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Abstract

This paper describes new techniques for learning atlas-like representations
of 3D surfaces, i.e. homeomorphic transformations from a 2D domain to
surfaces. Compared to prior work, we propose two major contributions.
First, instead of mapping a fixed 2D domain, such as a set of square patches,
to the surface, we learn a continuous 2D domain with arbitrary topology
by optimizing a point sampling distribution represented as a mixture of
Gaussians. Second, we learn consistent mappings in both directions: charts,
from the 3D surface to 2D domain, and parametrizations, their inverse. We
demonstrate that this improves the quality of the learned surface represen-
tation, as well as its consistency in a collection of related shapes. It thus
leads to improvements for applications such as correspondence estimation,
texture transfer, and consistent UV mapping. As an additional technical
contribution, we outline that, while incorporating normal consistency has
clear benefits, it leads to issues in the optimization, and that these issues
can be mitigated using a simple repulsive regularization. We demonstrate
that our contributions provide better surface representation than existing
baselines.

Figure 1: From a collection of shapes without annotations, we learn a 2D domain which can
be used to parameterize all shapes, parametrizations (blue) and chart-mappings (red).

1 Introduction

This paper is concerned with 3D surfaces and their representation as atlases or UV maps,
i.e., their mappings to and from a domain of the 2D Euclidean space. Surfaces and altases
are closely related: surfaces are 2-manifolds embedded in R3 and are defined in topology
by the existence of charts, homeomorphic mappings from the surface to a 2D Euclidian
domain. This relation is also central to many algorithms related to surfaces: on one hand,
the computation of UV maps of meshes is a highly-active research topic: on the other
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hand, deep learning works have successfully used atlas-like representation and learn local
parametrizations to represent 3D surfaces [4, 10]. These last techniques typically learn to
map a fixed sets of 2D squares to 3D, which can approximate a 3D surface and makes it
possible to use the 2D domain to compute correspondences between predicted surfaces [3] for
which parametrizations are learned jointly.
While these parametrization-based methods produce rather-accurate 3D surface reconstruc-
tions, they do not lead to a well-defined homeomorphic map between a 2D domain and the
predicted surface, which limits the scope of applications of these techniques. For examples,
when mapping a set of 2D squares to 3D, AtlasNet [10] leads to many overlaps, and the
chart-mappings from 3D to 2D are thus not well defined. The predicted maps from 2D
to 3D might also include large amount of distortion, thus not yielding a good UV map of
the generated 3D surface, and for example preventing using it to define mappings between
different input surfaces. Previous works have attempted to address these limitations in
various ways. Williams et al. [25] performs optimization for a single shape on local neighbour-
hoods with Earth Mover Distance to obtain homeomorphic parametrizations and consistent
transitions maps, but this leads to an heavy optimization, with many local parametrizations,
and has no obvious extension to multiple shapes. Rather than enforcing consistency between
the mappings of square patches AtlasNet v2 [7] attempts to learn the 2D domain, e.g., by
learning the positions of a fixed set of points, but loses the continuous aspect of the mapping
and can still lead to overlapping patches. DSR [4] keeps the AtlasNet framework and its
intrinsic limitations, but uses several regularizations to encourage conformal mappings, to
minimize the 3D overlap between the images of the square patches and to prevent patch
collapse. However, it is still limited to square patches and we found it difficult to use on
complex shapes.
We argue that the two tasks of parameterizations and charts prediction are complementary
to one another, and that learning the 3D shape(s) reconstruction should go together with
learning a relevant 2D domain. We present an architecture for such a joint optimization,
where we learn the 2D domain by learning a 2D probability distribution defined as a mixture
of Gaussians and from which we sample points for reconstructing the surface. These sampled
points are mapped to 3D and compared (via chamfer distance) to the target point cloud;
similarly, the point cloud is mapped to 2D and compared to the sampled points. We
optimize for cyclic consistency between the two mappings, as well as for geometric losses
such as isometric regularization. Through experiments, we show that our method is able to
better reconstruct surfaces than existing baselines, in particular leading to more meaningful
parametrizations with fewer artefacts and yielding meaningful correspondences between
shapes in a collection. Our code is available on our project webpage1

2 Related work

Our work is related to prior work in optimizing chart-mappings for UV parametrization and
learning parameterization for surface reconstruction.

Optimizing charts-mappings for UV parametrization. Identifying chart is a long-
standing problem in geometry processing [22]. Most prior techniques take a 2-manifold
input represented as a mesh and map each point to a 2D domain. These methods typically
aim to produce a bijective mapping [23], while also minimizing some distortion metric such
as Dirichlet [19], ARAP [15], LSCM [14], and symmetric Dirichlet [21]. Some techniques
also aim to predict consistent chart-mappings for a collection of related shapes, so that
semantically-similar points on different meshes map to the same point in 2D. Doing so
enables many applications such as correspondence estimation [1], morphing [12], and texture
transfer [20]. Unlike our method, these techniques do not use deep learning and typically
require manual input, such as a sparse set of corresponding points. By using neural networks
to represent the UV map we can learn consistent charts without the user input or explicit
supervision. We can also co-parameterize point clouds without knowing the underlying mesh.
To the best of our knowledge, our work is the first method to use neural networks to learn
consistent chart-mappings.

1https://imagine.enpc.fr/ deprellt/joint-surface/

2

https://imagine.enpc.fr/~deprellt/joint-surface/
https://imagine.enpc.fr/~deprellt/joint-surface/


Figure 2: Single shape architecture. Given a shape S, we optimize jointly a 2D proba-
bility distribution P, a parametrization network, ϕS and chart-mapping network ψS . The
parameterisation network ϕS takes as input a point xP ∈ R2 randomly sampled according
to the density probability function P to produce the 6D vector (3D point and normal
coordinates) ϕS(xP). The chart-mapping network ψS takes as input a point xS sampled on
the shape S, its normal nS and outputs a 2D points ψS(xS ,nS).

Learning surface parameterization for reconstruction. Previous learning-based tech-
niques for surface parameterization mostly focused on modeling 2D to 3D map for reconstruc-
tion. To learn such a mapping from a collection of shape, AtlasNet [10] and FoldingNet [26]
pioneered the idea of using a Multi-Layered Perceptrons (MLP) as a class of continuous
parametric function that embed a 2-manifold into 3D. By conditionning the MLP on a
latent code, and using a large-scale 3D shape repository [5], AtlasNet [10] demonstrated the
possibility to predict the surface parameterization from an input mesh, point-cloud or even
a single image. Perhaps surprisingly, Williams et al. [25] showed that parameterization did
not necessarily need the regularization brought by learning on a collection of shapes, and
could also be optimized on individual shapes.
Several approaches introduced novel losses to improve the parameterization. Deng et al. [6]
improve the global arrangement of the different parts of the parameterization via a normal-
aware reconstruction loss and a stiching loss. In DSR, Bednarik et al. [4] regularize the
smoothness of the reconstructed surface by optimizing a conformal energy, based on the
Jacobians of the mappings. Remarkably, having access to analytical jacobians in a higher-
order differentiation procedure opens-up exciting applications. For instance, Bednarik et
al. [3] achieve temporally coherent parameterizations for each frame in a video by regularizing
the deformation to locally have a constant metric tensor.
Particularly relevant to us is AtlasNet-v2 [7] which jointly optimize the shape of the 2D
manifold and learns the surface parameterization using two proposed strategies. The first one
consists in learning a deformation of a fixed template into an elementary structure common to
all shapes via an additional AtlasNet-like MLP . This strategy leads to elementary structures
that can easily be meshed, but have the same topology as the initial template. The second
strategy consists in sampling a fixed set of points on the template and adding them to the
optimizer. After optimization, the sampled points can form a complex elementary structure,
without topology constraints, but meshing it is not straight-forward. In this work, we
propose a method to combine the best features of both strategies, namely the ability to learn
topologically complex structures and the ability to mesh them. We achieve this via a novel
differentiable layer to sample points from 2D gaussians with a learnable mean (see Sec. 3.2).
Our approach is different from AtlasNet [10] and its variants [2, 3, 4, 6, 7, 16, 25] in that:
(i) we aim to jointly learn the surface parametrizations and their inverse functions, the
charts-mappings; (ii) we learn a 2D domain relevant to a family of shapes by optimizing a
probability density function in the 2D Euclidean plane. We also differ in two novel losses
that correctly orient the normals of the reconstructed surface and fix point-collapse in 3D
which is a common artifact of AtlasNet-type of approaches.
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3 Method

Overview. Given a collection of shapes, our goal is to learn for all shapes surface pa-
rameterizations with their inverse chart-mappings and a join 2D domain on which the
parametrizations are defined. For simplicity, we first present our approach in the case of
a single shape S: in Section 3.1 we explain how to model surface parameterization and
chart-mapping, and introduce our main architectural blocks; in Section 3.2 we explain how
we learn the 2D UV domain as a probability distribution; in section 3.3 we discuss our losses.
Our pipeline for a single shape is illustrated in Figure 2. Finally, in Section 3.4 we explain
how to train our approach jointly on a family of shapes.

Notations. We use the following notations:
• S : 3D shape of interest
• P : learned probability distribution in 2D
• φS : R2 −→ R3 : surface parameterization
• ϕS : R2 −→ R6 : surface parameterization with normals
• ψS : R6 −→ R2 : chart-mapping
We slightly abuse the brackets notation to indicate sampling a set of M points, e.g.:
• {xS} is a set of M points sampled on S using a uniform probability distribution
• {xP} is a set of M points sampled in R2 according the probability distribution P

3.1 Parametrization and chart-mapping

We explain the two main components of our architecture for a given shape S, a chart-mapping
ψS and a surface parameterization network ϕS .

Chart-mapping. We learn a single chart-mapping from the shape S to R2, using a Multi-
Layer Perceptron (MLP) with both point coordinates and normals as input. We observe
that naively learning an R3 to R2 mapping leads to the collapse of thin surfaces after their
mapping to the 2D domain. Indeed, coordinate-based MLPs are continuous functions and
Tancik et. al. [24] showed that they have a prior to learn smooth functions in the absence of
positional encoding. Hence, two 3D points with very close spatial coordinates but opposite
normals tend to be mapped closely in 2D. For chart-mappings, such smoothness is generally
a desirable feature that should be maintained, but distant normals should be a strong cue
to indicate that points are intrinsically far. To handle thin surfaces, we propose to learn
a mapping ψS from R6 to R2 that takes as input a point xS and its associated normal nS
scaled to have norm α. The parameter α is a hyperparameter of our approach which controls
how much normals contribute to distances compared to the 3D positions of the points.We
set it to 0.01 in all our experiments.

Surface parameterization. For a shape S, we seek to learn the inverse function of the
chart-mapping, ψ−1

S : R2 −→ R6. We first use an MLP φS : R2 −→ R3 to parameterize the
surface S. The function φS maps a point x = (u, v) in R2 into a point φS(x) in R3. The
Jacobian Jx of the mapping φS is defined at every point x by:

Jx =
[
Jx,u,Jx,v

]
=
[∂φS
∂u (x), ∂φS

∂v (x)
]
. (1)

The two partial derivatives are trivial to compute with Pytorch auto-differentiation [18].
The normal n to the parametrizedsurface at φS(x) can be computed as the normalised
cross product of Jx,u and Jx,v and scaled by the same hyperparameter α used for the
chart-mapping ψS :

n = α
Jx,u × Jx,v

‖Jx,u × Jx,v‖
. (2)

We define ϕS : R2 −→ R6 as the concatenation of an output point and its scaled normal:
ϕS(x) = [φ(x),n] . (3)

To summarize, the mapping ϕS is designed to represent the inverse of the chart-mapping
ψS . However, it is not defined for every point in R2, and in the next section we focus on
identifying the 2D domain for which it is defined.
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3.2 Learning a 2D domain as a sampling probability distribution

To parametrize a shape S, we want to define a domain in R2 such that φS defines a bijection
from this 2D domain to S. In practice, during training, we want to learn this domain, sample
points inside it, and map them using ϕS . Instead of handling explicitly the 2D domain
geometry, e.g., points or primitives similar to [7], we take a probabilistic approach and learn
the parameters of a probability distribution P from which to sample points. This enables us
to easily deal with topological changes. We now detail how we represent this probability
distribution, learn it, and use it to define a 2D domain.

Modelling 2D sampling probability as a mixture of Gaussians. We sample 2D
points according to a probability distribution P which we model as a mixture of K 2D
Gaussians with means µi ∈ R2 for i = 1, ...,K , a fixed standard deviation σ ∈ R and fixed
mixing coefficients equal to 1/K:

P(x) = 1
K

K∑
k=1
N (x|µi, σ) with σ = 1√

K
. (4)

During training, at every iteration, we sample N 2D points {xP} from P , which are both the
input of the parameterisation network ϕS and the target of the chart-mapping network ψS .

Learning the Gaussian means. To allow learning the 2D domain, we make the means
µi learnable parameters of the method. To do so, we need to see the sampled points as
differentiable with respect to the µi. We achieve this with the pathwise gradient estimator
from [11], also called the reparameterization trick. This consist in expressing a parameterized
random variable via a parameterized deterministic function of a parameter-free random
variable. For Gaussian Mixture Models (GMM), this simply amounts to sampling a GMM
with zero means and adding the means to the sampled points, i.e., defining each point xP as
the result of the following process: first selecting the id i of a mixture component using a
uniform distribution; then sampling a 2D point xN from a Gaussian distribution of mean 0
and standard deviation sigma xN ∼ N (0, σ); finally, defining the point xP as xP = xN + µi,
which is trivially differentiable with respect to µi. Please see Figure 5 for examples of learned
probability distributions.

From probability distribution to 2D continuous domain. Once the distribution has
been optimized, we simply threshold the probability distribution function P to obtain a 2D
domain. We can then compute a 2D triangulation of the domain, and use the parameterization
network φ to obtain a 3D mesh (as can be seen in Figure 3).

3.3 Training losses

We now explain the loss function we optimize. We write our loss for a single shape:
Lsingle(ϕS , ψS , µ) = λ6DL6D + λ2DL2D + λcycleLcycle + λisoLiso + λrepLrep , (5)

where µ = (µ1, ..., µK), the λ are scalar hyper-parameters and the different loss terms are
detailed bellow. To compute distances between two sets of points X and Y, we base our
losses on the Chamfer distance defined as:

Lchamfer(X ,Y) = 1
|X |

∑
x∈X

min
y∈Y
‖x− y‖2 + 1

|Y|
∑
y∈Y

min
x∈X
‖y− x‖2 , (6)

where |X | and |Y| are the number of points in X and Y respectively. Our set of losses is
designed to enforce two objectives : (i) ensuring an accurate surface parameterization ϕS
with low distortion, (ii) ensuring that ϕS and ψS are indeed inverse of each other.

Surface parameterization reconstruction loss. The surface parameterization ϕS takes
as input a set of 2D points {xP} sampled from the probability distribution P and outputs a
set of 6D points (3D points with scaled normals). We minimize the 6D Chamfer distance
between the set of generated points {ϕS(xP)} and a set of points {xS} associated to normals
{nS} sampled on the target shape S:

L6D(ϕ, µ) = Lchamfer({ϕS(xP)}, {xS ,nS}) . (7)
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Chart-mapping reconstruction loss. We encourage the overall 2D projection of the
shape under ψS and the probability distribution P to be the same. Recall that ψS takes
as input {xS ,nS} (3D points uniformely sanpled on S with scaled normals) and outputs
a set of 2D points {ψS(xS ,nS)}. We simply minimize the Chamfer distance between the
generated 2D points and a set of points {xP} sampled from P:

L2D(ψ, µ) = Lchamfer({ψS(xS ,nS)}, {xP}) . (8)

Cycle-consistency loss. We want the two mappings ϕ and ψ to be inverse of one another.
We encourage this using a cycle-consistency loss on 2D points sampled from P and on 3D
points sampled uniformly on S with their associated normals:

Lcycle(ϕ,ψ, µ) = 1
M

∑
x∈{xP}

‖x− ψ ◦ ϕ(x)‖2 + 1
M

∑
(x,n)∼{xS ,nS}

‖x− ϕ ◦ ψ(x,n)‖2 . (9)

Distortion regularization loss. We limit distortion in the parameterization with an
isometric regularization. Given the Jacobian Jx of the transformation φ at point x (Equation
1) and I the identity matrix, the isometric loss can be written:

Liso(ϕS , µ) = 1
M

∑
x∈{xP}

‖JxJTx − I‖ , (10)

where the sum is over points sampled according to P . As already observed in [3, 9], this type
of regularization has the additional benefit of making the parameterizations more consistent
across shapes.

Probability distribution regularization loss. Non-uniform density is a known failure
mode of the Chamfer distance, as shown in Figure 5 and also observed in [4]. In theory, a loss
based on optimal transport like the Earth Mover distance would be ideal to fix this problem.
However, in practice, we ran into optimisation, training time and parameter tuning issues
when using EMD. On the contrary the Chamfer loss is simple to use and fast to compute.
We thus use the Chamfer loss and introduce a repulsive loss between the Gaussian means
defining the probability distribution P as a regularization:

Lrep(µ) = 1
K2

∑
i,j∈[0,K]

exp(−‖µi − µj‖
σ

) , (11)

where σ is the Gaussian standard deviations in the definition of P. We found that this
simple loss lead to much more uniform distributions of points both in the 2D plane and in
the reconstructed shapes.

3.4 Joint learning on a family of shapes.

We now explain how we learn jointly atlases on a collection of N shapes S1, ...,SN . Since
we want to share the 2D domain between the different shapes, we do not condition the
probability distribution P on the shape, and learn a single one for all shapes. On the
contrary, the parametrization and chart-mappings are expected to depend on the shape.
Rather than learning them completely independently for each shape, we use the auto-decoder
framework [17], where we optimize for each shape Si feature vectors fψ,i and fϕ,i which
we use to define respectively ϕSi

and ψSi
. More precisely, we learn jointly for all shapes

networks ϕ and ψ, and define for each shape Si for all x ∈ R2, ϕSi
(x) = ϕ(x, fψ,i) and for

all x ∈ R6, ψSi
(x) = ψ(x, fψ,i). We then optimize ψ, ϕ and µ by minimizing the loss:

Lfull(ϕ,ψ, µ, fψ, fϕ) =
N∑
i=1
Lsingle(ϕSi

, ψSi
, µ) , (12)

where fψ = (fψ,1, ..., fψ,N ) and fϕ = (fϕ,1, ..., fϕ,N ).
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Figure 3: Top: single shape parametrization. On the shapes of [25], we transfer a colored
mesh of the learned 2D domain (left) to 3D, which enables visualizing correspondence and
cuts (right). Bottom: co-parameterization. For ’teddy’ and ’cup’ shapes of SHREC [8],
we show the joint sampling probabilities and 2D domain, and the reconstructions of 4 shapes
with 3 different viewpoints and consistent coloring. Note the quality of the parametrization
compared to patch-based methods [4, 10]

Implementation details. We use latent codes fϕ,i and fψ,i of dimension 256. The
architectures we use for ϕ and ψ are MLP with 5 hidden layers of size 256 and ReLU
activations. We do not use batch normalization layers. P is defined using K = 10, 000
mixture components. We sample M = 104 points both on the shapes and according to P at
every training iteration. We train with λ6D = 1, λ2D = 10−2, λcycle = 1/M , λiso = 10−4/M
and λrep = 1.

4 Experiments

Datasets. We use individually the shapes of Williams et al. [25], which come from five
high-resolution scans with over a million points with associated normals. We generate the
manifold meshes from this data using screened Poisson Surface Reconstruction. The resulting
meshes have a variety of geometric details and different topologies, providing interesting
challenges for atlas-based representations. The SHREC dataset [8] contains 400 manifold
meshes with sparse correspondence annotations, which enables us to quantitatively evaluate
the consistency of our joint atlases. For our experiments we selected categories, ant, teddy,
cups and armadillo, aiming for topological and geometric diversity, and four shapes in each.

Reconstruction Metrics. To evaluate how well our representation matches the input
shape, we report two commonly used metrics: 3D Chamfer Distance and the Earth Mover’s
Distance (EMD). Given two sets of points X and Y with M ′ = 2000 randomly-sampled
points each, we approximate the EMD as:

LEMD(X ,Y) = 1
M ′

∑
xi∈X

∑
yj∈Y

Ci,j‖xi − yj‖2 , (13)

where the association matrix C is such that Ci,j = 1 if point xi is mapped to point yj and
Ci,j = 1, and is computed to minimize LEMD via Hungarian Algorithm [13]. To evaluate the
reconstructions of the normals of the surfaces, we also report the distances of the normals
using the associations given either by the chamfer distance or the EMD using the spatial
coordinates.
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Williams et al. [25] SHREC [8]
Spatial Normal Spatial Normal Corresp.

Ch. ↓ Emd ↓ Ch. ↓ Emd ↓ Ch. ↓ Emd ↓ Ch. ↓ Emd ↓ L2 ↓
Baselines

(1) ANv1-1 [10] 2.3±0.0 5.0±0.1 1.2±0.2 1.2±0.2 2.2±0.0 5.4±0.5 1.1±0.2 1.1±0.2 2.6±0.8
(2) ANv2-1 [7] 2.2±0.0 11.1±2.1 1.2±0.1 1.3±0.1 2.0±0.0 7.1±1.4 1.3±0.2 1.3±0.2 1.3±0.1
(3) ANv1-10 [10] 2.4±0.0 11.4±0.9 1.1±0.0 1.1±0.0 2.3±0.1 11.1±0.4 1.1±0.1 1.1±0.1 3.5±1.4
(4) ANv2-10 [7] 2.2±0.0 11.1±2.1 1.2±0.1 1.3±0.1 2.1±0.0 13.4±0.5 1.0±0.1 1.1±0.1 2.8±1.6
(5) DSR-10 [4] 4.3±0.8 18.2±0.8 1.4±0.0 1.2±0.0 3.1±1.1 10.0±2.8 1.3±0.1 1.3±0.1 2.6±1.2

Ours
(6) φ 2.2±0.0 15.2±5.9 1.0±0.2 1.1±0.2 2.0±0.0 6.8±0.9 1.1±0.2 1.1±0.2 2.0±0.8
(7) φ, n 2.4±0.1 20.3±3.3 0.3±0.0 0.7±0.0 2.1±0.3 13.1±8.0 0.2±0.0 0.5±0.0 1.4±1.1
(8) φ, n, r 2.2±0.1 12.9±4.4 0.2±0.1 0.6±0.1 2.0±0.1 9.6±6.6 0.2±0.0 0.4±0.1 2.8±0.9
(9) φ, n, r, p 2.3±0.2 13.2±4.0 0.3±0.1 0.6±0.1 2.0±0.0 8.2±2.1 0.2±0.0 0.4±0.0 1.5±1.0

(10) φ, ψ, n, r, p 2.6±0.0 5.1±0.1 0.2±0.0 0.5±0.0 2.2±0.0 5.4±0.2 0.2±0.0 0.4±0.0 1.0±1.0
(11) φ, ψ, n, r, p, i 2.6±0.2 5.5±1.3 0.2±0.3 0.5±0.2 2.3±0.1 5.9±0.6 0.2±0.0 0.4±0.0 0.8±1.0

Notations n: normal - r: repulsion loss - p: Probability distribution function P - i: Isometric regularisation of φ

Table 1: Comparison and ablation study. We compare our method, successively adding
its different componenets, to AtlasNet [10], AtlasNetV2 [7] and DSR [4]. We compute
association between target and reconstructed 3D points using Chamfer distance and EMD,
then report for each association the average distance between the points coordinates (’Spatial’)
and their normals (’Normals’). We also evaluate the quality of the correspondences when
available. All the values are scaled by a factor of 10−2. Please see text for details.

Correspondence Metric. Given a pair of shapes S1,S2 and a set of keypoints pi ∈ S1, we
find the corresponding points qi ∈ S2 by compositing the chart-mapping and parameterization
networks: qi = ϕS2 ◦ ψS1(pi). For the baselines that do not have a chart-mapping network,
we obtain correspondences for each point pi using the following process: we sample points
according to P , map them to S1, select the one which image by ϕS1 is closest to pi, and map
it to S2 using ϕS2 . Given M ′′ ground truth correspondences qgt

i for each pi, we measure the
L2 loss on the spatial coordinates as 1

M ′′

∑
i |qi − qgt

i |.

Results and analysis. Qualitative results for individual shapes of Williams et al. [25]
are shown in Figure 3 (top). Joint atlases for the SHREC dataset [8], can be seen for the
’ants’ are in the teaser Figure 1 and for ’cup’ and ’teddy’ in Figure 3 (bottom). Note how
we manage to learn continuous 2D domains with complex topology, which we can mesh to
obtain a high quality 3D mesh for the shapes. Also note that compared to the patch-based
approaches we obtain few and meaningful cuts in the parametrization, without any overlap.
Finally, note the consistency in the reconstruction of the different shapes, which can be
visualized by consistent colors transfered from the joint 2D domain to all shapes.
We report quantitative results in Table 1. To account for randomness in initialization and
optimization, we re-run each method four times and report mean and standard deviation.
We report results for three baselines: vanilla AtlasNet [10] (rows 1 and 3) which only learns
the parameterization network, AtlasNet v2-points [7] (rows 2 and 4) which learns elementary
point structures in the 2D domain, and DSR [4] (row 5) which uses several regularisation
losses including an isometry loss. We try the first two methods with 1 and 10 UV patches.
We found that methods using a single patch typically lead to similar Chamfer distances but
much lower EMD. We believe that this is because using a single patch encourages points
to be more uniformly distributed on the surface. We also found that DSR [4] provided
quantitativelty slightly worse results, which is consistent with what was reported in this
paper that mainly aims at visual quality.
We evaluate our method by successively adding our different components. We start (row 6)
by only using our parametrization network, learning a fixed set of input point positions with
only 3D Chamfer distance as supervision, similar to AtlasNet v2 with 1 patch and obtained
similar results.
We then add normals to the Chamfer loss (row 7), which unsurprisingly gives a very strong
boost to the normal metrics. Qualitatively, the effect can be seen in the left part of Figure 4
where the orientation of the normals is color-coded for each point: without the normals in
the loss, a significant part of the normals are back-facing. Adding the normals in the loss
however has a second undesired effect and significantly increases the EMD. This can be
understood qualitatively by looking at the results, where we see greatly varying density of
points over the reconstructed shapes and in the 2D space. We interpret this as the fact that
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Figure 4: Impact of the normals and the repulsion loss. Note the variation of the
color-coded normal directions (left) and the variations in the point density (right).

Target ours w/o iso w/o normals w/o rep.

Figure 5: Qualitative ablation results. Given a target cube shape, we show the probability
distribution P learned by our method and three key ablations: not using the isometric loss,
not using the normals, and not using the repulsive loss.

adding normals in the loss complexifies the loss landscape and adds bad local minima.
To avoid this effect, we add our repulsive regularization to the loss (row 8). We can see this
improves the EMD results without degrading the Chamfer results and normal consistency.
The effect on the points density is also striking qualitatively, as visualized in the right part
of Figure 4.
At this point, the parametrization is still only optimized on a set of points. To recover an
interpretation of the parametrization as a continuous mapping of a 2D domain, we introduce
our sampling probability distribution (row 9) which has little quantitative effect but is crucial
to define a continuous 2D mapping.
We can then introduce our chart-mapping, together with the 2D reconstruction and cycle
losses (row 10). It can be seen that beside its theoretical interest and benefits, it has a clear
quantitative impact: both the EMD and the correspondence metrics are clearly boosted.
Finally, adding the isometric regularization (row 11) provides a small additional boost in
term of correspondence quality, i.e., consistency between different jointly learned atlases.
Note that all of our regularization losses remain necessary to the success of our method,
as can be visualized qualitatively in Figure 5, where we use our architecture to learn the
reconstruction of a simple cube and visualize the learned 2D sampling distribution. Without
the normal loss, we observe a concentration of the density on edges, an equivalent of point
collapse described in [4]. Without the repulsion loss, the density is concentrated on a single
face. Without the isometry loss, the shape of the cube is highly distorded. FWith our full
method the net of the cube is clear and the point density relatively uniform.

5 Conclusion
We propose a novel technique for representing a shape or a collection of shapes, with two key
differences with respect to prior work on atlas-like representations. First, we joinlty learn two
maps, a parameterization and a chart-mapping. Second, we learn the 2D domain on which
the parametrization is defined. This makes our representation much closer than previous
works to be a proper atlas, i.e., one that defines an homeomorphism between 3D shape
and a 2D domain. It also enables co-parameterization, where homeomorphisms are learned
between several shapes and a single 2D domain, which can have applications for consistent
texturing and correspondence estimation. We further offer other technical contributions,
such as learning the 2D domain by optimizing a sampling probability distribution, analyzing
the effect of incorporating normals in the optimization, and introducing a repulsive loss to
have a more even point distribution. We believe our work is an important step towards
learning consistent atlases and it will inspire future work on further improving quality of
atlases, such as modeling transition maps, minimizing seams, and distortion.
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