
ReparamCAD: Zero-shot CAD Program Re-Parameterization for
Interactive Manipulation

Milin Kodnongbua
∗

milink@cs.washington.edu

University of Washington

USA

Benjamin T. Jones
∗

benjones@cs.washington.edu

University of Washington

USA

Maaz Bin Safeer Ahmad

mahmad@adobe.com

Adobe Research

USA

Vladimir G. Kim

vokim@adobe.com

Adobe Research

USA

Adriana Schulz

adriana@cs.washington.com

University of Washington

USA

�����������

�����

�������������������������������

�	�������������

�������������������������������� �����������������

�������

�������
���������������
���������������

�������
���������������

������������
������
���	���������������

������

Union(
 Cube(t=[-17,-14, 17],
 s=[6, 28, 6]),
 Cube(t=[17,-14, 17],
 s=[6, 28, 6]),
 Cube(t=[-17,-14,-17],
 s=[6, 28, 6]),
 Cube(t=[17,-14,-17],
 s=[6, 28, 6]),
 ���
)

��������������

�������������
�����

���������
�����

�������������
����������

������

���������������

�	����������

��������

��������

���������������������������������������

������

Figure 1: ReparamCAD takes a parametric 3D model and a corresponding text description as input and generates a re-
parameterized version of the model as output. It uses ChatGPT and user guidance to generate text prompts describing variations
of the input model and uses stable diffusion to optimize the CAD parameters towards these prompts. The resulting variations
are used by the constraint discovery system to identify common constraints across all designs.

ABSTRACT
Parametric CADmodels encode entire families of shapes that should,

in principle, be easy for designers to explore. However, in practice,

parametric CAD models can be difficult to manipulate due to im-

plicit semantic constraints among parameter values. Finding and

enforcing these semantic constraints solely from geometry or pro-

grammatic shape representations is not possible because these con-

straints ultimately reflect design intent. They are informed by the

designer’s experience and semantics in the real world. To address

this challenge, we introduce ReparamCAD, a zero-shot pipeline

that leverages pre-trained large language and image model to infer

∗
Equal contribution

This work is licensed under a Creative Commons Attribution International

4.0 License.

SA Conference Papers ’23, December 12–15, 2023, Sydney, NSW, Australia
© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0315-7/23/12.

https://doi.org/10.1145/3610548.3618219

meaningful space of variations for a shape We then re-parameterize

a new constrained parametric CAD program that captures these

variations, enabling effortless exploration of the design space along

meaningful design axes. We evaluated our approach through five

examples and a user study. The result showed that the inferred

spaces are meaningful and comparable to those defined by experts.

Code and data are at: https://github.com/milmillin/ReparamCAD.

CCS CONCEPTS
• Computing methodologies→ Parametric curve and surface
models; Symbolic and algebraic algorithms; • Theory of compu-
tation → Rewrite systems.

KEYWORDS
parametric modeling, program synthesis

ACM Reference Format:
Milin Kodnongbua, Benjamin T. Jones, Maaz Bin Safeer Ahmad, Vladimir

G. Kim, and Adriana Schulz. 2023. ReparamCAD: Zero-shot CAD Program

Re-Parameterization for Interactive Manipulation. In SIGGRAPH Asia 2023
Conference Papers (SA Conference Papers ’23), December 12–15, 2023, Sydney,

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3610548.3618219
https://github.com/milmillin/ReparamCAD

SA Conference Papers ’23, December 12–15, 2023, Sydney, NSW, Australia Kodnongbua et al.

NSW, Australia. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/

3610548.3618219

1 INTRODUCTION
The goal is to create a system that would be flexible enough to

encourage the engineer to easily consider a variety of designs.

And the cost of making design changes ought to be as close to

zero as possible.

Samuel Geisberg, PTC Founder, 1988

The impact of parametric CAD on engineering design cannot

be overstated. Almost every manufactured object that exists today

started its life in a parametric CAD tool. Yet, decades past the CAD

revolution, the envisioned goals of effortless design variability and

manipulation remain unrealized. The foundational vision of para-

metric CAD is to enable manipulation through parameter tweaking

within a sequence of parametric constructive operations. For in-

stance, if we model the back of a chair as an extrude of a base 2D

rectangle, we can manipulate the height of the chair by varying the

extrude distance. In practice, modifying CAD parameters directly

can be challenging due to a lack of user understanding regarding

which parameters to modify to achieve the desired variation. In

addition, the absence of constraints can lead to undesirable shape

changes that violate user intent.

To address the gap in CAD manipulation, this paper aims to

automatically construct a reparametrization of CAD models, in-

troducing what we refer to as manipulation parameters. The pa-

rameters generated by sequences of constructive CAD operations

will be referred to as constructive parameters to differentiate them

from the proposed abstraction. We observe that CAD programs are

typically overparameterized, as multiple constructive operations

may be required to create structurally related geometries. However,

constraints across constructive parameters are frequently absent

or underspecified during the CAD modeling sequence, and feasible

ranges for constructive parameters are not exposed. Consequently,

modifying a single CAD constructive parameter can lead to shapes

that lack the essential structure, such as a chair with its legs discon-

nected from its base. Thus, to achieve meaningful design variations,

users often must simultaneously and consistently modify multiple

constructive parameters [Yares 2013]. Essentially, the space of shape

variations defined by constructive parameters predominantly con-

sists of irrelevant outcomes, rendering the extraction of meaningful

design variations from this space an arduous and time-consuming

process. This work explores the possibility of automatically identi-

fying a constrained subspace within a CAD program that reflects

meaningful shape variations. We frame this as a reparametrization

problem from constructive to manipulation parameters.

On one hand, we anticipate that program analysis will shed light

on the constraints to consider when constructing this subspace. On

the other, this problem is inherently ambiguous: meaningful design

variations are ultimately derived from what the designer is trying
to model, rather than how they are modeling it. Any synthetic

analysis would inevitably fail to infer semantic meaning. Our key

insight is to first develop an understanding of how we may want

to manipulate the shape and subsequently conducting an analysis

based on that understanding to derive a constrained shape space.We

note that establishing this understanding is now possible because

of novel pre-trained large foundational models [Rombach et al.

2022] that have learned the space of reasonable shapes. Building

upon this insight, our neurosymbolic approach combines AI-driven

induction for discovering shape variations with symbolic-driven

deductive reasoning for identifying shape constraints. Most notably,

our approach operates in a ‘zero-shot’ manner, eliminating the

reliance on large categorical shape datasets. As such, our method is

applicable beyond the sparse shape categories covered by existing

datasets.

Our novel system ReparamCAD, illustrated in Figure 1, takes a

parametric model expressed in a simplified CAD language, along

with a concise text description of the model. It generates a re-

parameterized version of the input CAD model, accompanied by

an intuitive slider-based interfaceallowing users to vary the manip-

ulation parameters introduced in the revised CAD program, and

empowering them to easily explore meaningful design variations.

The re-parameterization process begins by generating text prompts

describing variations of the model using a large language model

and user guidance. Next, we apply our novel method to automati-

cally adjust the parameters of the input model, aligning it with each

text prompt by comparing the rendered images of the model with

images from a pre-trained stable diffusion text-to-image model. The

design variations generated by matching the input model to vari-

ous text prompts are then fed into our constraint discovery system.

This identifies geometric constraints that are common across all

variations, accounting for noise. The discovered constraints are

used to construct a subspace of the original CAD parameter space,

automatically imposing semantically meaningful constraints. Fi-

nally, we project the generated variations into this subspace and

use them as the basis for a new parameterization of the constrained

space along semantic lines.

We demonstrate the efficacy of our approach in generating vari-

ations for five distinct models of varying complexity. We conduct

a comparative analysis between our neurosymbolic approach and

purely symbolic or purely neural-driven methods to underscore the

advantages inherent in our approach; the former creates uninterest-

ing variations and the latter can produce incoherent geometry, but

our approach produces interesting variations while adhering to se-

mantically meaningful constraints. Furthermore, we conduct a user

study and show that our approach discovers similar constraints to

what our participants have specified.

2 RELATEDWORK
Our work builds upon a rich body of work on CADmanipulation as

well as structure-preserving shapemanipulation. This includes algo-

rithms that operate on input shape collections of a specific class, as

well as methods for manipulating individual models. Furthermore,

our work builds on text-driven shape generation algorithms.

2.1 Parametric CAD Manipulation
Parametric CAD systems represent designs as programs that ex-

pose constructive parameters. Manipulating CAD models solely by

adjusting these parameters can be challenging due to the need for

coordinated changes across multiple parameters to achieve specific

design goals [Yares 2013]. This has encouraged efforts that diverge

from the parametric modeling paradigm, proposing interfaces that

https://doi.org/10.1145/3610548.3618219
https://doi.org/10.1145/3610548.3618219

ReparamCAD: Zero-shot CAD Program Re-Parameterization for Interactive Manipulation SA Conference Papers ’23, December 12–15, 2023, Sydney, NSW, Australia

allow direct manipulation instead (e.g. SpaceClaim, KeyCreator, and

Rhino). Nevertheless, most CAD systems prioritize preserving pro-

gram information as it enables the preservation and control of

global structures (e.g., Solidworks, Onshape, Catia, Creo and NX).

Recent efforts have focused on exploring hybrid techniques that

aim to bridge the gap between the parametric programming para-

digm and direct manipulation approaches. This includes commer-

cial systems like Siemens’ Synchronous Technology and IronCAD,

which aim to facilitate direct manipulation by utilizing complex

algorithms to maintain synchronization with the program repre-

sentation. Efforts within the computer graphics community have

made advancements in enabling program updates based on user

interactions [Cascaval et al. 2021; Michel and Boubekeur 2021],

optimizing program parameters to align with user manipulation.

The fundamental challenge with these approaches is that they rely

on hand-crafted heuristics to resolve the inherent ambiguities in

the system. There are often multiple viable constraints that can

be imposed over the program parameters to achieve the edits that

adhere to users’ manipulation. To eliminate the need for hand-

crafted heuristics, we propose leveraging semantic understanding

extracted from large pre-trained foundational models. By utilizing

these models, we can uncover a meaningful set of potential varia-

tions for a CAD model and derive constraints directly from those

examples.

2.2 Enabling Manipulation from Large Shape
Collections

A considerable body of research explores methods for understand-

ing the meaningful space of variations within categorical shape

collections. These approaches either create an abstraction for a

collection of shapes belonging to a specific category or enable ma-

nipulation of an image based on a collection of models within that

category.

Early approaches combine statistical models, with label-driven

shape decomposition [Chaudhuri et al. 2013; Fish et al. 2014; Ovs-

janikov et al. 2011]. Additionally, labels have been used to learn

semantic abstractions from shape collections [Yumer et al. 2015].

More recently, neural networks have been used to learn em-

beddings that enable design exploration. These approaches do not

require segmented labels, but the learned embeddings are not easy

for a user to explore [Chen and Zhang 2019; Zheng et al. 2022]. To

enable user control, several approaches have integrated learning

with structural, compositional, and symbolic abstractions. This in-

cludes efforts focused on learning abstractions [Jones et al. 2022;

Tulsiani et al. 2017], fitting shapes to categorical abstractions [Pearl

et al. 2022;Wei et al. 2020], enabling structuremanipulation through

handles or mixing and matching [Hao et al. 2020; Hertz et al. 2022;

Jiang et al. 2020; Liu et al. 2021; Mo et al. 2019; Yin et al. 2020], and

text-driven variations [Achlioptas et al. 2022].

Closest to our approach are methods that infer higher-level ab-

stractions that preserve program structure [Jones et al. 2021, 2023a].

Library learning techniques, based on machine learning [Ellis et al.

2021] or anti-unification [Cao et al. 2023], can extract common

structure from a corpus of CAD programs into reusable functions

that expose more semantically meaningful parameters.

The fundamental limitation of these approaches is that they

require a large dataset of models belonging to a specific class, from

which meaningful space of variations can be inferred. Rather than

being confined to specific classes of objects that are covered by

existing datasets, we leverage the much broader understanding

embedded in foundational models to infer meaningful variations

from a single input model.

2.3 Structured Manipulation from Single Input
Shapes

Past research has also devised methods for structure-preserving

shape manipulation when only a single input shape is available.

Earlier methods used hand-crafted heuristics with numerical opti-

mization to enable shape deformation (see [Mitra et al. 2014; Sorkine

and Botsch 2009] for a more complete overview). While some geo-

metric and physics-inspired heuristics are well suited for organic

shapes [Igarashi et al. 2005; Sorkine et al. 2004], heuristics based on

geometric-semantic constraints such as symmetry, coplanarity, and

replicable patterns have been shown to work well on man-made

shapes [Bokeloh et al. 2012; Gal et al. 2009b]. These heuristics have

been used in two types of editing systems: 1) variational methods,
where optimization is used to compute a deformation that adheres

to the user manipulation [Sumner et al. 2007]; and 2) direct meth-
ods where the computation is done in advance to generate a set of

exposed controls [Jacobson et al. 2011]. Such controls can be in the

form of parameter sliders, cages, skeletons, or compositions thereof.

Essentially, direct methods generate a type of reparametrization, as

we describe in this work.

More recent approaches apply learning approaches for manipu-

lating shapes. However, while approaches that assume categorical

data sets can use learning to replace heuristics [Sung et al. 2020], as

discussed above, efforts that take a single shape as input are more

restricted. Most successful efforts focus on a constrained task of

matching the input model to a target shape or image [Wang et al.

2018, 2019]. Some efforts have been made on learning abstractions

that are category independent, such as learning to fit cages [Yifan

et al. 2020] and inferring 3D shape programs from a target image or

3D geometry [Du et al. 2018; Jones et al. 2020; Nandi et al. 2018; Yu

et al. 2022] (see [Ritchie et al. 2023] for a complete overview). Simi-

larly, domain-specific compilers have been developed that strive to

reduce the number of parameters in the model by re-writing CAD

programs concisely using looping constructs [Nandi et al. 2020].

Such methods still focus on lower-level abstractions, essentially

producing the types of programs we take as input.

2.4 Text-conditioned 3D generation
Several studies have explored text-conditioned 3D generative mod-

els trained directly on text-3D pairs. Most of these approaches rely

on learning 3D latent representations and establishing associations

between text and 3D embeddings [Chen et al. 2019; Fu et al. 2023;

Liu et al. 2022; Mittal et al. 2023; Sanghi et al. 2022, 2023; zeng et al.

2022]. However, scaling these methods to accommodate diverse

text prompts is difficult due to the lack of large-scale 3D datasets.

A growing body of research focuses on text-conditioned 3D gen-

eration, using pretrained text-to-image models like CLIP [Radford

et al. 2021], as well as diffusion-based models [Nichol et al. 2022a;

SA Conference Papers ’23, December 12–15, 2023, Sydney, NSW, Australia Kodnongbua et al.

Rombach et al. 2022; Saharia et al. 2022]. Differentiable rendering

techniques are also used to optimize 3D representations such as

meshes [Khalid et al. 2022] and NeRFs [Jain et al. 2022; Lin et al.

2023; Poole et al. 2022]. These methods tend to struggle to gen-

erate coherent 3D objects due to lack of strong 3D priors. Recent

approaches attempt to solve this problem by generating a synthetic

dataset of image-3D pairs. These methods use learning to generate

the initial coarse 3D objects from images, which then serve as a

starting point for further refinement through fine-grained 3D shape

optimization [Nichol et al. 2022b; Seo et al. 2023; Xu et al. 2023].

To the best of our knowledge, our work is the first to tackle

text-conditioned 3D synthesis within the domain of CAD programs.

While we also leverages differentiable rendering and diffusion-

basedmodels, our focus lies on the problem of distilling the inherent

constraints on CAD parameters from a large pretrained model.

3 METHODS
Given a well-formed CAD model represented as a simplified con-

structive solid geometry (CSG) and a categorical description of

the model (“chair”), our system synthesizes a new CAD program

with fewer parameters capable of reproducing the input space and

expressing meaningful semantic variations. We first use a large

language model to generate text description of variations of the

given object (“bench”, “stool”, etc.). We then optimize the parame-

ters of the input CAD program to fit these variation prompts using

diffusion-generated images as a guidance to a differentiable ren-

derer. From these instances of model variations, we infer constraints

and reparameterize to a CAD program that exposes meaningful

manipulation parameters to the users.

3.1 Simplified CAD Language
Our simplified CAD language is built upon Constructive Solid Ge-

ometry (CSG), which forms the basis of popular software like Open-

SCAD, and is a supported mode of operation in most commercial

CAD systems. While modern CAD systems predominantly employ

B-rep history-based languages, the essential boolean operations

of CSG persist. To simplify the implementation of a differentiable

renderer, we have opted to include only union operators in our

language, excluding intersections and subtractions. Despite this re-

striction, our language still allows for a wide range of CAD designs,

showcasing the capabilities of our method. Specifically, we have

implemented operators for three primitives (cubes, cylinders, cylin-

ders with changing top radius) and two transformation operators

(translation and scale) that can be applied to any primitives .

The constructive parameters of the language include transfor-

mation parameters and primitive-dependent parameters (e.g., the

top radius of a cylinder). It is worth mentioning that numerous

CAD systems allow users to expose high-level variables and define

constructive parameters as functions of these variables. However,

in our approach, we do not assume the presence of such variables

in the input. Instead, we focus on learning high-level abstractions

directly from the constructive parameters themselves, highlighting

the effectiveness of our method in uncovering meaningful con-

straints.

3.2 Variation Prompts Generation
We leverage a pre-trained LLM (ChatGPT) to generate text prompts

that describe variations of the given model by using the following

formulaic query: “What are different types of [object]?”. This gen-

erally outputs an itemized list of prompts which we can extract. A

user can then select a subset of these prompts or add additional

prompts that the user cares about.

3.3 Text-Conditioned Variation Generation
In this section, our goal is to generate variations of the initial

CAD model to serve as examples to discover constraints and re-

parameterize the CAD program in a semantically meaningful way.

For each text prompt, we follow a general framework to generate

3D shapes from a pre-trained text-image model where it uses a

differentiable pipeline to bridge a 3D representation to an image.

A fundamental challenge for our domain is that the space of pos-

sible variation of a CAD program is highly constrained compared

to meshes or neural radiance fields (NeRFs). Therefore, to optimize

a CAD program’s parameters from text-driven image guidance, we

constantly need to project the target variations back to the feasible

space. We notice that losses used in prior work such as ClipMesh

[Khalid et al. 2022] and DreamFusion [Poole et al. 2022] create arti-

facts in our application, essentially disconnecting CAD primitives

(see discussion in Section 4.5). We attribute these errors to the chal-

lenges of finding the proper projection back to the CAD domain.

To overcome this challenge, we propose to use an image-space loss

because the transformations between CAD parameters, meshes,

and images are more straightforward, facilitating the projection

process. We consistently observe that this approach significantly

improves the overall results.

Our generation algorithm (Figure 2) iteratively generates images

using stable diffusion [Rombach et al. 2022] conditioned on the

input prompt and the current rendering of the CAD model. After

each sample, it projects back to the CAD parameters by fitting our

input model to the sampled image using gradient descent on pixel

loss from a differentiable renderer [Laine et al. 2020].

In generating the image guidance, we randomly sample 5 camera

angles from which we render each image and run the image-to-

image diffusion. Similarly to DreamFusion [Poole et al. 2022], we

also append a viewpoint description to the prompt, e.g., “chair,

(front|side|rear) view” as a proxy to condition camera angles.

In the gradient descent steps, we use an SGD optimizer with

a learning rate of 0.05 for 30 iterations where we minimize the

following loss:

L(x) :=
∑︁
𝑎

∥sharpen(𝑅𝑎 (x)) − sharpen(𝐼𝑎)∥2 + 𝜆∥x − x0∥2

where x is the CAD parameters, 𝑎 is a camera angle, 𝑅𝑎 (·) is the
renderer, 𝐼𝑎 is the image from the diffusion process, sharpen(𝐼) :=
𝐼 − 0.2 · blur(𝐼), and 𝜆 = 0.001 is the regularization term towards

the original parameters x0. We repeat the process of diffusion and

gradient descent 400 times.

A final fundamental challenge we encounter is that diffusion

models can produce images with diverse styles and conflicting ge-

ometries across different views. This can lead to degenerate results,

such as a table with thin metal legs disappearing because when

the legs appear at different positions in the generated images, the

ReparamCAD: Zero-shot CAD Program Re-Parameterization for Interactive Manipulation SA Conference Papers ’23, December 12–15, 2023, Sydney, NSW, Australia

���
����������

�������

Image-space
Loss��������

��������
�����

���
����������

��������
�����

������
�	��������
�����

��
����
�����

��
����
�����

��
��
��

�
��
��
�

�

���������������������������

�������������
	����������

��

Figure 2: Text-conditioned design variation. We iteratively
generates images using stable diffusion and refine our model
to match the sampled image.

optimizer does not know which legs to follow and so makes it in-

visible instead (also see Section 4.5). To overcome this, we employ a

selection process where we run diffusion three times to generate a

set of images and then choose the one that aligns best with the ini-

tial rendered image to help improve geometric consistency across

views. This selection is performed at each step to provide effective

image guidance. We have observed that this approach consistently

produces favorable outcomes.

3.4 Constraint Discovery
Our generative model produces a collection of examples in the

design space we wish to explore. We want to use these examples

to provide structure and constraints on that design space to aid in

exploration by discovering constraints on the CAD model param-

eters that are common to the discovered variations. While there

are many existing methods for constraint discovery [Bessiere et al.

2004; Fajemisin et al. 2023; Fedyukovich and Bodík 2018], most of

these methods require noise-free examples, which we do not have,

except for on our input model. For this reason, we propose algo-

rithms for selecting among possible constraints under the presence

of noise.

3.4.1 Discovering Geometric-Semantic Constraints. Becausewe have
only a single model with clean geometry, our initial input, we pro-

pose to discover common geometric relationships – coplanarity,

coaxiality, keypoint coincidence, and dimensionaly equality – present

within the initial model, represented as conjunctions of linear con-

straints. The subspace these induce is too specific to the input

model, so we would like to find a subset of these constraints that

is common (in approximation to handle noise) to all discovered

variations.

When dealing with constraints, it is crucial to consider their

potential interactions. Ideally, we would rank all possible com-

binations of constraints; however, this combinatorial problem is

computationally intractable, so we propose a greedy strategy in-

stead. Using a distortion metric (described below), we score every

individual constraint and initialize our constraint set with the best

one. We iteratively add to this set by scoring each of the remaining

unused constraints unioned with the constraints already chosen.

The result of this process is an ordered set of constraints from first

to last picked. Plotting the distortion over number of constraints,

we observe that there is usually a point where the distortion in-

creases drastically and we have observed that this jump in the graph

typically correlates to visual artifacts in the shape. We use this to

compute the cutoff of which constraints to impose. We can find

the jump in the graph using a linear change point detection algo-

rithm [Killick et al. 2012] on the derivative of this curve (computed

as a central difference).

To score a candidate constraint set, we would ideally measure

the distance in pixel space to the diffusion images from the final

stage of generation. This requires solving an optimization problem

to find the minimizer of that distance over the CAD parameter

space, which is too slow to be tractable with the greedy strategy

described above. We also observe that pixel space differences can

be unreliable for very small variations arising from small constraint

sets because capturing them in an image is highly dependent on

viewing angle. To overcome both of these issues, we propose to

instead use a volumetric score, intersection over union (IoU), when

initially sorting constraints, and only use pixel space loss when

computing the final cutoff. Because we do not have a way to dif-

ferentiably compute shape booleans, and to gain computational

efficiency by avoiding gradient descent entirely, we developed a

linear cuboid approximation to IoU which, in conjunction with our

linear constraint sets, allows us to minimize the IoU with a single

linear least squares step (see supplemental material for details). In

cases where the IoU simplification does not generalize (cones with

variable half-angle) we fall back to image loss for the full pipeline

and avoid the additional check for constraint combinations due to

its computational complexity.

3.4.2 Discovering Discrete Variations. Not all examples of the same

kind of object have the same parts; for example some cameras have

flash bulbs while some do not, and chairs can be armless. We dis-

cover these discrete parameters by looking for primitives effectively

missing from variations. We iteratively remove one primitive from

each variation and compute the pixel loss described above. If this

loss is below a threshold (10
−4

in our experiments), we mark that

primitive as optional for that variation. We then group parts that

are always optional together across variations (e.g. chair legs are

added or removed as a set) and include these as binary variables on

top of our continuous reparameterization.

3.5 Re-Parameterization
Our generation and constraint discovery algorithms find a set of

linear constraints which restrict the construction parameters to

semantically appropriate values, as well as a set of semantically

labeled variations that obey these constraints. The constraints give

us a lower dimensional subspace that maintains object coherence.

SA Conference Papers ’23, December 12–15, 2023, Sydney, NSW, Australia Kodnongbua et al.

Figure 3: ReparamCAD’s user interface. Users are presented
with two complimentary views of the constrained reparame-
terization space. The sliders on the left interpolate between
discovered variations as a weighted average, while those
on the right control the free variables after reparameteriza-
tion. Checkboxes allow toggling of discrete sets of removable
parts.

Using Gauss-Jordan elimination we can construct a basis for this

subspace that retains parameter identity for free variables under the

constraints. We construct a second parameterization of this space

centered at the initial model’s parameters within the subspace that

allows these shapes to be mixed and interpolated.

Our user interface (Figure 3) allows for exploration in both con-
structive parameters and manipulation parameters, but because we

only found linear equality constraints, we do not have bounds on

this space. We use examples as lower bounds on the feasible region

by taking a normalized sum of manipulation parameters, restrict-

ing semantic variations to be interpolations between variations,

and optionally restricting constructive parameter exploration to

the extreme values of the discovered variations. In this bounded

subspace, the user can freely and safely explore. Additionally, we

add the discrete optional degrees of freedom found in constraint

discovery.

4 RESULTS
We evaluate ReparamCAD in two key aspects: its ability to generate

compelling and valid design variations guided by text prompts, and

its ability to infer semantic and geometric constraints that define

the family of shapes both qualitatively and quantitatively.

We show the results of running our pipeline on five initial models:

chair, table, car, camera, and bottle in Figure 7. For each model, we

handpicked five prompts from a list generated by ChatGPT and

manually added a “bench” prompt for the chair example. For the

differentiable renderer, we use Nvdiffrast [Laine et al. 2020]. We use

stable diffusion model v1.4 from Rombach et al. [2022], and we use

the mesh boolean algorithm from Cherchi et al. [2022] to compute

the IoU. All experiments were conducted on a machine with a 40-

core CPU and an NVIDIA A40 GPU. On average, generating a CAD

variation takes 6.5 hours per prompt; and discovering constraints

takes from 4 to 35 minutes per model depending on the complexity.

4.1 Generating CAD Variations
In Figure 5, we demonstrate our method’s ability to generate varia-

tions of the input model that are coherent with the text prompt with

varying geometry and complexity. For example, we can observe

�������������������������� �������
��������
	������������

����
��������
	������������

���

���

Figure 4: (a) Applying an extrapolative edit to a model can
lead to broken geometry, but the constraints we discover
prevent this and result in meaningful global edits from lo-
cal changes. (b) A selection of random extrapolative edits
without ReparamCAD (left) and with (right). ReparamCAD
maintains geometric coherence.

that the bench is wider and has no arms while the chaise lounge has

arms and is bulkier, and that the SUV has a tall back section while

the pickup truck has a low back section. The method is also able

to discover part of the program that can be removed, for example,

the arms of the chair for “stool” and the camera grip for “action

camera” disappear by shrinking and blending into the rest of the

shape.

The method’s inclination of staying close to the input model and

within the parameter space leads to some intriguing results. For

example, the “rocking chair” prompt produces a model resembling

a nursing glider, which belongs to the same category and can be

represented using the input program. Similarly, the generated

“dining table” exhibits a surprising square shape and middle shelf.

While these may not conform to the conventional idea of a dining

table, such dinning tables exist in reality, making them more likely

to be chosen due to their proximity to the input model (see Fig. 8

(d)).

Overall, our method performs well in maintaining the overall

structure of the shapes while allowing unique changes that define

each of the variations. We notice, however, that due to stochasticity

of the diffusion process, these generated models contain imper-

fections on primitive alignment (see corners of the chairs or table

where the legs do not perfectly line up with the seat). These imper-

fections must be captured and cleaned up by our symbolic approach.

4.2 Inferring Constraints and
Reparameterization

Running our constraint discovery algorithm on the input models

resulted in a dimensionality reduction from 19-48 parameters to

9-15, summarized in Table 1. We find semantically meaningful

constraints; for example, car wheels are co-axial, chair arms stay

at the sides of the seat, and table and chair legs are all the same

height. Our algorithm also rejects overly specific constraints such

as the chair’s seat being square and the same thickness as the

arms and legs, which would overly constrain the design space as

ReparamCAD: Zero-shot CAD Program Re-Parameterization for Interactive Manipulation SA Conference Papers ’23, December 12–15, 2023, Sydney, NSW, Australia

seen in Figure 8 (c). The variety and quality of generated models

in Figure 7 show that our constraints strike a balance between

restriction and expression. They also have the effect of removing

noise present in the generated variations, which propagates to

the interpolated results as shown in Figure 8 (a). In addition, we

also support extrapolation by direct control of free construction

variables. As Figure 4 shows, extrapolation without constraints

often produce incoherent geometry, but ReparamCAD’s constraints

can prevent this.

4.3 Quantitative Evaluation and Robustness
We asked four CAD users with 2-14 years experience (mean 6.25)

to select constraints for each base model from the set our system

considers, given the variation names. We evaluated precision and

recall of our system, computed by subspace inclusion because the

constraints are non-orthogonal. Macro-averaged across users, mod-

els, repeated 4 times to test robustness, our method achieves 76.7%

precision and 88% recall. To quantify robustness, we computed the

standard deviation in average precision and recall between runs

of our system for each model: 2.4 pp for precision and 6.8 pp for

recall. Finally, to quantify the effect of regularization, we compared

precision and recall across models and users for a run with and

without regularization using a related samples t-test and found no

significant difference for either (𝑝 = .38, .29).

4.4 Ablations of our Neurosymbolic Approach
We formalize the need for our neurosymbolic approach by com-

paring it to pure neural and symbolic techniques. A purely neural

approach only considers the generated model without any con-

straints. As seen in Figure 8 (a), this results in many artifacts.

On the other hand, if we apply all the geometric-semantic con-

straints inferred from the original model without using the gener-

ated images as input, we would end up with a more constrained

space, as shown in Figure 8 (c); most of the chairs are simply scaling

variations that can appear overly boxy or skewed. We note that the

variations we shown in Figure 8 (c) are still leveraging the bounds

that we have discovered with our technique. In practice just impos-

ing constraint does not define a bounded space for direct manipu-

lation, and infinitely large boxy results can be generated—indeed

these methods are used in companion with variational techniques

for interaction [Gal et al. 2009a].

4.5 Ablations of our Text-Conditioned Variation
Generation

Figure 8 (b) shows optimized CAD models using different loss

functions: (1) CLIP similarity loss; (2) distillation scores, where the

gradient is the difference between the added noise and predicted

noise in latent space; (3) L2 difference in the image latent by the

autoencoder; and (4) our image-space loss. For CLIP, we believe

the unfavorable results are due to how the gradient is propagating

back to the low-dimensionality of the CAD parameters. For stable

diffusion, we observe that a full generation process is necessary to

get an effective image guidance as oppose to using the difference

between a single denoise step as seen with the distillation score.

Using the full diffusion process, whether using the image similarity

or its latent, better preserves the overall structure and connectivity

and converges to a desirable shape variation. We decide to use the

image difference to avoid having to backpropagate to the image

encoder.

In Figure 6, we show the optimization process of methods using

different number of diffusion-generated images per camera pose.

Since stable diffusion generates slight different images every time,

thin parts like the legs of the table is more susceptible to disap-

pearance because they are more likely to not overlap and end up

confusing the differentiable renderer. We observe that using only

the generated image that is the closest to the rendering reduces this

effect and helps maintain thin structures.

Table 1: Number of parameters, number of constraints in
the base model, number of inferred constraints, number of
reparameterized dimensions for each model

Model Parameters

Base

Constraints

Common

Constraints

Constraint

Dimensionality

Bottle 19 20 8 9

Camera 24 21 9 15

Chair 48 172 37 11

Table 36 90 22 14

Car 42 94 26 13

5 LIMITATIONS AND FUTUREWORK
Extending CAD Language Support. Our current implementation

of ReparamCAD is limited to a subset of the full CAD language. This

limitation carries over from mesh differentiable renderer that we

build upon. It is worth noting that differentiable CAD rendering and

kernels is an active area of research that is complementary to our

work [Cascaval et al. 2021; Gaillard et al. 2022; Jones et al. 2023b].

Our fundamental idea would still apply as these new differentiable

operators could substitute for the differentiable mesh renderer as

they become available.

Generating Complex 3D Geometries. Vanilla stable diffusion mod-

els suffer from generating inconsistent 3D geometries due to lack of

3D prior and limitations in view conditioning. Incorporating recent

advances that tackle this problem [Nichol et al. 2022b; Seo et al.

2023; Xu et al. 2023] could enhance the generation of complex and

consistent 3D geometries in our approach. Furthermore, the com-

putational cost associated with this step is considerable, and further

efforts to reduce computational overhead would be valuable.

Handling Noise in Design Variations. A fundamental challenge

during constraint discovery lies in distinguishing noise and mis-

alignment of parts from intentional design variations. Incorporating

additional considerations, such as physical understanding or using

foundational models, can aid in tackling this issue. Finally, our

algorithms for constraint discovery and re-parametrization rely

on the linearity of constraints. Extending our method to discover

non-linear constraints would require addressing the additional com-

putation cost associated with non-linearity.

Quality of Text Prompts. The quality of our generated results

depends on the quality of the available text prompts. When they

SA Conference Papers ’23, December 12–15, 2023, Sydney, NSW, Australia Kodnongbua et al.

exceed the capabilities of the model, performance may be subpar

or lead to unexpected outcomes. Since ChatGPT does not know

the input shape, it may generate unreasonable variations or miss

some that the user wants to explore requiring a user guidance.

Incorporating multi-modal LLMs could potentially automate this

process. Furthermore, we observe that prompts containing descrip-

tive adjectives like "tall" or "wide" yielded minimal variations, while

specifying object types proved to be more effective in generating

diverse outcomes. Future efforts in prompt engineering and condi-

tioning the diffusion model using phrases can greatly improve the

generation of meaningful variations and enable re-parameterization

with higher semantic relevance.

Fixed Program Structure. Our current implementation of Reparam-

CAD adheres to the structure found in the input CAD program, lim-

iting design variations to those that can be realized solely through

parameter tweaking. However, the input model may not necessarily

represent the ideal base model for exploring the shape class. Recent

advancements in program synthesis techniques have opened the

door to complex automatic program transformations guided by

semantics [Ahmad et al. 2019; Ellis et al. 2019] or examples [Cam-

bronero et al. 2023]. Integrating these techniques into our system

would enable us to not only modify parameters but also adjust the

program structure itself to better align with user intent.

Validation. We created a small and targeted set of test models to

validate our approach, but progress in new task of CAD reparame-

terization could be bolstered by the development of more diverse

and robust validation metrics to facilitate comparison between

methods.

6 CONCLUSION
In this paper, we present ReparamCAD, a novel approach that lever-

ages foundational models to facilitate CAD program manipulation.

While prior applications of foundational models have focused on au-

tomatic 3D shape generation, our approach breaks new ground by

utilizing them for structural shape representations. Our approach

demonstrates the potential of integrating AI models with symbolic

program analysis techniques and opens up exciting avenues for

future research in the CAD design domain.

ACKNOWLEDGMENTS
This work was supported by NSF award CCF–2219864 as well as

gifts from Adobe, Intel, Meta, and Amazon.

REFERENCES
Panos Achlioptas, Ian Huang, Minhyuk Sung, Sergey Tulyakov, and Leonidas Guibas.

2022. ChangeIt3D: Language-assisted 3d shape edits and deformations.

Maaz Bin Safeer Ahmad, Jonathan Ragan-Kelley, Alvin Cheung, and Shoaib Kamil. 2019.

Automatically Translating Image Processing Libraries to Halide. ACM Trans. Graph.
38, 6, Article 204 (nov 2019), 13 pages. https://doi.org/10.1145/3355089.3356549

Christian Bessiere, Remi Coletta, Eugene C. Freuder, and Barry O’Sullivan. 2004. Lever-

aging the Learning Power of Examples in Automated Constraint Acquisition. In

Principles and Practice of Constraint Programming – CP 2004, Mark Wallace (Ed.).

Springer Berlin Heidelberg, Berlin, Heidelberg, 123–137.

Martin Bokeloh, Michael Wand, Hans-Peter Seidel, and Vladlen Koltun. 2012. An

algebraic model for parameterized shape editing. ACM Transactions on Graphics
(TOG) 31, 4 (2012), 1–10.

José Cambronero, Sumit Gulwani, Vu Le, Daniel Perelman, Arjun Radhakrishna, Clint

Simon, and Ashish Tiwari. 2023. FlashFill++: Scaling Programming by Example

by Cutting to the Chase. In Principles of Programming Languages. ACM SIGPLAN,

ACM. https://www.microsoft.com/en-us/research/publication/flashfill-scaling-

programming-by-example-by-cutting-to-the-chase/

David Cao, Rose Kunkel, Chandrakana Nandi, Max Willsey, Zachary Tatlock, and

Nadia Polikarpova. 2023. Babble: Learning Better Abstractions with E-Graphs and

Anti-Unification. Proc. ACM Program. Lang. 7, POPL, Article 14 (jan 2023), 29 pages.

https://doi.org/10.1145/3571207

Dan Cascaval, Mira Shalah, Phillip Quinn, Rastislav Bodík, Maneesh Agrawala, and

Adriana Schulz. 2021. Differentiable 3D CAD Programs for Bidirectional Editing.

CoRR abs/2110.01182 (2021). arXiv:2110.01182 https://arxiv.org/abs/2110.01182

Siddhartha Chaudhuri, Evangelos Kalogerakis, Stephen Giguere, and Thomas

Funkhouser. 2013. Attribit: Content Creation with Semantic Attributes. In Proceed-
ings of the 26th Annual ACM Symposium on User Interface Software and Technology
(St. Andrews, Scotland, United Kingdom) (UIST ’13). Association for Computing

Machinery, New York, NY, USA, 193–202. https://doi.org/10.1145/2501988.2502008

Kevin Chen, Christopher B. Choy, Manolis Savva, Angel X. Chang, Thomas Funkhouser,

and Silvio Savarese. 2019. Text2Shape: Generating Shapes from Natural Language

by Learning Joint Embeddings. In Computer Vision – ACCV 2018, C. V. Jawahar,
Hongdong Li, Greg Mori, and Konrad Schindler (Eds.). Springer International

Publishing, Cham, 100–116.

Zhiqin Chen and Hao Zhang. 2019. Learning implicit fields for generative shape

modeling. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 5939–5948.

Gianmarco Cherchi, Fabio Pellacini, Marco Attene, and Marco Livesu. 2022. Interactive

and Robust Mesh Booleans. ACM Transactions on Graphics (SIGGRAPH Asia 2022)
41, 6 (2022). https://doi.org/10.1145/3550454.3555460

Tao Du, Jeevana Priya Inala, Yewen Pu, Andrew Spielberg, Adriana Schulz, Daniela

Rus, Armando Solar-Lezama, and Wojciech Matusik. 2018. InverseCSG: Automatic

Conversion of 3D Models to CSG Trees. ACM Transactions on Graphics 37, 6, Article
213 (dec 2018), 16 pages. https://doi.org/10.1145/3272127.3275006

Kevin Ellis, Maxwell Nye, Yewen Pu, Felix Sosa, Joshua B. Tenenbaum, and Armando

Solar-Lezama. 2019. Write, Execute, Assess: Program Synthesis with a REPL. Curran
Associates Inc., Red Hook, NY, USA.

Kevin Ellis, Catherine Wong, Maxwell Nye, Mathias Sablé-Meyer, Lucas Morales,

Luke Hewitt, Luc Cary, Armando Solar-Lezama, and Joshua B. Tenenbaum. 2021.

DreamCoder: Bootstrapping Inductive Program Synthesis with Wake-Sleep Library

Learning. In Proceedings of the 42nd ACM SIGPLAN International Conference on
Programming Language Design and Implementation (Virtual, Canada) (PLDI 2021).
Association for Computing Machinery, New York, NY, USA, 835–850. https://doi.

org/10.1145/3453483.3454080

Adejuyigbe O. Fajemisin, Donato Maragno, and Dick den Hertog. 2023. Optimization

with constraint learning: A framework and survey. European Journal of Operational
Research (2023). https://doi.org/10.1016/j.ejor.2023.04.041

Grigory Fedyukovich and Rastislav Bodík. 2018. Accelerating Syntax-Guided Invariant

Synthesis. In Tools and Algorithms for the Construction and Analysis of Systems,
Dirk Beyer and Marieke Huisman (Eds.). Springer International Publishing, Cham,

251–269.

Noa Fish, Melinos Averkiou, Oliver Van Kaick, Olga Sorkine-Hornung, Daniel Cohen-

Or, andNiloy JMitra. 2014. Meta-representation of shape families. ACMTransactions
on Graphics (TOG) 33, 4 (2014), 1–11.

Rao Fu, Xiao Zhan, Yiwen Chen, Daniel Ritchie, and Srinath Sridhar. 2023.

ShapeCrafter: A Recursive Text-Conditioned 3D Shape Generation Model.

arXiv:2207.09446 [cs.CV]

Mathieu Gaillard, Vojtěch Krs, Giorgio Gori, Radomír Měch, and Bedrich Benes. 2022.

Automatic differentiable procedural modeling. In Computer Graphics Forum, Vol. 41.

Wiley Online Library, 289–307.

Ran Gal, Olga Sorkine, Niloy Mitra, and Daniel Cohen-Or. 2009a. iWires: An Analyze-

and-Edit Approach to Shape Manipulation. ACM Transactions on Graphics (pro-
ceedings of ACM SIGGRAPH) 28, 3 (2009), 33:1–33:10.

Ran Gal, Olga Sorkine, Niloy J Mitra, and Daniel Cohen-Or. 2009b. iWIRES: An

analyze-and-edit approach to shape manipulation. In ACM SIGGRAPH 2009 papers.
1–10.

Zekun Hao, Hadar Averbuch-Elor, Noah Snavely, and Serge Belongie. 2020. Dualsdf:

Semantic shape manipulation using a two-level representation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 7631–7641.

Amir Hertz, Or Perel, Raja Giryes, Olga Sorkine-Hornung, and Daniel Cohen-Or. 2022.

Spaghetti: Editing implicit shapes through part aware generation. ACMTransactions
on Graphics (TOG) 41, 4 (2022), 1–20.

Takeo Igarashi, Tomer Moscovich, and John F Hughes. 2005. As-rigid-as-possible

shape manipulation. ACM transactions on Graphics (TOG) 24, 3 (2005), 1134–1141.
Alec Jacobson, Ilya Baran, Jovan Popovic, and Olga Sorkine. 2011. Bounded biharmonic

weights for real-time deformation. ACM Trans. Graph. 30, 4 (2011), 78.
Ajay Jain, Ben Mildenhall, Jonathan T. Barron, Pieter Abbeel, and Ben Poole. 2022.

Zero-Shot Text-Guided Object Generation with Dream Fields. In 2022 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR). 857–866. https:

//doi.org/10.1109/CVPR52688.2022.00094

Chiyu Jiang, Jingwei Huang, Andrea Tagliasacchi, and Leonidas J Guibas. 2020. Shape-

flow: Learnable deformation flows among 3d shapes. Advances in Neural Information
Processing Systems 33 (2020), 9745–9757.

https://doi.org/10.1145/3355089.3356549
https://www.microsoft.com/en-us/research/publication/flashfill-scaling-programming-by-example-by-cutting-to-the-chase/
https://www.microsoft.com/en-us/research/publication/flashfill-scaling-programming-by-example-by-cutting-to-the-chase/
https://doi.org/10.1145/3571207
https://arxiv.org/abs/2110.01182
https://arxiv.org/abs/2110.01182
https://doi.org/10.1145/2501988.2502008
https://doi.org/10.1145/3550454.3555460
https://doi.org/10.1145/3272127.3275006
https://doi.org/10.1145/3453483.3454080
https://doi.org/10.1145/3453483.3454080
https://doi.org/10.1016/j.ejor.2023.04.041
https://arxiv.org/abs/2207.09446
https://doi.org/10.1109/CVPR52688.2022.00094
https://doi.org/10.1109/CVPR52688.2022.00094

ReparamCAD: Zero-shot CAD Program Re-Parameterization for Interactive Manipulation SA Conference Papers ’23, December 12–15, 2023, Sydney, NSW, Australia

Benjamin T Jones, Michael Hu, Milin Kodnongbua, Vladimir G Kim, and Adriana

Schulz. 2023b. Self-Supervised Representation Learning for CAD. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 21327–21336.

R Kenny Jones, Theresa Barton, Xianghao Xu, Kai Wang, Ellen Jiang, Paul Guerrero,

Niloy J Mitra, and Daniel Ritchie. 2020. Shapeassembly: Learning to generate

programs for 3d shape structure synthesis. ACM Transactions on Graphics (TOG)
39, 6 (2020), 1–20.

R Kenny Jones, David Charatan, Paul Guerrero, Niloy J Mitra, and Daniel Ritchie. 2021.

ShapeMOD: macro operation discovery for 3D shape programs. ACM Transactions
on Graphics (TOG) 40, 4 (2021), 1–16.

R Kenny Jones, Paul Guerrero, Niloy J Mitra, and Daniel Ritchie. 2023a. ShapeCoder:

Discovering Abstractions for Visual Programs from Unstructured Primitives. arXiv
preprint arXiv:2305.05661 (2023).

R Kenny Jones, Aalia Habib, Rana Hanocka, and Daniel Ritchie. 2022. The neurally-

guided shape parser: Grammar-based labeling of 3d shape regions with approximate

inference. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 11614–11623.

Nasir Mohammad Khalid, Tianhao Xie, Eugene Belilovsky, and Tiberiu Popa. 2022.

CLIP-Mesh: Generating textured meshes from text using pretrained image-text

models. In SIGGRAPH Asia 2022 Conference Papers. ACM. https://doi.org/10.1145/

3550469.3555392

R. Killick, P. Fearnhead, and I. A. Eckley. 2012. Optimal Detection of

Changepoints With a Linear Computational Cost. J. Amer. Statist. Assoc.
107, 500 (2012), 1590–1598. https://doi.org/10.1080/01621459.2012.737745

arXiv:https://doi.org/10.1080/01621459.2012.737745

Samuli Laine, Janne Hellsten, Tero Karras, Yeongho Seol, Jaakko Lehtinen, and Timo

Aila. 2020. Modular Primitives for High-Performance Differentiable Rendering.

ACM Transactions on Graphics 39, 6 (2020).
Chen-Hsuan Lin, Jun Gao, Luming Tang, Towaki Takikawa, Xiaohui Zeng, Xun Huang,

Karsten Kreis, Sanja Fidler, Ming-Yu Liu, and Tsung-Yi Lin. 2023. Magic3D: High-

Resolution Text-to-3D Content Creation. arXiv:2211.10440 [cs.CV]

Minghua Liu, Minhyuk Sung, Radomir Mech, and Hao Su. 2021. Deepmetahandles:

Learning deformation meta-handles of 3d meshes with biharmonic coordinates. In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
12–21.

Zhengzhe Liu, Yi Wang, Xiaojuan Qi, and Chi-Wing Fu. 2022. Towards Implicit Text-

Guided 3D Shape Generation. In 2022 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR). 17875–17885. https://doi.org/10.1109/CVPR52688.2022.

01737

Elie Michel and Tamy Boubekeur. 2021. DAG amendment for inverse control of

parametric shapes. ACM Transactions on Graphics (TOG) 40, 4 (2021), 1–14.
Niloy J Mitra, Michael Wand, Hao Zhang, Daniel Cohen-Or, Vladimir Kim, and Qi-Xing

Huang. 2014. Structure-aware shape processing. In ACM SIGGRAPH 2014 Courses.
1–21.

Paritosh Mittal, Yen-Chi Cheng, Maneesh Singh, and Shubham Tulsiani. 2023.

AutoSDF: Shape Priors for 3D Completion, Reconstruction and Generation.

arXiv:2203.09516 [cs.CV]

Kaichun Mo, Paul Guerrero, Li Yi, Hao Su, Peter Wonka, Niloy Mitra, and Leonidas

Guibas. 2019. StructureNet: Hierarchical Graph Networks for 3D Shape Generation.

ACM Transactions on Graphics (TOG), Siggraph Asia 2019 38, 6 (2019), Article 242.
Chandrakana Nandi, James R Wilcox, Pavel Panchekha, Taylor Blau, Dan Grossman,

and Zachary Tatlock. 2018. Functional programming for compiling and decompiling

computer-aided design. Proceedings of the ACM on Programming Languages 2, ICFP
(2018), 1–31.

Chandrakana Nandi, Max Willsey, Adam Anderson, James R. Wilcox, Eva Darulova,

Dan Grossman, and Zachary Tatlock. 2020. Synthesizing Structured CAD Models

with Equality Saturation and Inverse Transformations. In Proceedings of the 41st
ACM SIGPLAN Conference on Programming Language Design and Implementation
(London, UK) (PLDI 2020). Association for Computing Machinery, New York, NY,

USA, 31–44. https://doi.org/10.1145/3385412.3386012

Alex Nichol, Heewoo Jun, Prafulla Dhariwal, Pamela Mishkin, and Mark Chen.

2022b. Point-E: A System for Generating 3D Point Clouds from Complex Prompts.

arXiv:2212.08751 [cs.CV]

Alexander Quinn Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav Shyam, Pamela

Mishkin, Bob Mcgrew, Ilya Sutskever, and Mark Chen. 2022a. GLIDE: Towards

Photorealistic Image Generation and Editing with Text-Guided Diffusion Models.

In Proceedings of the 39th International Conference on Machine Learning (Proceedings
of Machine Learning Research, Vol. 162), Kamalika Chaudhuri, Stefanie Jegelka,

Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato (Eds.). PMLR, 16784–16804.

https://proceedings.mlr.press/v162/nichol22a.html

Maks Ovsjanikov, Wilmot Li, Leonidas Guibas, and Niloy J Mitra. 2011. Exploration of

continuous variability in collections of 3d shapes. ACM Transactions on Graphics
(TOG) 30, 4 (2011), 1–10.

Ofek Pearl, Itai Lang, Yuhua Hu, Raymond A Yeh, and Rana Hanocka. 2022. GeoCode:

Interpretable Shape Programs. arXiv preprint arXiv:2212.11715 (2022).
Ben Poole, Ajay Jain, Jonathan T. Barron, and Ben Mildenhall. 2022. DreamFusion:

Text-to-3D using 2D Diffusion. arXiv:2209.14988 [cs.CV]

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini

Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen

Krueger, and Ilya Sutskever. 2021. Learning Transferable Visual Models From

Natural Language Supervision. In Proceedings of the 38th International Conference
on Machine Learning (Proceedings of Machine Learning Research, Vol. 139), Marina

Meila and Tong Zhang (Eds.). PMLR, 8748–8763. https://proceedings.mlr.press/

v139/radford21a.html

Daniel Ritchie, Paul Guerrero, R. Kenny Jones, Niloy J. Mitra, Adriana Schulz, Karl

D. D. Willis, and Jiajun Wu. 2023. Neurosymbolic Models for Computer Graphics.

Computer Graphics Forum (2023). https://doi.org/10.1111/cgf.14775

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer.

2022. High-Resolution Image Synthesis with Latent Diffusion Models. In 2022
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 10674–
10685. https://doi.org/10.1109/CVPR52688.2022.01042

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Den-

ton, Kamyar Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim

Salimans, Jonathan Ho, David J Fleet, and Mohammad Norouzi. 2022. Photo-

realistic Text-to-Image Diffusion Models with Deep Language Understanding.

In Advances in Neural Information Processing Systems, S. Koyejo, S. Mohamed,

A. Agarwal, D. Belgrave, K. Cho, and A. Oh (Eds.), Vol. 35. Curran Associates,

Inc., 36479–36494. https://proceedings.neurips.cc/paper_files/paper/2022/file/

ec795aeadae0b7d230fa35cbaf04c041-Paper-Conference.pdf

Aditya Sanghi, Hang Chu, Joseph G. Lambourne, Ye Wang, Chin-Yi Cheng, Marco

Fumero, and Kamal Rahimi Malekshan. 2022. CLIP-Forge: Towards Zero-Shot Text-

to-Shape Generation. In 2022 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR). 18582–18592. https://doi.org/10.1109/CVPR52688.2022.01805

Aditya Sanghi, Rao Fu, Vivian Liu, Karl Willis, Hooman Shayani, Amir Hosein

Khasahmadi, Srinath Sridhar, and Daniel Ritchie. 2023. CLIP-Sculptor: Zero-

Shot Generation of High-Fidelity and Diverse Shapes from Natural Language.

arXiv:2211.01427 [cs.CV]

Junyoung Seo, Wooseok Jang, Min-Seop Kwak, Jaehoon Ko, Hyeonsu Kim, Junho Kim,

Jin-Hwa Kim, Jiyoung Lee, and Seungryong Kim. 2023. Let 2D Diffusion Model

Know 3D-Consistency for Robust Text-to-3D Generation. arXiv:2303.07937 [cs.CV]

Olga Sorkine and Mario Botsch. 2009. Interactive Shape Modeling and Deformation..

In Eurographics (Tutorials). 11–37.
Olga Sorkine, Daniel Cohen-Or, Yaron Lipman, Marc Alexa, Christian Rössl, and H-P

Seidel. 2004. Laplacian surface editing. In Proceedings of the 2004 Eurographics/ACM
SIGGRAPH symposium on Geometry processing. 175–184.

Robert W Sumner, Johannes Schmid, and Mark Pauly. 2007. Embedded deformation

for shape manipulation. In ACM siggraph 2007 papers. 80–es.
Minhyuk Sung, Zhenyu Jiang, Panos Achlioptas, Niloy J. Mitra, and Leonidas J. Guibas.

2020. DeformSyncNet: Deformation Transfer via Synchronized Shape Deformation

Spaces. ACM Trans. Graph. 39, 6, Article 261 (nov 2020), 16 pages. https://doi.org/

10.1145/3414685.3417783

Shubham Tulsiani, Hao Su, Leonidas J Guibas, Alexei A Efros, and Jitendra Malik. 2017.

Learning shape abstractions by assembling volumetric primitives. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition. 2635–2643.

NanyangWang, Yinda Zhang, Zhuwen Li, Yanwei Fu,Wei Liu, and Yu-Gang Jiang. 2018.

Pixel2mesh: Generating 3d mesh models from single rgb images. In Proceedings of
the European conference on computer vision (ECCV). 52–67.

Weiyue Wang, Duygu Ceylan, Radomir Mech, and Ulrich Neumann. 2019. 3dn: 3d

deformation network. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. 1038–1046.

Fangyin Wei, Elena Sizikova, Avneesh Sud, Szymon Rusinkiewicz, and Thomas

Funkhouser. 2020. Learning to infer semantic parameters for 3D shape editing. In

2020 International Conference on 3D Vision (3DV). IEEE, 434–442.
Jiale Xu, Xintao Wang, Weihao Cheng, Yan-Pei Cao, Ying Shan, Xiaohu Qie, and

Shenghua Gao. 2023. Dream3D: Zero-Shot Text-to-3D Synthesis Using 3D Shape

Prior and Text-to-Image Diffusion Models. arXiv:2212.14704 [cs.CV]

Evan Yares. 2013. The failed promise of parametric CAD part 1: From the beginning.

https://www.3dcadworld.com/the-failed-promise-of-parametric-cad/. (Accessed

on 09/06/2019).

Wang Yifan, Noam Aigerman, Vladimir G Kim, Siddhartha Chaudhuri, and Olga

Sorkine-Hornung. 2020. Neural cages for detail-preserving 3d deformations. In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
75–83.

Kangxue Yin, Zhiqin Chen, Siddhartha Chaudhuri, Matthew Fisher, Vladimir G Kim,

and Hao Zhang. 2020. Coalesce: Component assembly by learning to synthesize

connections. In 2020 International Conference on 3D Vision (3DV). IEEE, 61–70.
Fenggen Yu, Zhiqin Chen, Manyi Li, Aditya Sanghi, Hooman Shayani, Ali Mahdavi-

Amiri, and Hao Zhang. 2022. CAPRI-Net: Learning Compact CAD Shapes With

Adaptive Primitive Assembly. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR). 11768–11778.

Mehmet Ersin Yumer, Siddhartha Chaudhuri, Jessica K Hodgins, and Levent Burak

Kara. 2015. Semantic shape editing using deformation handles. ACM Transactions
on Graphics (TOG) 34, 4 (2015), 1–12.

https://doi.org/10.1145/3550469.3555392
https://doi.org/10.1145/3550469.3555392
https://doi.org/10.1080/01621459.2012.737745
https://arxiv.org/abs/https://doi.org/10.1080/01621459.2012.737745
https://arxiv.org/abs/2211.10440
https://doi.org/10.1109/CVPR52688.2022.01737
https://doi.org/10.1109/CVPR52688.2022.01737
https://arxiv.org/abs/2203.09516
https://doi.org/10.1145/3385412.3386012
https://arxiv.org/abs/2212.08751
https://proceedings.mlr.press/v162/nichol22a.html
https://arxiv.org/abs/2209.14988
https://proceedings.mlr.press/v139/radford21a.html
https://proceedings.mlr.press/v139/radford21a.html
https://doi.org/10.1111/cgf.14775
https://doi.org/10.1109/CVPR52688.2022.01042
https://proceedings.neurips.cc/paper_files/paper/2022/file/ec795aeadae0b7d230fa35cbaf04c041-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/ec795aeadae0b7d230fa35cbaf04c041-Paper-Conference.pdf
https://doi.org/10.1109/CVPR52688.2022.01805
https://arxiv.org/abs/2211.01427
https://arxiv.org/abs/2303.07937
https://doi.org/10.1145/3414685.3417783
https://doi.org/10.1145/3414685.3417783
https://arxiv.org/abs/2212.14704
https://www.3dcadworld.com/the-failed-promise-of-parametric-cad/

SA Conference Papers ’23, December 12–15, 2023, Sydney, NSW, Australia Kodnongbua et al.

xiaohui zeng, Arash Vahdat, Francis Williams, Zan Gojcic, Or Litany, Sanja Fidler,

and Karsten Kreis. 2022. LION: Latent Point Diffusion Models for 3D Shape Gen-

eration. In Advances in Neural Information Processing Systems, S. Koyejo, S. Mo-

hamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (Eds.), Vol. 35. Curran Asso-

ciates, Inc., 10021–10039. https://proceedings.neurips.cc/paper_files/paper/2022/

file/40e56dabe12095a5fc44a6e4c3835948-Paper-Conference.pdf

X Zheng, Yang Liu, P Wang, and Xin Tong. 2022. SDF-StyleGAN: Implicit SDF-Based

StyleGAN for 3D Shape Generation. In Computer Graphics Forum, Vol. 41. Wiley

Online Library, 52–63.

https://proceedings.neurips.cc/paper_files/paper/2022/file/40e56dabe12095a5fc44a6e4c3835948-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/40e56dabe12095a5fc44a6e4c3835948-Paper-Conference.pdf

ReparamCAD: Zero-shot CAD Program Re-Parameterization for Interactive Manipulation SA Conference Papers ’23, December 12–15, 2023, Sydney, NSW, Australia

������ ����������� ������������ ����������� ��������������� ��������������

������ ��
 	��������� ���������������������� ����������������� �������������

����� ����� ������������� ������������� ����� �������������� ���������

����� ����������� ������������� ������������ ������������ ����������

��� ��������� ������������ ��������� ��� ���

Figure 5: A gallery of text-condition CAD parameter optimization of different input models (first column) towards varying
prompts.

�������

��������

����
��������
�����

�������������� ������������� ��
���	�
����
���

Figure 6: Rendered and diffusion-generated images at different iterations during optimization using (top) one diffusion-
generated image per camera pose; (middle) three images; and (bottom) three images and select one image that is closest to the
rendering. Note that the camera angles for the diffusion-generated images are random.

SA Conference Papers ’23, December 12–15, 2023, Sydney, NSW, Australia Kodnongbua et al.

Figure 7: A gallery of design variations using the constrained inferred from our pipeline.

���

����
����������������	�������������������������
������������������������������	��	����������	����

�����������������������������������	����������������

����������������	��

���

����������

������������
�����

���������������������������
���������
�������������

����

��
������

Figure 8: (a) Imperfections on interpolated results without the constraints. (b) Generation results using different loss functions:
CLIP similarity, distillation score, L2 difference of the image latent of the rendered and diffusion-generated images, and L2
difference in the images (c) A gallery of chairs when all constraints of the base model are imposed. (d) Peculiar shape of
generated “rocking chair” and “dining table” (left) and the image guidance (right).

	Abstract
	1 Introduction
	2 Related Work
	2.1 Parametric CAD Manipulation
	2.2 Enabling Manipulation from Large Shape Collections
	2.3 Structured Manipulation from Single Input Shapes
	2.4 Text-conditioned 3D generation

	3 Methods
	3.1 Simplified CAD Language
	3.2 Variation Prompts Generation
	3.3 Text-Conditioned Variation Generation
	3.4 Constraint Discovery
	3.5 Re-Parameterization

	4 Results
	4.1 Generating CAD Variations
	4.2 Inferring Constraints and Reparameterization
	4.3 Quantitative Evaluation and Robustness
	4.4 Ablations of our Neurosymbolic Approach
	4.5 Ablations of our Text-Conditioned Variation Generation

	5 Limitations and Future Work
	6 Conclusion
	Acknowledgments
	References

