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Abstract
This paper investigates the design of a system for rec-

ognizing objects in 3D point clouds of urban environments.

The system is decomposed into four steps: locating, seg-

menting, characterizing, and classifying clusters of 3D

points. Specifically, we first cluster nearby points to form

a set of potential object locations (with hierarchical clus-

tering). Then, we segment points near those locations into

foreground and background sets (with a graph-cut algo-

rithm). Next, we build a feature vector for each point cluster

(based on both its shape and its context). Finally, we label

the feature vectors using a classifier trained on a set of man-

ually labeled objects. The paper presents several alterna-

tive methods for each step. We quantitatively evaluate the

system and tradeoffs of different alternatives in a truthed

part of a scan of Ottawa that contains approximately 100

million points and 1000 objects of interest. Then, we use

this truth data as a training set to recognize objects amidst

approximately 1 billion points of the remainder of the Ot-

tawa scan.

1. Introduction

Detailed models of cities with semantically tagged ob-
jects (e.g., cars, street lights, stop signs, etc.) are useful for
numerous applications: city planning, emergency response
preparation, virtual tourism, multimedia entertainment, cul-
tural heritage documentation, and others. Yet, it is very
difficult to acquire such models. Current object recogni-
tion algorithms are not robust enough to label all objects in
a city automatically from images, and interactive semantic
tagging tools require tremendous manual effort.

However, new types of data are now available to assist
with urban modeling. There has been a recent explosion in
worldwide efforts to acquire 3D scanner data for real-world
urban environments. For example, both Google and Mi-
crosoft have been driving cars with LIDAR sensors through-
out most major cities in North America and Europe with
the eventual goal of acquiring a high-resolution 3D model
of the entire world. This new data opens unprecedented op-
portunities for object labeling and city modeling. Tradition-
ally, range scan processing algorithms have focused either
on small objects in isolation or on large objects in scenes.
Never before has it been possible to reason about all small
objects in an entire city. In this paper, we take a step in this
direction by developing a set of algorithms to locate, seg-
ment, represent, and classify small objects in scanned point

clouds of a city.

Data representing geometry of this scale is relatively
new, and not many algorithms exist to try to identify objects
from 3D data in real-world cluttered city environments. Al-
gorithms have been proposed for modeling specific object
types (e.g., buildings [2, 9] and trees [28, 30]), for extract-
ing geometric primitives (e.g., [22, 25]), and for identifying
objects in cluttered scenes [3, 15, 10]. However, they have
been demonstrated only for synthetic scenarios and/or for
small scenes with relatively few object categories.

In this paper, we describe a system for automatically la-
beling small objects in 3D scans of urban environments.
Our goal is to characterize the types of algorithms that are
most effective to address the main challenges: location, seg-
mentation, representation, and classification of objects. For
each component, we provide several alternative approaches
and perform an empirical investigation of which approaches
provide the best results on a truthed data set (Figure 1a)
encompassing a large region of Ottawa, Canada [20] and
containing about 100 million points and 1000 objects of in-
terest. Our results indicate that it is possible to label 65%
of small objects with a pipeline of algorithms that includes
hierarchical clustering, foreground-background separation
with minimum cuts, geometry and contextual object de-
scription, and classification with support vector machines.
We then use this truthed data set as training to recognize ob-
jects in a larger scan of Ottawa (Figure 1b), which contains
about a billion points. An example input scene is shown
at the top of Figure 1c, and the output labeled, segmented
objects are shown at the bottom of Figure 1c.

2. Related Work

Detection of objects in point clouds. Much of prior
analysis of urban point clouds concentrates on reconstruct-
ing buildings. Fitting parametric models is often used for
low-resolution aerial scans [14, 6, 21, 29] and partial scans
of buildings [8]. Frueh et al. [7] developed a method
for reconstruction of densely sampled building facades and
filling occluded geometry and texture. A lower quality but
faster reconstruction was presented by Carlberg et al. [17].

Point cloud data has also been used to find roads, trees,
and linear structures. Jaakkola et al. [12] developed a
method for identifying road markings and reconstructing
road surface as a triangular irregular network. Among
smaller objects, trees drew attention of a good number of
researchers. Wang et al. [30] developed a method for de-
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Figure 1. Our method recognizes objects in 3D scans of cities. In this example, it uses about 1000 manually labeled objects in the truth area

area (a) to predict about 6000 objects elsewhere in the scan (b). (Objects are depicted as colored points, with colors representing labels.) A

zoomed view, with the height-encoded input points on top, and classified and segmented objects on bottom, is shown in (c).(Automatically

generated classifications are shown in red text, and colors denote object instances.)

tecting and estimating 3D models of trees in a forest from
a LIDAR point cloud. Xu et al. [28] created visually ap-
pealing reconstructions from a densely sampled point cloud
of a tree. Lalonde et al. [16] classify natural terrain into
“scatter”, “linear”, and “surface”.

These methods are synergistic with ours, as recon-
structed models of buildings and small objects can be com-
bined to form a more complete model of a city.

Point labeling. Several papers use statistical models to
label points in scenes based on examples. In [15], points are
labeled with a Bayesian classifier based on local properties.
Several papers have adapted the machinery of Markov Ran-
dom Fields to the problem of labeling 3D points [3, 27, 24].
In this approach, the label of a point is assumed to depend
on its local shape descriptor (to assign similar labels to sim-
ilar shapes), and on its neighbors (to assign smooth labels).
These methods have only been demonstrated on synthetic or
small scenes, with relatively few object categories. The pri-
mary difference between these methods and our approach is
that we assign labels at the level of object instances, rather
than individual points.

Shape descriptors. There has been considerable work
on constructing local and global shape descriptors [10, 13,
4]. The work focuses on making shape descriptors more
discriminative for object classification, and on either deter-
mining canonical frames or adding invariances to the de-
scriptors. In particular, [10] and [13] propose methods to
find 3D models in cluttered scenes by starting with proposed
correspondences from scene points to query model points
that match shape descriptors. Shape descriptors based on
spin images were used by [19] and [18] to categorize ob-
jects such as vehicle types in 3D point clouds. We combine
spin images with other shape and contextual features to rec-
ognize a variety of object types throughout an entire city.

3. Method

3.1. Overview

Our system takes as input a point cloud representing a
city and a set of training objects (2D labeled locations), and
creates as output a segmentation and labeling, where ev-
ery point in the city is associated with a segment, and every
segment has a semantic label (possibly “Background”). The
system proceeds in four steps, as outlined in Figure 2. First,
given the input point cloud (Figure 2a), we generate a list
of locations for potential objects of interest – e.g., where
point densities are highest (Figure 2b). Second, we predict
for each of these potential locations which of the nearby
points are part of the object and which are background clut-
ter (Figure 2c). Then, we extract a set of features describing
the shape and spatial context of the object (Figure 2d), and
use them to classify the object according to labeled exam-
ples in the training set. The end result is a set of labeled
objects, each associated with a set of points (Figure 2e).

The following four sections describe these steps in de-
tail. For each step, we discuss the challenges, alternatives,
algorithms, and design decisions made in our system. We
present results of experiments aimed at quantitatively eval-
uating the performance of each stage of our system in com-
parison to alternatives in Sections 4.1- 4.3. The results of
the system run on an entire city are described in Section 4.4.

3.2. Localization

The first step for our system is to start with a point cloud
and find candidate object locations. This step needs to find
at least one location per object (ideally close to the cen-
ter of the object), while minimizing false alarms. Although
multiple locations per object and false locations are undesir-
able, they can be merged and eliminated in future process-
ing steps, and so our main goal in this step is to not miss
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Figure 2. Overview of our system. The input is a point cloud representing the city (a). First, locations for potential objects are identified

(b). Second, they are segmented (c). Third, features are constructed describing the objects’ shape and context (d). Finally, these features

are used to classify the objects (e).

true object locations.

Our first step is to remove points that clearly are not part
of small objects. We filter out points close to the ground,
which is estimated at uniformly spaced positions with iter-
ative plane fitting. We then remove isolated points. Finally,
we filter out points likely to belong to buildings by remov-
ing very large connected components. Once these filters
have been run, we proceed with one of four approaches to
find potential object locations.

Since objects of interest are likely to rise above their lo-
cal surroundings, a simple approach to finding potential ob-
ject locations is to generate a 2D scalar image representing
the “height” of the point cloud, and performing image pro-
cessing operations to find local maxima. We experimented
with several variations of this approach. The most suc-
cessful variant is to generate an image using the maximum
height of the points in each pixel, run a difference of Gaus-
sian filters to find high frequencies, and then extract con-
nected components with area under a threshold to find small
objects. This method is effective at finding isolated poles,
but performs worse for cars and objects amongst clutter.

Another approach stems from the observation that ob-
jects are often found at local maxima of point density. A
reasonable way of finding such maxima is to adapt a Mean
Shift [11] approach to start with evenly spaced potential lo-
cations and iteratively move each location to the center of
its support (we use all points a horizontal distance of 2m as
the support). This method has two problems: first, in order
to find sufficiently small objects, the initial location spacing
needs to be small, leading to unnecessary computation, and,
second, the support size is difficult to set to be effective for
small and large objects.

The third method postulates that objects locations are
likely to be in the center of connected components. The
algorithm then extracts from the scene connected compo-
nents at some distance threshold, and creates an object lo-
cation at the center of each connected component. To re-
duce the number of false locations, we reject clusters that
are too small or whose lowest points are too high (since we
are interested in ground-based objects). This approach has
trouble with objects that are sampled at different rates and
with objects that are near other objects or background.

Figure 3. Sample results for the location finding algorithm, using

normalized-cut clustering.

Finally, the fourth method refines the connected compo-
nents approach by creating a better clustering of the point
cloud and placing object locations at cluster centers. The al-
gorithm proceeds by building a nearest neighbors graph and
using a clustering algorithm similar to normalized cuts [23]
to extract clusters of points. Specifically, we create a K-
nearest neighbors graph (with K = 4), connect nearby dis-
connected components, and weigh edges as a Gaussian on
their length with a standard deviation of the typical point
spacing (.1m for our data). Then, we cluster by starting
with each point in its own cluster and greedily merging to
minimize sum of the ratio of each segment’s cut cost to its
number of points. We stop the merging when the reductions
of this error fall below a pre-set threshold. As with the con-
nected components algorithm, we reject clusters that are too
small and too high.

Example results of the normalized cut localizing method
are shown in Figure 3, with the resulting locations depicted
as black vertical lines. Note that larger objects such as cars
are sometimes assigned two locations, and that building ex-
teriors and interiors are sometimes erroneously assigned lo-
cations.

3.3. Segmentation

Once potential object locations are found, the objects
need to be segmented from the background. This segmenta-
tion stage has two purposes: first, it will identify the object
shape so that shape descriptors can be applied in the next
stage, and, second, it will identify the segmentations and as-
sign points to objects once the potential objects have been
classified. We explore three approaches to segmentation.



One approach may be to use all above-ground points
within a preset horizontal radius, and under a pre-set height.
While this method has high recall, since it consistently in-
cludes almost all of the points inside small objects, it has a
low precision as it does not try to exclude the background.

A simple way to extract the foreground from background
is to start with the closest point to the predicted object loca-
tion at a pre-defined height and define the foreground object
as all connected points, where points are connected if they
lie within some distance threshold. In many cases, objects
are isolated from their surroundings, and this method works
well. However, due to noise, sparse sampling, and prox-
imity to other objects, there are cases in which no distance
threshold exists that separates the foreground from back-
ground without also partitioning the foreground (such as the
example in Figure 4).

To motivate the third approach, we note that an algorithm
evaluating a potential foreground segmentation should con-
sider not only whether the foreground has a point close to
the background, but also how many points the foreground
has in proximity to the background. To measure this, we use
the nearest neighbors graph from the previous section, and
quantify the degree to which the foreground is connected
to the background by the cost of its cut. Similarly to im-
age segmentation methods of [5], our algorithm extracts the
foreground starting from the given object location with a
min cut.

Specifically, our segmentation error is the sum of two
weighted terms: a smoothness error, Es, that penalizes
neighboring points from being given different labels and
prevents strongly connected regions from being cut, and a
background error, Eb, that penalizes nodes likely to be in
the background from being labeled as foreground nodes.
We set Es to the cut cost of edges of the nearest neigh-
bors graph. Eb is set to a sum of a background penalty
B(p) among all foreground nodes. In particular, given an
expected background radius R as input to this algorithm,
we set this background penalty to a linearly increasing func-
tion of the horizontal distance to the object location, so that
points near the object location are not penalized from being
labeled foreground, and points at distance R from the loca-
tion are forced by a high penalty to be in the background. As
a hard constraint, we include the point closest to the (hori-
zontal) object location at a predefined height and its M clos-
est neighbors in the foreground (we use M = 3). Then, if
we create a virtual background node connected to all points
with edge weights B(p), the minimizer of the segmentation
error is given by the min-cut between the constrained fore-
ground points and the virtual background node.

The min-cut approach produces segmentation for objects
for some radial scale. Since this scale is not known (it
ranges from 1m to 5m for our objects of interest), we run
the min-cut algorithm for several iterations to automatically

Figure 4. Example of a segmentation in a cluttered environment.

The nearest neighbors graph is shown on the left, with foreground

nodes in black, edges in blue, and edges on the cut in red. The

extracted object is shown on the right.

determine the best background radius for the segmentation.
Starting from the smallest radius in the range, we run the
above algorithm, and increase the radius to the maximum of
the range until (i) the number of foreground points exceeds
a threshold (we use 35) segmentation and (ii) the resulting
cut is below a threshold (we use .4).

An example of a segmentation automatically produced
with the min-cut method with an automatically chosen ra-
dius can be found in Figure 4. On the left of the figure,
we show the graph, and on the right the segmentation re-
sult. Note that in cases like this, an algorithm based on
connected components would have a hard time separating
the foreground from the significant background clutter.

3.4. Feature Extraction

The previous two stages yield segments representing po-
tential objects. In this stage, features are extracted describ-
ing the shape of the objects as well as their context. Since
this step takes as input automatically generated potential
object locations, which include spurious noise as well as
background objects, the features generated here must dis-
tinguish object types from one another as well as from the
background. We investigate both shape and contextual fea-
tures.

Shape Features. We begin with features that describe
the shape of the object in an orientation-invariant way. We
first compute several quantities that describe the segmented
point set: the number of points, estimated volume, average
height, standard deviation in height, and the standard de-
viations in the two principle horizontal directions. Next we
append a spin image descriptor [13] of the shape centered at
the predicted object location with a radius of 2m and central
axis perpendicular to the ground.

Multiple Segmentations. Different segmentation meth-
ods provide different information about the geometry of the
object. A segmentation that takes all points within a radius,



for example, consistently retrieves the entire object, but fails
to remove the background. Min-cut based methods, on the
other hand, usually remove the background but are less con-
sistent to include all of the object. To take advantage of
the different segmentations, we append together the above
shape features computed on several segmentations. In par-
ticular, we use all-above ground points at 2m, min-cut at
4m, and min-cut with automatic radius.

Contextual Features. The position of an object relative
to its environment is a useful cue about its type. Cars, for
example, are found on streets, often in a line, whereas lamp-
posts are found on sidewalks, sometimes in a pattern. We
extract features that describe such cues.

Because digital maps exist that are freely available for
most cities, we incorporated one (OpenStreetMap [1]) into
our automatic algorithm. The first contextual feature we
extract is the distance to the nearest street.

Then, we create a feature that indicates where objects are
likely to be with respect to other objects. Specifically, we
locally orient each training truth object with respect to its
closest street. Then, we create a histogram on a 2-d grid of
the locations of other objects of that class in this local ori-
entation. We aggregate these grids for objects of each class,
creating a locally orientated “autocorrelation”-like grid for
each object type. This tells us, for example, that the pres-
ence of a car predicts another car further down the street.
Then, for each object type, for both training and testing,
we create a “prediction” grid by adding to a globally ori-
ented 2d grid the autocorrelation grids locally oriented at
each object location. This feature is able to provide, for
each 2d location, n features (if there are n object types),
with the each feature indicating the likelihood of an object
with the corresponding label at that location. To create these
globally-oriented prediction grids, for training, we use the
correct object locations and labels, and for testing, we use
the automatically generated locations, classified by the pre-
vious features.

3.5. Classification

In the final stage, we classify the feature vector for each
candidate object with respect to a training set of manually
labeled object locations. The training set does not include
examples of background objects, and thus we augment it
with automatically generated locations that are not close to
truth objects, and label them as “Background”. Then, dur-
ing the testing stage, any query location that is classified as
“Background” is assumed to be part of the background, and
is disregarded.

We experimented with several classifiers using the
Weka [26] toolkit, including: a k-nearest neighbors (NN)
classifier with k = 1 and k = 5, random forests, and
support vector machines (SVM) with complexity constant
C = 2.5 and 5th order polynomial kernels. A comparison
of their performance can be found in Section 4.3.

4. Results

We tested our prototype system on a LIDAR scan cover-
ing 6 square kilometers of Ottawa, Canada [20]. The data
was collected by Neptec with one airborne scanner and four
car-mounted TITAN scanners, facing left, right, forward-
up, and forward-down. Scans were merged at the time of
collection and provided to us only as a single point cloud
covering containing 954 million points, each with a posi-
tion, intensity, and color (Figure 1b). The reported error in
alignments between airborne and car-mounted scans is 0.05
meters, and the reported vertical accuracy is 0.04 meters.
Since the colors collected with car-mounted scanners were
not very accurate, we focused on using geometry for classi-
fication in this study.

Ground truthing was performed in conjunction with BAE
Systems within an area of the city covering about 300,000
square meters and containing about 100 million points (Fig-
ure 1a). Within this area, all objects of the types listed in Ta-
ble 4 were manually located and classified. The object types
were chosen to describe man-made objects found in outdoor
urban scenes whose sizes range from fire hydrants to vans.
This “truth” data provides the basis for our quantitative eval-
uation experiments (we split it into training and testing re-
gions for the recognition experiments) and the training data
for labeling all objects throughout rest of the city.

4.1. Localization

To quantitatively evaluate the localization methods, we
ran each algorithm on the truth area, and recorded the num-
ber of locations produced by each algorithm, how many of
these locations were in range of an object (within 1m), and
how many of the truth objects were in range of a location
(Table 1).

The 3D clustering algorithms performed best, with the
normalized cut clustering locating more truth objects than
the connected components. Class-specific location results
are shown in Columns 3-4 of Table 4. Note that some cars
and fire hydrants are difficult to locate because the former
are very sparsely sampled and the latter are both very small
and sparsely sampled, making it difficult to distinguish from
isolated, small blobs of noise. In addition, cars show worse
performance because of the choice of a constant 1m dis-

Precision Recall
Method Predicted Correct (%) Found (%)

Image Filters 3267 423 (13) 510 (48)
Mean Shift 17402 573 ( 3 ) 680 (64)

CC Clustering 9379 1287 (14) 962 (90)
NC Clustering 10567 1236 (12) 976 (92)
Table 1. Performance of localization algorithms. The first col-

umn has the number of predicted locations, and how many were

in range of an object (precision). The second column shows the

number of objects located and their percentage, out of the 1063 in

our dataset (recall).
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tance threshold for evaluation of all classes; truth car loca-
tions are at the centers of cars, so a predicted location at the
hood of a car, for example, is often evaluated as incorrect.

4.2. Segmentation

To evaluate the segmentation algorithms, ground truth
segmentations are required. To produce these segmenta-
tions, we augmented our min-cut segmentation method with
a simple user interface for manual segmentation [5]. Instead
of automatically selecting foreground nodes and a back-
ground penalty function, the user clicks to add foreground
and background nodes, and the segmentation is interactively
recomputed to respond to the new constraints.

Using this manual segmentation tool, we created ground
truth segmentations for all truth objects. Then, we com-
pared each automatic segmentation against the ground truth
segmentation by finding (a) how much of the automatic seg-
mentation contains the object (precision), and (b) how much
of the object is contained in the automatic segmentation
(recall). An ideal segmentation yields 1 for each, and to-
gether these numbers evaluate the degree of over and under-
segmentation. To isolate the effects of segmentation, we
perform evaluations with true object locations.

We evaluate four algorithms. First, we evaluate all above
ground points at varying radii and connected components
at varying thresholds. Then, we run the min-cut algorithm
with a single, static background radius for several choices
of this background radius. Finally, we run the min-cut algo-
rithm with automatically chosen radius, for several choices
of the cut cost threshold used to choose the radius. The re-
sults are shown in Figure 5. Note that the min-cut segmen-
tation outperforms the connected points segmentation, and
that automatically determining the radius (rather than using
a static radius for all objects) further enhances the perfor-
mance. The per-class results are shown in Columns 5-6 of
Table 4 for the best algorithm (min-cut with automatic ra-
dius). Note that some classes, such as newspaper boxes and
tall posts, are very strongly connected to the background,
which leads to relatively low precision. Other objects, such
as cars, are large and unevenly sampled, which causes rela-
tively low recall rates.

Precision Recall
Feature # Predicted Correct (%) Correct (%)

Shape Features 568 313 (58) 298 (55)
+ Multiple Segs 591 336 (59) 314 (59)
+ Context 586 360 (64) 327 (61)

Table 2. Effect of features on recognition rates.

4.3. Recognition

For the recognition experiment, we designate the north
quarter of the truth area to be the training area, and the rest
to be the test area. In this section, we present three experi-
ments that evaluate the effect of some of our design choices
on the final recognition results: first, we present the effect of
different features, then of different classifiers, and, finally,
we present the per-class results of all the stages of our algo-
rithm.

To test how much each of the features add to the perfor-
mance, we evaluate the recognition rates as more features
are added. To evaluate the recognition, similarly to the lo-
calization evaluation, we consider an automatically labeled
location to be correct if there exists a truth object of the
same type in range (1m), and we consider a truth object to
have been found if our algorithm produces a location of the
same label in range. Therefore, each classification experi-
ment yields a precision/recall pair of values.

Because different classifiers are able to make more use
of some features than others, to get a more robust measure
of how much each feature set improves performance, we
average the recognition results for the classifiers listed in
Section 3.5 (and discussed in more detail below). For each
classifier, we start with the shape features (computed on an
all-point within 2m segmentation), then add shape features
computed on multiple segmentations, and finally add con-
text features. The results, shown in Table 2 describe, for
each choice of features, how many non-background objects
the algorithm predicted, how many of those and what per-
centage was correct, and how many and what percentage of
the truth objects were found.

Shape features identify the easiest objects, with an aver-
age precision of 54% and recall of 55%. Adding multiple
segmentations enhances the performance, and adding con-
textual features raises average the precision and recall rates
to 64% and 61%, respectively. Note that the location algo-
rithm is able to find 92% of the objects, which places a limit
on the number of objects this stage can recognize.

Next, in Table 3 we present the differences in perfor-
mance due to the choice of classifiers described in Sec-
tion 3.5: NN1, NN5, Random Forest, and SVM. SVM per-
forms comparably to the NN5, which outperforms NN1,
and the Random Forest classifier has considerably higher
precision rates at the cost of lower recall. Because of its
higher recall rate, we use SVM for the subsequent experi-
ments.

Finally, we present per-class results for all stages of our



Precision Recall
Classifier # Predicted Correct (%) Correct (%)

NN1 707 379 (54) 344 (64)
NN5 582 374 (64) 342 (63)
Random Forest 368 288 (78) 270 (50)
SVM 687 400 (58) 351 (65)

Table 3. Effects of classifiers on recognition rates.

algorithm in Table 4. For each class (ordered by number of
instances), we present: the number of objects in the truth
area, the number and percent of truth objects found by the
localization algorithm, precision and recall values of the
segmentation algorithm (initialized at truth locations), the
number of objects in the test area, the number of predic-
tions made by our recognition algorithm, and the precision
and recall rates of this algorithm. Note that the labels in the
table do not include the special “Background” category; of
the 6514 locations predicted in the test area, 5827 are clas-
sified as background, 96% of them correctly (in the sense
that they do not have a true object in range).

From these results, recognition rates are clearly highest
for object types with more examples. Looking closely at the
classes with few training examples (lower rows of the table),
we note that the the location and segmentation algorithms
perform very well for these classes, and thus we conclude
that the main bottlenecks in recognition performance are the
feature extraction and/or classification stages. These results
suggest that investigation of better shape descriptors, con-
textual cues, and/or classifiers that explicitly adapt to few
training examples are suitable topics for follow-up work.

4.4. Large-scale recognition

In the final experiment, the 1000 or so truth objects (Fig-
ure 1a) were used to find and recognize 6698 objects in
the remainder of the city (Figure 1b). The entire process
took 46 hours on a 3GHz PC: 15 hours to pre-process the
points (estimate ground and buildings); 6 hours to produce
about 95,000 locations; 15 hours to produce segmentations;
6 hours to extract features; and 4 hours to classify using
SVMs. While this experiment was run on a single PC, most
of these steps are parallelizable. An example scene is shown
in Figure 1c. Although we cannot quantitatively evaluate
these results, visual confirmation suggests that they have
similar recognition rates to those recorded in the truth area.

5. Conclusion

We described a system that recognizes small objects in
city scans by locating, segmenting, describing, and classi-
fying them. We described several potential approaches for
each stage, and quantitatively evaluated their performance.
Our system is able to recognize 65% of the objects in our
test area.

One of our major design decisions was to perform loca-
tion and segmentation before labeling objects. We believe

that the results for these two stages validate this approach:
we can locate most objects, and segment with a high degree
of accuracy. Therefore, it makes sense to perform further
processing at the level of point clouds representing potential
objects, rather than at the level of individual points. While
both location and segmentation algorithms have room for
improvement, we believe that the direction of future work
that would most benefit recognition rates lies in the creation
of additional features. Our system would benefit from more
discriminative shape features as well as additional contex-
tual features.
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