1

𝐷
𝑔
𝑧 log𝑧

(3)
= 𝑓 ◦

[
𝔗𝑔𝜓 (𝑔𝑧)

]−1

log𝑔𝑧 𝑔

=
[
𝔗𝑔𝜓 (𝑔𝑧) 𝑓

]
◦ log𝑔𝑧 𝑔 (30)

Using the relationship between the expression of the filters over

Ĉ𝑧 and Ĉ𝑔𝑧 it follows that for any 𝑦 ∈ Ĉ,

(𝜓 ∗ 𝑓 ) (𝑔−1𝑦) (5)
=

∫
Ĉ
𝜌𝜓 (𝑧)

[
𝔗𝜓 (𝑧) 𝑓

] (
log𝑧 𝑔

−1𝑦
)
𝑑𝑧

(30)
=

∫
Ĉ
𝜌𝜓 (𝑧)

[
𝔗𝑔𝜓 (𝑔𝑧) 𝑓

] (
log𝑔𝑧 𝑦

)
𝑑𝑧

(7)
=

∫
Ĉ
𝜆2

𝑔 (𝑧) 𝜌𝑔𝜓 (𝑔𝑧)
[
𝔗𝑔𝜓 (𝑔𝑧) 𝑓

] (
log𝑔𝑧 𝑦

)
𝑑𝑧

=

∫
Ĉ
𝜌𝑔𝜓 (𝑧′)

[
𝔗𝑔𝜓 (𝑧′) 𝑓

] (
log𝑧′ 𝑦

)
𝑑𝑧′

(5)
= (𝑔𝜓 ∗ 𝑓 ) (𝑦),

where the second to last equality follows from the change of vari-

ables in Equation (25). □

B.2 Construction of Operators
Claim 2. If 𝔗 is defined as in Equation (8)

𝔗𝜓 (𝑥) ≡


(
𝑑 log𝑥 𝜓

��
0

)− 1

2

0(
1

2
∇𝑑 log𝑥 𝜓

��
0

) (
𝑑 log𝑥 𝜓

��
0

)− 3

2

(
𝑑 log𝑥 𝜓

��
0

) 1

2


then the condition for the frame operator in Equation (7) is satisfied.
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Proof. For any 𝜓 ∈ 𝐿2 (Ĉ,R) and 𝑔 ∈ SL(2,C) it follows from
Equation (3) that

log𝑔𝑥 𝑔𝜓 = 𝐷
𝑔
𝑥 log𝑥 𝜓 .

Denoting 𝐷
𝑔
𝑥 =

[
𝑎 0

𝑛 𝑎−1

]
, applying the chain rule and evaluating at

the origin using Equation (29) gives[
𝑑 log𝑔𝑥 𝑔𝜓

] ��
0
= 𝑎−2

[
𝑑 log𝑥 𝜓

] ��
0
, (31)

and[
∇𝑑 log𝑔𝑥 𝑔𝜓

] ��
0
= 𝑎−4

[
∇𝑑 log𝑥 𝜓

] ��
0
+ 2𝑛𝑎−3

[
𝑑 log𝑥 𝜓

] ��
0
. (32)

The upper diagonal element of 𝔗𝑔𝜓 (𝑔𝑥) is given by

[
𝔗𝑔𝜓 (𝑔𝑥)

]
11

(8)
=

( [
𝑑 log𝑔𝑥 𝑔𝜓

] ��
0

)− 1

2

(31)
= 𝑎

( [
𝑑 log𝑥 𝜓

] ��
0

)− 1

2

(8)
= 𝑎

[
𝔗𝜓 (𝑥)

]
11
,

A similar argument shows that the lower diagonal element satisfies[
𝔗𝑔𝜓 (𝑔𝑥)

]
22

= 𝑎−1
[
𝔗𝜓 (𝑥)

]
22
. For the off-diagonal element have

[
𝔗𝑔𝜓 (𝑔𝑥)

]
21

(8)
=

1

2

[
∇𝑑 log𝑔𝑥 𝑔𝜓

] ��
0

( [
𝑑 log𝑔𝑥 𝑔𝜓

] ��
0

)− 3

2

(32)
= 𝑛

( [
𝑑 log𝑥 𝜓

] ��
0

)− 1

2 +

𝑎−1
1

2

[
∇𝑑 log𝑥 𝜓

] ��
0

( [
𝑑 log𝑥 𝜓

] ��
0

)− 3

2

(8)
= 𝑛

[
𝔗𝜓 (𝑥)

]
11

+ 𝑎−1
[
𝔗𝜓 (𝑥)

]
21

from which it follows that

𝐷
𝑔
𝑥𝔗𝜓 (𝑥) = 𝔗𝑔𝜓 (𝑔𝑥)

as desired. □

Claim 3. If 𝜌 is defined as in Equation (9)

𝜌𝜓 (𝑥) ≡
���𝑑 log𝑥 𝜓

��
0

��� 2

then the condition for the density operator in Equation (7) is satisfied.

Proof. From Equations (2) and (29), the differential of the gen-

eralized exponential exp𝑥 = log
−1

𝑥 at the origin is given by

𝑑 exp𝑥

��
0
=

|𝑐 |2 (1 + |𝑥 |2)
𝑐2

,

from which it follows that���𝑑 exp𝑥

��
0

��� = (1 + |𝑥 |2) (33)

for any choice of 𝑐 ∈ C. Then, for any 𝑔 ∈ SL(2,C) applying the

chain rule to the definition of 𝐷
𝑔
𝑥 in Equation (3) gives���𝑑𝐷𝑔

𝑥

��
0

��� 2 (3)
=

���𝑑 exp𝑥

��
0

��� 2
���𝑑𝑔��𝑥 ��� 2

���𝑑 log𝑔𝑥

��
𝑔𝑥

��� 2

=

���𝑑 exp𝑥

��
0

��� 2
���𝑑𝑔��𝑥 ��� 2

���𝑑 exp𝑔𝑥

��
0

���−2

(33)
= (1 + |𝑥 |2)2

(
1

|𝑐𝑥 + 𝑑 |4

) (
1

(1 + |𝑔𝑥 |2)2

)
=

(1 + |𝑥 |2)2

(1 + |𝑔𝑥 |2)2 |𝑐𝑥 + 𝑑 |4
(26)
= 𝜆2

𝑔 (𝑥), (34)

where the second equality follows from the fact that log𝑧 is an

isometry of Ĉ with log
−1

𝑧 = exp𝑧 .

It follows that for any𝜓 ∈ 𝐿2 (Ĉ,R) and 𝑔 ∈ SL(2,C),

𝜌𝑔𝜓 (𝑔𝑥)
(9)
=

���𝑑 log𝑔𝑥 𝑔𝜓
��
0

��� 2

(3)
=

���𝑑𝐷𝑔
𝑥 log𝑥 𝜓

��
0

��� 2

=

���𝑑 log𝑥 𝜓 ◦
(
𝐷
𝑔
𝑥

)−1
���
0

��� 2

=

���𝑑𝐷𝑔
𝑥

��
0

���−2
���𝑑 log𝑥 𝜓

��
0

��� 2

(34)
= 𝜆−2

𝑔 (𝑥)
���𝑑 log𝑥 𝜓

��
0

��� 2

(9)
= 𝜆−2

𝑔 (𝑥) 𝜌𝜓 (𝑥),
as desired. □

C TRANSFORMATION OF FUNCTIONS
Given a filter 𝑓 parameterized as in Equation (15),

𝑓 =

𝑀∑︁
𝑚=−𝑀

𝑁∑︁
𝑠=−𝑁

𝑏𝑚𝑠 B𝑡𝑚𝑠 ,

where B𝑡𝑚𝑠 are the spherical log-polar functions

B𝑡𝑚𝑠 (𝑧) ≡
|𝑧 |𝑖𝑠
|𝑧 |𝑡

(
𝑧

|𝑧 |

)𝑚
,

we derive the expansion of the transformation of the filter by a

lower triangular matrix 𝐿 =
[
𝑎 0

𝑛 𝑎−1

]
∈ L ⊂ SL(2,C) given in

Equation (16):

𝐿 𝑓 =

∞∑︁
𝑚=−∞

∫ ∞

−∞

3∑︁
𝑗=1

𝑗𝜻
𝑡𝜎 𝑗

𝑚𝑠

(
𝐿, b

)
B𝜎 𝑗

𝑚𝑠 𝑑𝑠.

Noting that
𝑗
𝜻
𝑡𝜎 𝑗

𝑚𝑠

(
𝐿, b

)
is a linear function in b, we first derive

an expansion for the transformation of the log-polar bases 𝐿 B𝑡𝑚𝑠 .

Then, we substitute this expression into the filter parameterization

to recover
𝑗
𝜻
𝑡𝜎 𝑗

𝑚𝑠

(
𝐿, b

)
. Afterwards we discuss how we approximate

the expansion in practice as in Equation (17).

C.1 Transformation of Spherical Log-Polar
Bases

Here we derive an expansion of the transformation of the spherical

log-polar bases B𝑡𝑚𝑠 by a lower triangular matrix 𝐿 ∈ L. Specifically,
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we seek an expansion which expresses 𝐿 B𝑡𝑚𝑠 as a linear combi-

nation of log-polar bases depending on 𝑧, indexed in angular and

radial frequencies𝑢 and𝜔 and localization variables 𝜎 –B𝜎𝑢𝜔 – with

a set of coefficient functions depending only on 𝐿.

We consider elements 𝐿 ∈ L ⊂ SL(2,C) of the form

𝐿 =

[
𝑎 0

𝑛 𝑎−1

]
with 𝑎, 𝑛 ∈ C, 𝑎 ≠ 0. (35)

We treat separately the cases where 𝑛 = 0 and 𝑛 ≠ 0, first finding

an expansion of 𝐿 B𝑡𝑚𝑠 for each and afterwards combining the two

to form an expansion of 𝐿 B𝑡𝑚𝑠 which holds for all 𝐿 ∈ L.

Case 1 (𝑛 = 0) : If 𝑛 = 0, then for any 𝑧 ∈ Ĉ
𝐿−1𝑧 = 𝑎−2𝑧,

and directly evaluating

[
𝐿 B𝑡𝑚𝑠

]
(𝑧) = B𝑡𝑚𝑠

(
𝐿−1𝑧

)
gives[

𝐿 B𝑡𝑚𝑠

]
(𝑧) (14)

=
|𝑎−2𝑧 |𝑖𝑠
|𝑎−2𝑧 |𝑡

(
𝑎−2𝑧

|𝑎−2𝑧 |

)𝑚
=

|𝑎−2 |𝑖𝑠
|𝑎−2 |𝑡

|𝑧 |𝑖𝑠
|𝑧 |𝑡

(
𝑎−2

|𝑎−2 |

)𝑚 (
𝑧

|𝑧 |

)𝑚
=

|𝑎2 |−𝑖𝑠
|𝑎2 |−𝑡

(
𝑎2

|𝑎2 |

)−𝑚 |𝑧 |𝑖𝑠
|𝑧 |𝑡

(
𝑧

|𝑧 |

)𝑚
(14)
= B−𝑡−𝑚−𝑠 (𝑎2) B𝑡𝑚𝑠 (𝑧), (36)

where the last equality provides the desired expansion.

Case 2 (𝑛 ≠ 0): Here, finding an expansion for 𝐿 B𝑡𝑚𝑠 is signif-

icantly more involved as 𝐿−1
acts projectively on Ĉ. Specifically,

𝐿−1𝑧 =
𝑎−1𝑧

𝑎 − 𝑛𝑧
=

𝑧

𝑎2 − 𝑎𝑛𝑧
,

which does not allow for a straight-forward separation of variables

as in Equation (36). Instead, we begin by making two observations.

First, denoting 𝐽 =
[

0 −1

1 0

]
∈ SL(2,C), it is easy to show that

𝐿−1 = 𝐽−1𝐿⊤ 𝐽 , (37)

where 𝐿⊤ ∈ U is the transpose of 𝐿, belonging to the subgroup

U ∈ SL(2,C) consisting of all upper-triangular elements. Critically,

𝐿⊤ acts on Ĉ not projectively but as an affine transformation,

𝐿⊤𝑧 = 𝑎2𝑧 + 𝑎𝑛, (38)

equivalent to a planar rotation and dilation, followed by a transla-

tion. Second, for all 𝑧 ∈ Ĉ,
𝐽𝑧 = 𝐽−1𝑧 = −𝑧−1

from which it follows that

𝐽 B𝑡𝑚𝑠 = 𝐽−1 B𝑡𝑚𝑠 = 𝑒𝑖𝑠𝜋 B−𝑡−𝑚−𝑠 . (39)

Combining the observations in Equations (37) and (39), we have

𝐿 B𝑡𝑚𝑠

(37)
= 𝐽−1𝐿−⊤ 𝐽 B𝑡𝑚𝑠

(39)
= 𝑒𝑖𝑠𝜋

[
𝐽−1𝐿−⊤B−𝑡−𝑚−𝑠

]
, (40)

Our strategy now becomes clear. Using Equation (40), we can view

the transformation of B𝑡𝑚𝑠 by 𝐿 as the transformation of B−𝑡−𝑚−𝑠
by 𝐿−⊤, followed by 𝐽 . This allows us to replace the projective

action of L with the affine action of the upper-triangular subgroup

U – the group of rotations, translations, and dilations – whose

representations are better understood [Vilenkin 1978; Vilenkin and

Klimyk 1991]. Our goal is now to find an expansion of 𝐿−⊤ B−𝑡−𝑚−𝑠 ,
which we can convert to the desired expansion for 𝐿 B𝑡𝑚𝑠 ∈ L via

the simple action of 𝐽−1
in Equation (39).

We recover an expansion of 𝐿−⊤ B−𝑡−𝑚−𝑠 as follows: First, we

apply the Hankel transform in the radial dimension which will

allow us to represent B−𝑡−𝑚−𝑠 in terms of the irreducible unitary

representations (IURs) of SE(2) – the group of planar rotations and

translations. From here we can use the regular representation of

the group to separate the rotational and translational components

of 𝐿−⊤. To handle the remaining dilation, we apply the Mellin

transform, which results in the desired expansion.

To simplify notation, we convert to polar coordinates

𝑧 ↦→ (|𝑧 |,Arg 𝑧) ≡ (𝑟, 𝜗) .

In these coordinates B𝑡𝑚𝑠 becomes

B𝑡𝑚𝑠 (𝑧) ↦→ B𝑡𝑚𝑠 (𝑟, 𝜗) = 𝑟 𝑖𝑠−𝑡 𝑒𝑖𝑚𝜗 .

Similarly, we express 𝑎2
, the rotational and dilational component

𝐿⊤𝑧, and 𝑎𝑛, the translational component of 𝐿⊤𝑧, as

𝑎2 = 𝛼𝑒𝑖𝜑 and 𝑎𝑛 = 𝜏𝑒𝑖𝜘

for some 𝛼, 𝜏 ∈ R>0 and 𝜑, 𝜘 ∈ [0, 2𝜋).
The following calculations were performed with the aid of Math-

ematica 13.0 [Wolfram Research Inc. 2021]. We begin by expressing

𝑟−𝑖𝑠+𝑡 in terms of its Hankel expansion in the angular frequency

−𝑚

𝑟−𝑖𝑠+𝑡 = 2
1−𝑖𝑠+𝑡 R𝑚𝑠

∫ ∞

0

𝜚 𝑖𝑠−1−𝑡 𝐽−𝑚 (𝜚𝑟 ) 𝑑𝜚, (41)

where

R𝑚𝑠 =



Γ
(
1 − 𝑚−𝑡+𝑖𝑠

2

)
Γ

(
−𝑚−𝑡+𝑖𝑠

2

) 𝑚 ≤ 0

(−1)𝑚
Γ

(
1 − −𝑚−𝑡+𝑖𝑠

2

)
Γ

(
𝑚−𝑡+𝑖𝑠

2

) 𝑚 > 0

. (42)

and Γ and 𝐽−𝑚 denote the Gamma function and Bessel functions

of the first kind, respectively. Substituting the Hankel expansion

of 𝑟−𝑖𝑠+𝑡 in Equation (41) into the polar coordinate expression for

B−𝑡−𝑚−𝑠 gives

B−𝑡−𝑚−𝑠 (𝑟, 𝜗) = 2
1−𝑖𝑠+𝑡 𝑒−𝑖𝑚𝜗 R𝑚𝑠

∫ ∞

0

𝜚 𝑖𝑠−1−𝑡 𝐽−𝑚 (𝜚𝑟 ) 𝑑𝜚 . (43)

The matrix elements of the IURs of SE(2) are given by [Chirikjian

and Kyatkin 2016]

ℎ
𝜚
𝑚𝑛 (𝑟, 𝜗, 𝜙) = 𝑖𝑛−𝑚 𝑒−𝑖𝑛𝜙−𝑖 (𝑚−𝑛)𝜗 𝐽𝑛−𝑚 (𝜚𝑟 ), (44)

where 𝜙 is the angle of rotation and 𝑟 and 𝜗 are the magnitude and

polar angle of the translation, respectively. It follows that Equa-

tion (43) can be written as

B−𝑡−𝑚−𝑠 (𝑟, 𝜗) = 2
1−𝑖𝑠+𝑡 𝑖𝑚 R𝑠𝑚

∫ ∞

0

𝜚 𝑖𝑠−1−𝑡 ℎ𝜚
𝑚0

(𝑟, 𝜗, 0) 𝑑𝜚 . (45)
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From here we can use the regular representation of the group

to separate the rotational and translational components of 𝐿−⊤,
expanding 𝐿−⊤ B−𝑡−𝑚−𝑠 as[

𝐿−⊤ B−𝑡−𝑚−𝑠
]
(𝑟, 𝜗) =

2
1−𝑖𝑠+𝑡 𝑖𝑚 R𝑚𝑠

×
∞∑︁

𝑢=−∞

∫ ∞

0

𝜚 𝑖𝑠−1−𝑡 ℎ𝜚𝑚𝑢 (𝜏, 𝜘, 𝜑) ℎ
𝜚

𝑢0
(𝛼𝑟, 𝜗, 0) 𝑑𝜚 .

(46)

Expanding the integral in Equation (46) gives∫ ∞

0

𝜚 𝑖𝑠−1−𝑡ℎ𝜚𝑚𝑢 (𝜏, 𝜘, 𝜑) ℎ
𝜚

𝑢0
(𝛼𝑟, 𝜗, 0) 𝑑𝜌

(44)
= 𝑖−𝑚 𝑒−𝑖𝑢 (𝜑+𝜗)−𝑖 (𝑚−𝑢)𝜘

×
∫ ∞

0

𝜚 𝑖𝑠−1−𝑡 𝐽𝑚−𝑢 (𝜏𝜚 ) 𝐽−𝑢 (𝛼𝑟𝜚 ) 𝑑𝜚

= 𝑖−𝑚 𝑒−𝑖𝑢 (𝜑+𝜗)−𝑖 (𝑚−𝑢)𝜘 𝛼−𝑖𝑠+𝑡

×
∫ ∞

0

𝜚 𝑖𝑠−1−𝑡 𝐽𝑚−𝑢 (𝛼−1𝜏𝜚 ) 𝐽−𝑢 (𝑟𝜚 ) 𝑑𝜚 (47)

= 2
𝑖𝑠−1−𝑡 𝑖−𝑚 𝑒−𝑖𝑢 (𝜑+𝜗)−𝑖 (𝑚−𝑢)𝜘 𝜏−𝑖𝑠+𝑡 𝑀 𝑡

𝑠𝑚𝑢 (𝛼2𝜏−2𝑟2), (48)

where the second equality follows from the change of variables

𝑟 ↦→ 𝛼𝑟 , and the third from evaluation of the integral (the inverse

Hankel transform in the (𝑚 − 𝑢)−th frequency). Here,

𝑀 𝑡
𝑚𝑠𝑢 (𝑟2) =


𝐺

1,1
2,2

(
x𝑡𝑚𝑠𝑢

y𝑢

����� 𝑟2

)
𝑢 ≥ 𝑚

(−1)𝑢−𝑚 𝐺
1,1
2,2

(
x𝑡−𝑚𝑠−𝑢

y𝑢

����� 𝑟2

)
𝑢 < 𝑚

,

x𝑡𝑚𝑠𝑢 =

[
1

2

(2 − 𝑢 − 𝑖𝑠 +𝑚 + 𝑡), 1

2

(2 + 𝑢 − 𝑖𝑠 −𝑚 + 𝑡)
]
,

y𝑢 =

[
−1

2

𝑢,
1

2

𝑢

]
,

with 𝐺
𝑚,𝑛
𝑝,𝑞

(
x
y

���� 𝑧) denoting the Meijer G-function [Bateman 1953].

Plugging the expression for the integral in Equation (48) into the

expression for 𝐿−⊤ B−𝑡−𝑚−𝑠 in Equation (46) gives[
𝐿−⊤ B−𝑡−𝑚−𝑠

]
(𝑟, 𝜗) =

R𝑚𝑠

∞∑︁
𝑢=−∞

𝑒−𝑖𝑢 (𝜑+𝜗)−𝑖 (𝑚−𝑢)𝜘 𝜏−𝑖𝑠+𝑡 𝑀 𝑡
𝑚𝑠𝑢 (𝛼2𝜏−2𝑟2)

(49)

The above expansion factors out the the rotational and translational

components of 𝐿⊤ as desired, and the final step is to factor out the

scale term 𝛼2𝜏−2
acting on 𝑟2

in the argument of the function𝑀 𝑡
𝑚𝑠𝑢 .

To do so, we decompose𝑀 𝑡
𝑚𝑠𝑢 using the Mellin transform. The

basis functions of the Mellin transform 𝑟𝜎−𝑖𝜔 are the IURs of the

group of dilations acting via multiplication on the positive real line.

By decomposing 𝑀 𝑡
𝑚𝑠𝑢 in terms of these bases, we factor out the

𝛼2𝜏−2
term in the argument using the regular representation of the

group in the same manner as was done in Equation (36). Specifically,

for 0 ≤ 𝑡 < 1, and real numbers 𝜎1, 𝜎2 satisfying

𝑡 < 𝜎1 < 2 and 𝑡 − 1 < 𝜎2 < 0 (50)

𝑀𝑡
𝑚𝑠𝑢 (𝑟2) can be decomposed as a sum of two Mellin transform

expansions

𝑀𝑡
𝑚𝑠𝑢 (𝑟2) = 1

2𝜋

2∑︁
𝑗=1

∫ ∞

−∞
𝑗M

𝑡,𝜎 𝑗

𝑚𝑠𝑢 (𝜔) 𝑟𝜎 𝑗−𝑖𝜔𝑑𝜔. (51)

where

1
M𝑡,𝜎1

𝑚𝑠𝑢 (𝜔) = (52)

Γ
(−𝜎1+𝑖𝜔−𝑢

2

)
Γ
(𝑢+𝑖𝑠−𝑚+𝜎1−𝑖𝜔−𝑡

2

)
2 Γ

(
2−𝑢+𝜎1−𝑖𝜔

2

)
Γ
(

2+𝑢−𝑖𝑠−𝑚−𝜎1+𝑖𝜔+𝑡
2

) 𝑢 ≥ 𝑚, 𝑢 < 0

(−1)𝑢
Γ
(𝑢−𝜎1+𝑖𝜔

2

)
Γ
(𝑢+𝑖𝑠−𝑚+𝜎1−𝑖𝜔−𝑡

2

)
2 Γ

(
2+𝑢+𝜎1−𝑖𝜔

2

)
Γ
(

2+𝑢−𝑖𝑠−𝑚−𝜎1+𝑖𝜔+𝑡
2

) 𝑢 ≥ 𝑚, 𝑢 > 0

(−1)𝑢−𝑚
Γ
(−𝜎1+𝑖𝜔−𝑢

2

)
Γ
(−𝑢+𝑖𝑠+𝑚+𝜎1−𝑖𝜔−𝑡

2

)
2 Γ

(
2−𝑢+𝜎1−𝑖𝜔

2

)
Γ
(

2−𝑢−𝑖𝑠+𝑚−𝜎1+𝑖𝜔+𝑡
2

) 𝑢 < 𝑚, 𝑢 < 0

(−1)𝑚
Γ
(𝑢−𝜎1+𝑖𝜔

2

)
Γ
(−𝑢+𝑖𝑠+𝑚+𝜎1−𝑖𝜔−𝑡

2

)
2 Γ

(
2+𝑢+𝜎1−𝑖𝜔

2

)
Γ
(

2−𝑢−𝑖𝑠+𝑚−𝜎1+𝑖𝜔+𝑡
2

) 𝑢 < 𝑚, 𝑢 > 0

0 𝑢 = 0,𝑚 ≠ 0

Γ
(

2−𝜎1+𝑖𝜔
2

)
Γ
( 𝑖𝑠+𝜎1−𝑖𝜔−𝑡

2

)
2

(
1 − 2−𝑖𝑠+𝑡

2

)
Γ
(

2+𝜎1−𝑖𝜔
2

)
Γ
(

2−𝑖𝑠−𝜎1+𝑖𝜔+𝑡
2

) 𝑢 =𝑚 = 0

and

2
M𝑡,𝜎2

𝑚𝑠𝑢 (𝜔) = (53)

0 𝑢 ≠ 0

Γ
(−𝜎2+𝑖𝜔

2

)
Γ
( 𝑖𝑠−𝑚+𝜎2−𝑖𝜔−𝑡

2

)
2 Γ

(
2+𝜎2−𝑖𝜔

2

)
Γ
(

2−𝑖𝑠−𝑚−𝜎2+𝑖𝜔+𝑡
2

) 𝑢 = 0, 𝑚 < 0

(−1)𝑚
Γ
(−𝜎2+𝑖𝜔

2

)
Γ
( 𝑖𝑠+𝑚+𝜎2−𝑖𝜔−𝑡

2

)
2 Γ

(
2+𝜎2−𝑖𝜔

2

)
Γ
(

2−𝑖𝑠+𝑚−𝜎2+𝑖𝜔+𝑡
2

) 𝑢 = 0, 𝑚 > 0

Γ
(−𝜎2+𝑖𝜔

2

)
Γ
(

2+𝑖𝑠+𝜎2−𝑖𝜔−𝑡
2

)
2

(
1 − 2−𝑖𝑠+𝑡

2

)
Γ
(

2+𝜎2−𝑖𝜔
2

)
Γ
(

2−𝑖𝑠−𝜎2+𝑖𝜔+𝑡
2

) 𝑢 =𝑚 = 0

.

Here, the bounds of 𝜎1 and 𝜎2 are due to the particular properties

of the Mellin transform and ensure that the𝑀 𝑡
𝑚𝑠𝑢 can be recovered

from the coefficients of the forward transform [Vilenkin and Klimyk

1991]. Then, replacing 𝑀 𝑡
𝑚𝑠𝑢 (𝛼2𝜏−2𝑟2) in Equation (49) with its

Mellin decomposition in Equation (51), rearranging terms, and

converting back to complex coordinates (𝑟, 𝜗) ↦→ (|𝑧 |,Arg 𝑧) gives[
𝐿−⊤ B−𝑡−𝑚−𝑠

]
(𝑧) =

R𝑠𝑚
2𝜋

∞∑︁
𝑢=−∞

∫ ∞

−∞

2∑︁
𝑗=1

B−𝜎 𝑗

−𝑢−𝜔 (𝑎2) B𝜎 𝑗−𝑡
𝑢−𝑚𝜔−𝑠 (𝑎𝑛)

× 𝑗M
𝑡,𝜎 𝑗

𝑚𝑠𝑢 (𝜔) B
−𝜎 𝑗

−𝑢−𝜔 (𝑧) 𝑑𝜔.

(54)
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Finally, substituting this expression into Equation (40) and using

Equation (39) we arrive at the desired expansion of 𝐿 B𝑡𝑚𝑠 :[
𝐿 B𝑡𝑚𝑠

]
(𝑧) =

R𝑠𝑚
2𝜋

∞∑︁
𝑢=−∞

∫ ∞

−∞

2∑︁
𝑗=1

B−𝜎 𝑗

−𝑢−𝜔 (𝑎2) B𝜎 𝑗−𝑡
𝑢−𝑚𝜔−𝑠 (𝑎𝑛)

× 𝑗M
𝑡,𝜎 𝑗

𝑚𝑠𝑢 (𝜔) B
𝜎 𝑗

𝑢𝜔 (𝑧) 𝑑𝜔.

(55)

General Case (𝑛 ∈ C) :We combine the expansions of 𝐿 B𝑡𝑚𝑠 for

the cases 𝑛 = 0 in Equation (36) and 𝑛 ≠ 0 in Equation (55) into

a general form holding for all 𝐿 ∈ L. Specifically, we define the

following functions mapping a lower-triangular matrix to a set of

filter coefficients,

𝑢𝜔
1
𝝃 𝑡𝜎1

𝑚𝑠 (𝐿) = (1 − 𝛿 |𝑛 |0)
R𝑠𝑚
2𝜋

B−𝜎1

−𝑢−𝜔 (𝑎2)

× B𝜎1−𝑡
𝑢−𝑚𝜔−𝑠 (𝑎𝑛) 1

M𝑡,𝜎 𝑗

𝑚𝑠𝑢 (𝜔), (56)

𝑢𝜔
2
𝝃 𝑡𝜎2

𝑚𝑠 (𝐿) = (1 − 𝛿 |𝑛 |0)
R𝑠𝑚
2𝜋

B−𝜎2

−𝑢−𝜔 (𝑎2)

× B𝜎2−𝑡
𝑢−𝑚𝜔−𝑠 (𝑎𝑛) 2

M𝑡,𝜎2

𝑚𝑠𝑢 (𝜔), (57)

𝑢𝜔
3
𝝃 𝑡𝜎3

𝑚𝑠 (𝐿) = 𝛿 |𝑛 |0𝛿𝑚𝑢𝛿 (𝑠 − 𝜔) B−𝜎3

−𝑚−𝑠 (𝑎2), (58)

where 𝛿𝑥𝑦 and 𝛿 (𝑥) denote the Kronecker and Dirac delta func-

tions, respectively, and 𝜎1, 𝜎2 satisfy the conditions in Equation (50).

Given B𝑡𝑚𝑠 for some 𝑡 ∈ (0, 1) and setting 𝜎3 = 𝑡 , it follows from

Equations (36) and (55) that for any 𝐿 ∈ L, 𝐿 B𝑡𝑚𝑠 can be expanded

as

𝐿 B𝑡𝑚𝑠 =

∞∑︁
𝑢=−∞

∫ ∞

−∞

3∑︁
𝑗=1

𝑢𝜔
𝑗 𝝃

𝑡𝜎 𝑗

𝑚𝑠 (𝐿) B
𝜎 𝑗

𝑢𝜔 𝑑𝜔. (59)

C.2 Transformation of Filters
Using the expansion of the transformation of basis functions in

Equation (59), it is straight-forward to recover the expansion of the

transformation of filters 𝑓 of the form

𝑓 =

𝑀∑︁
𝑚=−𝑀

𝑁∑︁
𝑠=−𝑁

𝑏𝑚𝑠 B𝑡𝑚𝑠 ,

by elements of L. Namely,

𝐿 𝑓 =

𝑀∑︁
𝑚=−𝑀

𝑁∑︁
𝑠=−𝑁

𝑏𝑚𝑠 𝐿 B𝑡𝑚𝑠

(59)
=

𝑀∑︁
𝑚=−𝑀

𝑁∑︁
𝑠=−𝑁

𝑏𝑚𝑠

∞∑︁
𝑢=−∞

∫ ∞

−∞

3∑︁
𝑗=1

𝑢𝜔
𝑗 𝝃

𝑡𝜎 𝑗

𝑚𝑠 (𝐿) B
𝜎 𝑗

𝑢𝜔 𝑑𝜔

=

∞∑︁
𝑢=−∞

∫ ∞

−∞

3∑︁
𝑗=1

[
𝑀∑︁

𝑚=−𝑀

𝑁∑︁
𝑠=−𝑁

𝑏𝑚𝑠
𝑢𝜔
𝑗 𝝃

𝑡𝜎 𝑗

𝑚𝑠 (𝐿)
]

︸                                ︷︷                                ︸
𝑗𝜻

𝑡𝜎𝑗
𝑢𝜔 (𝐿,b)

B𝜎 𝑗

𝑢𝜔 𝑑𝜔,

(60)

where b is the (2𝑀 +1) × (2𝑁 +1)-dimensional vector of coefficients

of 𝑓 and
𝑗
𝜻
𝑡𝜎 𝑗

𝑢𝜔 maps a lower-triangular element and a set of filter

coefficients to the coefficient of B𝜎 𝑗

𝑢𝜔 in the expansion.

C.3 Implementation
As discussed in §6 we approximate the expansion of 𝐿 𝑓 by trun-

cating the summation over 𝑢, and replacing the integration over

the real line with a discrete approximation using quadrature. The

summation is a consequence of the addition theorem for Bessel

functions [Watson 1995]. Here it arises in the regular representation

of SE(2) used in Equation (46) to factor the rotational and transla-

tional components of the transformations from the argument of the

basis functions. Fortunately, it converges rapidly for low angular

basis frequencies𝑚 and we typically find truncation at𝑀 + 1 terms

to be sufficient.

Approximating the integral in the expansion is less straight-

forward. For example, the reader may have noticed that the second

to last equality – Equation (47) – in the expansion of the integral in

Equation (46) provides a seemingly suitable separation of variables

for our purposes, raising the question of why we expend the addi-

tional effort dealing with the Mellin transform. The problem with

the expansion offered by Equation (47) is that the product of Bessel

functions in the integrand is highly-oscillatory, and decays either

very rapidly or very slowly depending on the values of 𝛼, 𝜏 and 𝑟

making a low-order numerical integration scheme impossible.

However, it turns out that first recollecting the separated terms

by evaluating the integral (the inverse Hankel transform) – Equa-

tion (48) – and then expanding the solution again using the Mellin

transform – Equation (51) – gives us something we can handle nu-

merically. (Equivalently, we could have first expanded 𝐽−𝑢 (𝑟𝜌) in
Equation (47) using the Mellin transform, then applied the inverse

Hankel transform to arrive at a similar expression). Despite being

aesthetically-challenged, the Mellin transform coefficients
𝑗
M𝑡,𝜎 𝑗

𝑚𝑠𝑢

in Equations (52 - 53) have several nice properties which make pos-

sible a low-order quadrature approximation of the integral: They

decay rapidly, are relatively smooth, and retain these properties

even with increasing values of |𝑚 |, |𝑠 | and |𝑢 |.

Quadrature. For a given choice of 𝑡 ∈ (0, 1) determining the lo-

calization of the filters, the smoothness and decay of the Mellin

coefficients can further be controlled by the choices of 𝜎1 and 𝜎2

satisfying Equation (50) such that the discretization of the Mellin

expansion of𝑀𝑡
𝑚𝑠𝑢 (𝑟2) in Equation (51) with a fixed number of sam-

ples {𝜔𝑞}1≤𝑞≤𝑄 and trapezoidal quadrature weights {𝑤𝑞}1≤𝑞≤𝑄 ,

𝑀𝑡
𝑚𝑠𝑢 (𝑟2

;𝜎1, 𝜎2, 𝜔1, . . . , 𝜔𝑄 ) ≡

1

2𝜋

2∑︁
𝑗=1

𝑄∑︁
𝑞=1

𝑤𝑞 𝑗M
𝑡,𝜎 𝑗

𝑚𝑠𝑢 (𝜔𝑞) 𝑟𝜎 𝑗−𝑖𝜔𝑞 ,
(61)

provides the best approximation.

In practice, we formulate the selection of 𝜎1 and 𝜎2 as an opti-

mization problem: Given a fixed number of quadrature samples 𝑄 ,

we treat 𝜎1, 𝜎2 and the quadrature sample points {𝜔𝑞}1≤𝑞≤𝑄 as op-

timization variables, and seek to minimize the reconstruction error

between 𝑀𝑡
𝑚𝑠𝑢 (𝑟2) and the discretization of its Mellin expansion

in Equation (61):

E𝑡
𝑚𝑠𝑢 [𝜎1, 𝜎2, 𝜔1, . . . , 𝜔𝑄 ] =∫ ∞

0

���𝑀𝑡
𝑚𝑠𝑢 (𝑟2) −𝑀𝑡

𝑚𝑠𝑢 (𝑟2
;𝜎1, 𝜎2, 𝜔1, . . . , 𝜔𝑄 )

���2 𝑑𝑟 (62)
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However, instead of computing a distinct quadrature scheme to

approximate each function 𝑀𝑡
𝑚𝑠𝑢 (𝑟2), for each value of 𝑢, we op-

timize for a quadrature scheme that best reconstructs 𝑀𝑡
𝑚𝑠𝑢 (𝑟2)

for all tuples (𝑚, 𝑠,𝑢) so that the bases B𝜎 𝑗

𝑢𝜔 remain independent of

𝑚 and 𝑠 in the transformation of an𝑀, 𝑁 band-limited filter as in

Equation (17). That is, for each −𝑀 ′ ≤ 𝑢 ≤ 𝑀 ′
, we choose 𝜎𝑢

1
, 𝜎𝑢

2

and {𝜔𝑢
𝑞 }1≤𝑞≤𝑄 to be the minimizers of

E𝑡
𝑢 [𝜎𝑢1 , 𝜎

𝑢
2
, 𝜔𝑢

1
, . . . , 𝜔𝑢

𝑄 ] =
∑︁

−𝑀≤𝑚≤𝑀
−𝑁 ≤𝑠≤𝑁

E𝑡
𝑚𝑠𝑢 [𝜎𝑢1 , 𝜎

𝑢
2
, 𝜔𝑢

1
, . . . .𝜔𝑢

𝑄 ],

(63)

and are solved for via gradient descent in a pre-processing step.

Once the sample points have been recovered, the values of Mellin

transform coefficients
𝑗
M𝑡,𝜎 𝑗

𝑚𝑠𝑢 (𝜔𝑢
𝑞 ) in Equations (56-57) can be com-

puted in the same pre-processing regime, avoiding the evaluation

of the Gamma functions at run-time.

D MEMORY FOOTPRINT AND RUN TIME
D.1 Memory Footprint
Themost computationally expensive step of ourMöbius-equivariant

CNNs is the innermost sum of the reduction inside the convolu-

tional layers in Equation (19),

𝜓 ′
𝑐′ =

∑︁
−𝑀′≤𝑚≤𝑀′

1≤𝑞≤𝑄
1≤ 𝑗≤3

(
𝐶∑︁
𝑐=1

𝜌𝜓𝑐
𝑤𝑞 𝑗𝜻

𝑡𝜎 𝑗

𝑚𝑠𝑞

(
𝔗𝜓𝑐

, b𝑐𝑐
′ )

∗𝑒 B𝜎 𝑗

𝑚𝑠𝑞

)
.

In practice we only sum over the first two indices of 𝑗 , replacing 𝑎𝑛

with a small constant factor 𝜀 = 0.05 whenever it vanishes. In addi-

tion, it follows from Equation (53) that for 𝑗 = 2,
2
𝜻 𝑡𝜎2

𝑚𝑠𝑞

(
𝔗𝜓𝑐

, b𝑐𝑐
′ )

vanishes whenever𝑚 ≠ 0. Then, using the expansion

𝑗𝜻
𝑡𝜎 𝑗

𝑚𝑠𝑞

(
𝔗𝜓𝑐

, b𝑐𝑐
′ ) (60)

=

𝑀∑︁
𝑘=−𝑀

𝑁∑︁
𝑙=−𝑁

𝑏𝑐𝑐
′

𝑘𝑙

𝑚𝑠𝑞
𝑗
𝝃
𝑡𝜎 𝑗

𝑘𝑙
(𝔗𝜓𝑐

), (64)

the inner sum in the reduction is expressed as broadcasted matrix

multiplication, 𝒃 𝚵, where 𝒃 is the 𝐶 ′ × 𝐶 · (2𝑀 + 1) · (2𝑁 + 1)
dimensional 64-bit complex tensor of learnable filter parameters

𝑏𝑐𝑐
′

𝑘𝑙
and 𝚵 is the𝐶 · (2𝑀+1) · (2𝑁 +1)× (2𝑀 ′+2)×𝑄×2𝐵×2𝐵 64-bit

complex tensor corresponding to the values of

𝑚𝑠𝑞
𝑗
𝝃
𝑡𝜎 𝑗

𝑘𝑙
(𝔗𝜓𝑐

). The
first (2𝑀 ′ + 1) indices in the second dimension of 𝚵 correspond to

𝑗 = 1 with −𝑀 ′ ≤ 𝑚 ≤ 𝑀 and the last index corresponds to 𝑗 = 2

with𝑚 = 0.

Typical layers use𝑀 = 𝑁 = 1 band-limited filters, with𝑀 ′ = 2

and 𝑄 = 30 quadrature points. Here, 𝚵 is a 𝐶𝐵2
51840-byte tensor

which must be stored on device memory. As such, Möbius convo-

lution layers have a large memory footprint at high resolutions

𝐵 ≥ 64 – each input channel requires approximately 0.2 GB or more

of device memory per convolution. We find that memory overhead

and inference time can both be reduced by fusing both the creation

of 𝚵 and matrix multiplication by 𝒃 into a single operation (e.g. via
TorchScript). That said, all of our experiments are performed using

an NVIDIA RTX A6000 GPU and the Möbius convolution U-Net

used in the segmentation task in §8.3 consumes approximately 80%

of the 48 GB of device memory.

Band-limit
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𝐶 = 16

𝐶 = 32

𝐶 = 64

Figure 4: Mean run time of a (𝑀 = 1, 𝑁 = 1, 𝑄 = 2, 𝑃 = 30)
Möbius convolution block with 𝐶 = 16, 32, 64 channels over
100 initializations as a function of band-limit.

D.2 Run Time
Figure 4 shows the mean run time of a single Möbius convolution

block with increasing numbers of channels as a function of band-

limit. Despite having a large memory footprint, Möbius convolu-

tions are relatively fast – only the forward passes of high band-limit,

large-width modules exceed 100 ms. Training the networks in the

classification (§8.2) and segmentation (§8.3) tasks takes approxi-

mately 30 minutes and four hours, respectively.

E SEGMENTATION
We provide a visualization of our model’s predicted segmentation

labels relative to the ground truth in Figure 5. Our model performs

well in simpler scenes with complete depth information (left), but

becomes less effective as label granularity increases (moving to the

right). Our model fails (far right) in the presence of large, specular

surfaces.
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Figure 5: Visualization of semantic segmentation results on images in the test set.


	Abstract
	1 Introduction
	2 Related Work
	3 Method Overview
	4 Möbius Transformations
	4.1 Generalizing the logarithm and exponential maps
	4.2 Action of the origin-preserving subgroup

	5 Möbius Convolution
	5.1 Equivariance

	6 Discretization
	6.1 Complexity

	7 Möbius-Equivariant Spherical CNNS
	7.1 Convolutional layers
	7.2 Normalization and Non-linearities

	8 Evaluation
	8.1 Equivariance
	8.2 Conformal Shape Classification
	8.3 Omni-directional Image Segmentation

	9 Conclusion
	References
	A Integration and Differentiation
	A.1 Integration
	A.2 Differentiation

	B Equivariance of Möbius Convolutions
	B.1 Conditions for Equivariance
	B.2 Construction of Operators

	C Transformation of Functions
	C.1 Transformation of Spherical Log-Polar Bases
	C.2 Transformation of Filters
	C.3 Implementation

	D Memory Footprint and Run Time
	D.1 Memory Footprint
	D.2 Run Time

	E Segmentation

