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Abstract

This paper describes a fully automatic pipeline for finding an in-
trinsic map between two non-isometric, genus zero surfaces. Our
approach is based on the observation that efficient methods exist to
search for nearly isometric maps (e.g., Möbius Voting or Heat Ker-
nel Maps), but no single solution found with these methods pro-
vides low-distortion everywhere for pairs of surfaces differing by
large deformations. To address this problem, we suggest using a
weighted combination of these maps to produce a “blended map.”
This approach enables algorithms that leverage efficient search pro-
cedures, yet can provide the flexibility to handle large deformations.

The main challenges of this approach lie in finding a set of candi-
date maps {mi} and their associated blending weights {bi(p)} for
every point p on the surface. We address these challenges specif-
ically for conformal maps by making the following contributions.
First, we provide a way to blend maps, defining the image of p
as the weighted geodesic centroid of mi(p). Second, we provide
a definition for smooth blending weights at every point p that are
proportional to the area preservation of mi at p. Third, we solve
a global optimization problem that selects candidate maps based
both on their area preservation and consistency with other selected
maps. During experiments with these methods, we find that our al-
gorithm produces blended maps that align semantic features better
than alternative approaches over a variety of data sets.
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1 Introduction

Finding a map between two surfaces is a fundamental problem in
computer graphics with applications in morphing, texture transfer,
geometry synthesis, and animation. For many of these applications,
the objective is to find an intrinsic map f : M1 !M2, for a pair
of non-isometric meshes M1 and M2, such that f is smooth and
“low-distortion” everywhere (as isometric as possible). With such a
map, it is possible to transfer attributes [Kraevoy and Sheffer 2004],
study surface variations [Allen et al. 2003], and process meshes
consistently [Golovinskiy and Funkhouser 2009].

The general approach to this problem is to search a discrete space of
possible maps, selecting the one that minimizes a prescribed distor-
tion measure. With this discrete formulation, the key challenge is to
select a space of maps that is both small enough to search efficiently
and large enough to contain useful maps between non-isometric

Figure 1: Automatically-extracted map f between cow and giraffe
(same map is rendered from two viewpoints). We color each vertex
on giraffe’s body by it’s {x, y, z} position. Then every vertex v on
the cow’s body is mapped to the giraffe by f , and colored the same
as f(v)

surfaces found in real-world problems. One approach is to search
an exponentially large space of maps (e.g., all N ! sets of correspon-
dences between N sparse feature points), which can include a wide
variety of useful deformations, but requires an NP-Hard search al-
gorithm. An alternative approach is to search a low-dimensional
space of intrinsic maps (e.g, using geodesic feature vectors, Heat-
Kernel maps, conformal maps, etc.), where polynomial-time search
algorithms are available, but whose variety of deformations is lim-
ited. The problem is that no known space of maps is both polyno-
mial in size and contains the deformations commonly found in real-
world surface correspondence problems (e.g., even articulations of
people and animals can deviate significantly from conformality or
isometry), and so there is not an obvious solution to this problem.

Our approach is to search for a continuous blend of multiple low-
dimensional maps. By combining maps with weights varying
smoothly over the surface, we define a space of maps that in-
cludes a large range of deformations, yet still can be searched with
polynomial-time algorithms. In this paper, we consider blends of
conformal maps with weights that: 1) are proportional to the area-
preservation of the map at every point, and 2) incorporate global
similarity relations between different conformal maps. In this way,
we favor maps that locally aim to preserve both angles and areas
(i.e., near-isometries), but globally are consistent and can achieve
extreme deformations.

This method finds a smooth map in polynomial time that empiri-
cally aligns semantic features of non-isometric meshes effectively.
During experiments with a test set of 334 surface pairs, our blended
map is able to align benchmark correspondence points on different
meshes within the same object type better than several state-of-the-
art methods. For example, a blended map between a cow and a gi-
raffe is shown in Figure 1 (a failure case in [Lipman and Funkhouser
2009]) – note that the map is nearly-isometric locally, even though
it provides a smooth map between significantly different shapes.

Our paper makes four main research contributions: 1) the idea of
combining multiple low-dimensional intrinsic maps to produce a
blended map, 2) an objective function for a weighted collection of
maps that favors both confidence of maps and consistency between
pairs of maps, 3) a method for estimating the consistency of two
maps at a point, and 4) an optimization pipeline that produces a
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globally optimal weight assignment for a set of maps. These meth-
ods are implemented in a test suite of code and data that is publicly
available at http://www.cs.princeton.edu/˜ vk/CorrsBlended/.

2 Previous Work

Finding correspondences between surfaces is a long standing prob-
lem with a rich variety of previous methods and applications [van
Kaick et al. 2010; Chang et al. 2010; Bronstein et al. 2008].

Inter-surface mapping Given a set of correct sparse correspon-
dences (defined by a user or an algorithm), one can use a vari-
ety of methods to find a smooth map interpolating them. A com-
mon approach is to map both surfaces to a canonical domain where
sparse feature points align and then interpolate the map in that do-
main [Alexa 2001]. For example, [Praun et al. 2001] used a base
coarse mesh (provided by a user) as such a domain. In their ap-
proach, the surface is cut into triangular patches defined by three
geodesic curves, such that each geodesic curve is mapped to a trian-
gle on a coarse base mesh. Further, [Schreiner et al. 2004; Kraevoy
and Sheffer 2004] developed an automatic approach for creating the
base domain. These methods, however, were only evaluated with
manually labeled sparse correspondences as their input, and they
are too expensive to be used for finding sparse correspondences in
a fully automatic algorithm.

Finding sparse correspondences Several methods have been pro-
posed for automatically finding a small (sparse) set of feature corre-
spondences, which could be used to produce an inter-surface map.
The most common approach of this type is to first extract a set of
feature points and then to explore permutations of them to find the
correspondences implying an alignment with minimal deformation
error [Huang et al. 2008; Zhang et al. 2008]. This approach is effec-
tive when local shape descriptors at the feature points are very dis-
tinctive, but quickly becomes too expensive when local shapes are
different and measurement of global deformations implied by many
points are required for discriminating the optimal solution. Even
with pruning based on branch-and-bound [Gelfand et al. 2005] or
priority-driven search [Funkhouser and Shilane 2006], the search
space is simply too large to explore efficiently, and so heuristics
are employed and/or few feature correspondences are found, which
makes finding a good inter-surface map difficult.

Iterative closest points Some methods find surface correspon-
dences through an iterative procedure that starts with an initial
correspondence and then repeatedly improves it by computing an
aligning transformation from the correspondences and then updat-
ing the correspondences based on the transformation (e.g., based
on mutually closest points). This method is most commonly used
for aligning surfaces related by a rigid transformation [Besl and
McKay 1992], but has also been used for moderate non-rigid defor-
mations [Allen et al. 2003; Brown and Rusinkiewicz 2007; Li et al.
2008; Pauly et al. 2005; Tevs et al. 2009; Ghosh et al. 2009]. Unfor-
tunately, it does guarantee that the final map is smooth or bijective
(two points on one surface may map to the same point on another),
and it requires a good initial guess to succeed in most cases.

Finding dense correspondences Other methods directly find cor-
respondences for all points on a surface. For example, the
Gromov-Hausdorff distance motivated a purely intrinsic approach
by [Mémoli and Sapiro 2004] to measure deviation from isometry
between two surfaces, and [Bronstein et al. 2006; Bronstein et al.
2008] developed a Generalized Multidimensional Scaling (GMDS)
framework to find the least distortion embedding of one surface
onto another. These methods use an approximate search procedure
to find an initial guess of point correspondences and thus may con-
verge to a local minimum.

Surface embedding Some methods find dense correspondences by
embedding surfaces in feature space where similar points have sim-
ilar coordinates and then produce a dense map based on nearest
neighbors in that space. For example, [Ovsjanikov et al. 2010]
showed that a single correspondence can define a Heat Kernel Map
(HKM), a high dimensional embedding of a surface invariant under
isometry. The disadvantage of these methods is that they are effec-
tive only for deformations that are nearly isometric – otherwise fea-
tures do not align in the embedded space. [Ovsjanikov et al. 2010]
suggested a simple extension of their approach to non-isometric
cases: they concatenate features from two heat kernel maps gener-
ated by two correspondences into a single feature vector and search
for nearest neighbors in that space. However, still it is not obvious
how to best select multiple correspondences, and still the resulting
map is not guaranteed to be smooth, or even continuous, when sur-
faces are not isometric.

Exploring Möbius Transformations The methods most similar
to ours are the ones of [Lipman and Funkhouser 2009] and [Kim
et al. 2010]. They both leverage the fact that isometries are a sub-
space of the conformal maps, which are low-dimensional and can
be explored efficiently with Möbius Transformations. They differ
in the way they search and combine the maps: [Kim et al. 2010]
uses a RANSAC algorithm to discover the single “best” confor-
mal map that maps a surface onto its reflection, while [Lipman and
Funkhouser 2009] combines multiple maps with an algorithm that
votes for correspondences. The former approach works only for
nearly-isometric surfaces (e.g., intrinsic symmetries), while the lat-
ter approach may produce globally inconsistent correspondences
(when votes for inconsistent maps combine in the correspondence
matrix).

Overall, to our knowledge, there is no existing fully automated
method that finds a smooth, low-distortion map between signifi-
cantly non-isometric surfaces in polynomial time.

3 Key Idea

Our approach is to search for a map that smoothly blends multiple
low-dimensional maps. This approach allows a search procedure to
explore a polynomial size space of maps, while providing the flexi-
bility to find smooth maps between surfaces differing by significant
deformations.

A motivation for this approach is provided in Figure 2. Our goal
in this example is to produce a smooth map between the surfaces
of a person in two different poses, such that the map is “as isomet-
ric as possible.” Although the surfaces are nearly isometric, there
is no known low-dimensional map that takes one surface onto the
other with small distortion everywhere. For example, the top row
shows three conformal maps, each of which provides low distortion
(blue) for most of the body, but has large distortions (red) on dif-
ferent parts of the arms and head. While none of these conformal
maps provide a good solution for the entire body, they can be com-
bined with weights (bottom left) to form a blended map with small
distortion almost everywhere (bottom right).

In this paper, we investigate ways to define blended maps and com-
pute them automatically for pairs of genus zero surfaces. Specifi-
cally, given a pair of surface meshes M1 and M2, our goal is to
find a set of K candidate maps {mi}K

i=1 : M1 !M2 associated
with smooth blending weights bi(p) for every point p, such that the
blended map f : M1 !M2 defined as follows has low distortion
across the entire surface:

f(p) = argmin
p02M2

KX

i=1

bi(p)dM2

`
p0, mi(p)

´2
, (1)



Figure 2: Motivation for our approach. In the top row, three low-
dimensional conformal maps m1, m2, and m3 are defined by three
correspondences rendered as red lines. Map confidence is rendered
in color on a surface, where blue corresponds to 0 area distortion,
and red is high distortion. The three low dimensional maps are
blended according to weights encoded as RGB colors in the bottom-
left image. The resulting blended map in the bottom-right corner
has lower local distortion than any of the three maps above.

where dM2(·, ·) denotes the geodesic distance on surface M2.

Intuitively, this definition maps every point p to the weighted
geodesic centroid of its images {mi(p)} for all maps {mi}K

i=1. We
use this definition because it guarantees smoothness of the blended
map if the candidate maps {mi(p)} and blending weights {bi(p)}
are both smooth, and because we believe that it contains most de-
formations commonly found in real-world surface correspondence
problems. For instance, in the example shown in Figure 2, weights
are chosen such that only one of the three candidate maps influences
each of the arms and the head strongly, but they blend together
smoothly to form a map with no discontinuities and low overall
distortion on the body.

Given this definition, the key research challenge is to provide auto-
matic methods to generate a set of candidate maps with associated
blending weights. Intuitively, the ideal solution should guarantee
smoothness of the blending weights bi(p), assign large weights
at p only to maps mi that induce small distortions at mi(p), and
assign non-zero weights at p only for sets of maps that are con-
sistent with one another (i.e., if bi(p) > 0 and bj(p) > 0, then
dM2 (mi(p), mj(p)) should be small). If these constraints are sat-
isfied, then the resulting map will be smooth and have low distortion
everywhere.

In this paper, we focus on algorithms to address these challenges for
blending conformal maps. Conformal maps are low-dimensional
and thus efficient to search; they preserve angles and thus avoid
distortions with shear; they contain isometries as a special case and
thus they are a common type of map for non-rigid deformations;
and, finally, they simplify the problem of finding blending weights
in our formulation, because it is possible to estimate analytically the
distortion of a conformal map at given point (e.g., how well area is

preserved in the point’s neighborhood). Thus, we can partition the
computation of blending weights into two factors:

bi(p) = ci(p) · wi(p),

where ci(p) measures the “confidence” of the conformal map mi at
point p based on an estimate of its area-preservation at p, and wi(p)
are the “consistency” weights that indicate to what extent a map
should be used for blending. The key observation is that the first
factor, ci(p), already provides a smoothly varying estimate for the
distortion of each map mi at p (as shown in the top row of Figure 2),
and thus captures the spatially varying aspects of bi(p). The second
factor, wi(p), can then be treated as a constant across the surface,
which greatly simplifies computation of optimal blending weights.

The following four sections describe our algorithm to compute
blended maps between two surfaces automatically. Given two in-
put surfaces, we first generate a set of candidate conformal maps
(Section 4). Then, we estimate the confidence ci(p) for each map
at every point p (Section 5). We next compute consistency weights
wi for every conformal map mi by optimizing an objective function
that favors non-zero weights only for sets of maps that are both high
confidence and consistent with one another (Section 6). Finally, we
produce a final blend with these weights using Equation (1) (Sec-
tion 7). The methods employed in Sections 4, 5, and 7 are straight-
forward – detailed descriptions are included mainly for the sake of
completeness and reproducibility. Our main algorithmic contribu-
tion is in Section 6, which describes a method for finding optimal
consistency weights to be used for blending in our formulation.

4 Generating Maps: {mi}K
i=1

Our first step is to generate conformal maps that will form a can-
didate set for blending. Our goal is to provide a small set of maps
such that at least one map achieves small distortion at every impor-
tant feature point, and such that areas mapped with low distortion
by different maps overlap significantly so that they can be blended
without distortion.

To generate such a candidate set, we follow the procedure used in
[Lipman and Funkhouser 2009; Kim et al. 2010]. We first compute
a small collection of feature points, P1 ⇢ M1 and P2 ⇢ M2,
on both surfaces. Then, we generate candidate conformal maps by
enumerating triplets of three feature point correspondences, where
each pair of triplets uniquely defines a Möbius transformation that
maps one surface onto the other conformally while interpolating the
feature point correspondences.

Generating feature points: our first task is to generate sets of
feature points P1 and P2 on M1 and M1. Our goal is to produce a
small number of feature points with a large fraction of semantic cor-
respondences. Although many methods are possible, we currently
extract points at maxima of the Average Geodesic Distance func-
tion AGDM`(p) =

R
M`

dg(p, p0)dA(p0), where dA denotes the
area element on the surface M`, ` = 1, 2. This method provides
corresponding feature sets particularly well for articulated figures
(e.g., tips of extremities and top of head), and thus a small num-
ber of features is usually required to achieve multiple semantic cor-
respondences spread throughout the surfaces. For most examples
presented in this paper |P`|  10.

Generating conformal maps: our next task is to generate a can-
didate set of conformal maps {mi}K

i=1. Following [Lipman and
Funkhouser 2009], we first conformally map the two surfaces to the
extended complex plane using mid-edge uniformization [Pinkall
and Polthier 1993]. We then generate a set of conformal maps by



enumerating all possible combinations of three correspondences be-
tween feature points in P1 and P2 (generating correspondences)
and construct a conformal map mi for each one by computing
the Möbius transformation that interpolates all three correspond-
ing points. This procedure produces K =

`|P1|
3

´
·
`|P2|

3

´
· 6 distinct

conformal maps that form the set {mi}K
i=1 that will be candidates

for blending in the following steps. Please refer to [Lipman and
Funkhouser 2009; Kim et al. 2010] for details.

5 Defining Confidence Weights: {ci(p)}K
i=1

Our second step is to compute a confidence value ci(p) that esti-
mates how much distortion is induced by each map mi at every
point p. Though many formulations are possible to measure dis-
tortion at a point, in this work we aim to estimate deviations from
isometry.

Since conformal maps preserve angles, we can estimate deviation
from isometry simply by measuring the scale factor induced by the
map at every point p (isometries are conformal maps that preserve
scales). To do so, we define

ci(p) = 2
.» area(Np)

area(mi(Np))
+

area(mi(Np))
area(Np)

–
, (2)

where area(Np) is the area of a neighborhood, Np, around point
p on M1 and area(mi(Np)) is the area of its image, mi(Np), on
M2.

For computational efficiency, we calculate ci(p) only at a set Peven
of 256 approximately evenly distributed points. The set is produced
by starting with a random vertex and then iteratively adding vertices
that are farthest from the set Peven until |Peven| = 256 [Eldar et al.
1997]. Confidence weights ci(p) for all other vertices are calculated
using smooth interpolation with Gaussian weights.

These estimates of ci(p) based on area preservation are quick to
compute, vary smoothly across the surface, and correlate well with
low-distortion in a map, and thus they provide the desired properties
of the spatially varying factor in our blending weights.

6 Finding Consistency Weights: {wi}K
i=1

The next step is to compute a set of consistency weights {wi}K
i=1

for all conformal maps {mi}K
i=1. Ideally, this set will have weights

with zero values for conformal maps that induce high distortion
(e.g., the generating triplet of feature correspondences contains in-
correct matches) and non-zero weights only for conformal maps
that are consistent with one another.

6.1 Objective Function

Following this intuition, we define the consistency weights ~w :=
{wi}K

i=1 as the minimizer of an objective function, E(~w):

EM1(~w) =
PK

i=1

PK
j=1 wiwj

R
p2M1

Si,j(p)ci(p)cj(p)dA(p)

subject to
PK

i=1 w2
i = 1, (3)

where confidence values ci(p) are defined as in the previous sec-
tion, and pairwise map consistency values Si,j(p) : M1 ! R
provide an estimate of how consistent two maps are at a point p.
We constrain the L2 norm of weights to be 1 since we want to favor
global maps that include multiple similar maps.

Roughly speaking, for every choice of weights ~w giving non zero
weights to some subset of maps, the functional measures how pair-
wise consistent is this set and how well each individual in this set

preserves area. The weights achieving the minimum of this objec-
tive function will signal out the correct set of maps to be used in the
blending.

Map Consistency The most important term in the objective
function is the similarity measure Si,j(p) for a pair of maps
mi, mj . Intuitively, Si,j(p) should be high if maps mi and mj

are similar at point p. To model this intuition, we define the con-
sistency for a pair of maps mi and mj at a point p to be inversely
related to the geodesic distance between images of the point p under
the two maps, mi(p) and mj(p):

Si,j(p) = exp
„
�dM2 (mi(p), mj(p))

�2

«
(4)

Note that 0  Si,j(p)  1 at any point p, Si,j(p) = 1 iff mi(p) =
mj(p), and � is a controllable parameter that controls how close
images of a mapped point should be in order for a pair of maps to
be considered similar (we use � = 0.5 for all results in this paper).

Since calculating Si,j is at the core of our objective function we
need to make this computation as efficient as possible. However, for
high-resolution meshes, calculating geodesic distances between any
arbitrary pair of vertices can be expensive. Instead of calculating
Equation (4) directly, we replace it with:

Si,j(p) = exp

 
�

dM1

`
p, m�1

j (mi(p))
´

�2

!
(5)

The reason is that we can then evaluate the consistency function
Si,j only for a subset of points Peven and therefore geodesic dis-
tances from point p to every other vertex on M1 can be precom-
puted and stored. For example, Figure 4 shows similarity values for
two pairs of maps.

Figure 4: These images show the similarity function Si,j(p) for
a pair of conformal maps mi, mj (values range from 0 (red) to 1
(blue)). The generating correspondences are depicted by red lines
for map mi and by blue lines for map mj .

6.2 Optimizing for map consistency weights

In this step, we optimize Equation (3) for the consistency weights:
{wi}. To do this, we define a blending matrix

Si,j =

Z

M1

ci(p)cj(p)Si,j(p)dA(p).

with which Equation (3) can be written as

EM1(~w) = ~wT S~w , k~wk2 = 1. (6)

Since S is symmetric, the top eigenvector is the optimal maximal
solution (maximizing the Rayleigh quotient EM1 ). The Perron-
Frobenius theorem assures us that all the entries of this optimal



Figure 3: This figure depicts the blending matrix Si,j rearranged by consistent blocks of decreasing size. Each row (and column) corresponds
to a conformal map. Several conformal maps are illustrated on the left. Note that Si,j is sparse and contains approximately two large blocks
that correspond to the correct near-isometric map and its symmetric flip. We also show the spectrum of this matrix. Note the spectral gap
separating the two eigenvectors corresponding to the near-isometries from the rest of the spectrum. On the right we show the two blended
maps corresponding to these top two eigenvectors, together with their confidence functions and its integral (single number printed in blue).
Note the red arrows that indicate small regions that allow us to distinguish between the correct map and the symmetric flip. For instance,
mapping front of a human to the back results in more area distortion at feet (due to heels), at knees, and at buttocks.

~w are of constant sign and therefore can be chosen to be positive.
Thus, a simple optimization to achieve the consistency weights is
to find the top eigenvector ~w of S, define the blending weights
bi(p) = ci(p)wi, and construct the blended map f as described
in Equation (1).

However, there are two issues: 1) the matrix S for many feature
points is large (remember we have

`|P1|
3

´
·
`|P2|

3

´
· 6 distinct con-

formal maps), and 2) in a presence of intrinsic symmetries (or near-
intrinsic-symmetries) there is more than one “correct” (i.e., near-
isometry) map between the surfaces. We address these issues as
follows.

Computing the Blending Matrix Filling in the matrix is the
most computationally involved step of our approach. For exam-
ple, given N feature points on both surfaces, one can construct`

N
3

´
·
`

N
3

´
·6 = O(N6) distinct conformal maps, thus filling the ma-

trix S̃ requires O(N12) · |Peven| operations. Fortunately, this matrix
is extremely sparse (see Figure 3), and the sparsity can be exploited
with a few simple observations. Practically, highly consistent val-
ues between conformal maps are possible mainly when they share
consistent subsets of generating correspondences. Thus, we only
calculate Si,j for pairs of maps that share two (out of a possible
three) generating correspondences and do not have any “conflicting
correspondences” (i.e., when a feature point on one surface is in
correspondence with two different feature points on the other sur-
face), and set Si,j for others to zero. Furthermore, we restrict the
maximal number of conformal maps to 10, 000. If more maps gen-
erated we randomly remove maps until we are left with 10, 000.

To further speed the computation, we approximate Si,j using a uni-
form point sampling. Specifically, for each pair of maps, we com-
pute Si,j by summing over a discrete set of 256 evenly distributed
points (Peven):

Si,j ⇡
X

p2Peven

ci(p)cj(p)Si,j(p)Ai,

where Ai are the constant units of area area(M1)
256 = 1

256 .

Processing Eigenvectors If either of the two surfaces has an
intrinsic near-symmetry, there may be more than one near-isometry

between the surfaces. Hence, there will be more than one group
of Möbius transformations such that the corresponding consistency
weights {wi} yield a high energy value in Equation (3). In case one
of the groups of Möbius transformations is (even slightly) better
than the rest (in the sense that its consistency vector produce higher
energy), the eigenspaces of S will naturally separate this better map
from the other candidate maps. For example, Figure 3 shows two
humans where there are two possible near isometric solutions cor-
responding to the two top eigenvectors. In this case the better map
was characterized by higher energy level (eigenvalue).

Nevertheless, sometimes the different near isometries have very
close energy level and the corresponding eigenvectors are blended.
In this case any top eigenvector can contain a linear combination
of good weight vectors ~w that are originated from different near-
isometries of the two surfaces. To avoid blending inconsistent
maps we follow the next steps to extract sets of candidate consistent
weight vectors ~w1, ~w2, ..., ~wn and analyze them to select the best
one.

First we recognize the top eigenvectors by taking all eigenvectors
with eigenvalues separated by the spectral gap to the rest of the
spectrum of S, see Figure 3. Practically, we take eigenvectors ~w
that correspond to eigenvalues within 75% of the top eigenvalue.

Second, we construct the weights ~w1, ~w2, ..., ~wn by separating the
different conformal maps with high values in these eigenvectors to
different groups G1, G2, ..., Gn (clusters) as follows. We start by
seeding the first group G1 to contain the conformal map that cor-
responds to the top entry (measured in absolute value of the top
eigenvector). Then, we traverse the rest of the conformal maps cor-
responding to high entries (top 25% of that eigenvector). For each
conformal map, we check whether its generating correspondences
are consistent with the maps chosen already in G1 (i.e., has no con-
flicting correspondences). If so, it is not conflicting, and we add it
to G1. Otherwise, we start a new group G2 seeded with this map.
We continue in this fashion until all the eigenvectors belonging to
top eigenvalues are processed. We then threshold the weights to
{0, 1} to enforce the expected block structure of the group in the
matrix and to eliminate maps with nearly zero weight from further
processing, yielding a set of groups G1, .., Gn with corresponding
binary weights ~w1, .., ~wn.

The last step is to choose among the different candidate weights



~w1, ..., ~wn the best one. The above procedure generates weights
corresponding to clusters of consistent maps, all of which provide
an approximately optimal solution to the objective function defined
in Equation (3). To select the best among them, we construct from
each candidate vector the final blended map ~wj ! f j , and pick the
blended map that is most confident overall – i.e., globally preserves
area best over the whole surface:

f = argmin
{fj}n

j=1

Z

M1

cfj (p)dA(p).

For example, the mapping between two human body surfaces would
usually generate two weight vectors ~w1, ~w2: one corresponds to the
correct map, and one to an intrinsic rotation by 180� under which
the front of a human goes to the back, left side maps to right side,
etc... Note that both these assignments are globally consistent, and
each of the maps have similar confidence to their symmetric coun-
terparts. However, the blended map corresponding to the intrinsic
rotation (flip) usually introduces more area distortion for some parts
of a body like feet or knees, see Figure 3. This allows us to distin-
guish between good and flipped solution.

7 The Blended Map

Now we can use low-dimensional maps mi defined in Section 4
with the importance weights wi obtained in Section 6 to construct
the blending map defined in Equation (1). Note that as long as our
confidence ci(p) changes smoothly over the surface the resulting
blending map will also be smooth.

Figure 5 shows how f(p) is found at a point p by blending mi(p)
with the calculated weights. For efficiency sake, we find it useful to
approximate the geodesic centroid by projecting the weighted Eu-
clidean centroid f̃(p) =

P
i bi(p)mi(p)

.P
i bi(p) onto the clos-

est point on the surface M2, an alternative that trades efficiency
for accuracy. This is a favorable trade-off because weights used
for blending tend to be non-negligible only for a small number of
points concentrated very close to one another, in practice, in which
case centroids based on Euclidean distances provide a good approx-
imation.

Figure 5: Correspondences due to conformal maps with non-zero
blending weight are depicted on the left image, where the color
is set according to confidence ci(p) ranging from red = 0 to
green = 1. The resulting approximate geodesic centroid is on the
right image.

8 Results

We test our approach on a benchmark constructed from TOSCA,
SCAPE and Watertight data sets. We quantitatively analyze per-
formance of our algorithm in various settings and compare results
to several state of art methods for finding inter-surface maps and
correspondences.

8.1 Data Sets

We selected three data sets that have a large variety of objects with
ground-truth correspondences:
SCAPE 71 meshes representing a human body in different
poses [Anguelov et al. 2004]. All the meshes were fit to scanner
data with a common template, and thus they share the same mesh
topology, providing a ground truth map for every vertex for any pair
of surfaces (corresponding colors in Figure 6a).

TOSCA 80 meshes representing people and animals in a variety
of poses [Bronstein et al. 2008]. The meshes appear in 8 groups
with common topology, providing a per vertex ground truth map
for any pair within a class (corresponding colors in Figure 6b).

Watertight: 400 meshes arranged evenly in 20 object categories,
many of which are articulated figures (humans, octopus, four-
legged animals, ants, etc.). The meshes were originally created for
the SHREC 2007 Watertight Shape Retrieval Contest [Giorgi et al.
2007]. We selected 11 classes for our experiments that have well
defined correspondences and genus zero (Human, Glasses, Air-
plane, Ant, Teddy, Hand, Plier, Fish, Bird, Armadillo, Four-legged
Animal). In addition, we excluded two human models with non-
zero genus.

In cases where no ground truth map was provided with a data set
(e.g., Watertight), we established a sparse set of “ground truth” cor-
respondences manually. Specifically, we recruited a volunteer to
use an interactive program to select 10-35 semantically meaning-
ful feature points in a manner that is consistent across all meshes
within the same object class. For example, our volunteer selected
35 feature points for each human and 20 feature points for each
four-legged animal (Figure 6c). These feature points form the ba-
sis for establishing symmetric correspondences and for evaluating
maps between surfaces in the same object class.

Figure 6: Ground truth examples. SCAPE and TOSCA models are
colored according to ground truth per-vertex correspondences.

8.2 Evaluation Methods

To evaluate the accuracy of a predicted map, f : M1 !M2 with
respect to a “ground truth” map, ftrue : M1 ! M2, we compute
for every point, p, on M1 in the ground truth correspondence the
geodesic distance, dM2(f(p), ftrue(p)), between its image in the
predicted map, f(p), and its true correspondence, ftrue(p) .

We aggregate these geodesic distances into an error measure:

Err(f, ftrue) =
X

p2M1

dM2(f(p), ftrue(p))

where dM2(f(p), ftrue(p)) is normalized by
p

Area(M2), as all
distances are throughout this paper.

We also generate plots to examine the distributions of errors, where
the x-axis represents a varying geodesic distance threshold, D,
and the y-axis shows the average percentage of points for which
dM2(f(p), ftrue(p)) < D (Figure 7 provides a scale bar for D).



To separate errors due to poor alignments from ones due to sym-
metric flips, we produce two such plots. The first is as already
described. The second is similar, but factors out the effects of con-
fusion in the predicted map due to global intrinsic reflective sym-
metries (e.g., bilateral symmetries that map the left side of a human
to the right side). It plots the fraction of predicted correspondence
points that either are closer than the geodesic distance threshold D
to the correct correspondence point OR are closer than the thresh-
old to the symmetric image of the correct correspondence point –
i.e., it provides no penalty for predicting a map that is a symmetric
flip with respect to the correct one. These plots favor methods that
do not preserve orientations in predicted maps (other methods, not
ours, as conformal maps are orientation-preserving).

Figure 7: Reference for normalized geodesic distances on surfaces
(measured to the nearest seed point). Colors are labeled by dis-
tances as shown in the legend on the right hand side.

8.3 Comparison to Other Methods

We compare our work to several state of the art methods for finding
inter-surface correspondences:

• Blended Map - the method proposed in this paper

• Best Conformal - the least-distortive conformal map roughly
describes what is the best performance achieved by a single
conformal map without blending.

• Möbius Voting* - the method proposed by [Lipman and
Funkhouser 2009] explores millions of conformal maps gen-
erated by random triplets on a surface, and votes for corre-
spondences generated by area-preserving maps. The output
of this method is 50-100 coarse correspondences.

• Heat Kernel Matching (HKM) with 1 correspondence -
This method is based on matching features in a space of a heat
kernel for a given source point as described in [Ovsjanikov
et al. 2010]. A full map is constructed from a single corre-
spondence, which is obtained by searching a correspondence
that gives the most similar heat kernel maps. We use code
provided by authors for this experiment.

• HKM with 2 correspondences - in a non-isometric case the
previous method might obtain better results by using a second
correspondence. The matching is then performed in the aug-
mented feature space of two heat kernel maps. With minimal
changes to the original author’s code we follow a procedure
outlined in [Ovsjanikov et al. 2010] exhaustively searching
for the second correspondence that minimizes the geodesic
distortion.

• GMDS* - we use the method of [Bronstein et al. 2006]
for surface matching. Authors hierarchically find correspon-
dences between points by searching for assignment that best
preserve geodesic features. We use authors implementation of
this method with default parameter settings to find 50 coarse
correspondences.

Note that some of these methods (marked with a ”*” in the list
above) only produce a sparse set of point correspondences, rather

than a full surface map as required for comparison with our evalu-
ation metrics. In those cases, we produce a full map from surface
M1 to M2 by interpolating the sparse correspondence to using a
method based on GMDS – we compute for each vertex on M1 the
geodesic distances to all sparse correspondence points on M1, and
then establish a correspondence to the vertex on M2 with the most
similar distances to sparse correspondence points on M2 [Bron-
stein et al. 2008]. This method was chosen because it is simple
to implement and because the accuracy is sufficient when a large
number of sparse correspondences is provided, as is the case for all
methods considered in this study.

Note also that the code available for some of these other methods
crashed on meshes in our test data sets (8 in all). To keep compar-
isons fair, we eliminated those meshes from our evaluation in all
experiments.

Near isometric pairs in TOSCA In our first experiment, we stud-
ied how methods perform for nearly isometric pairs of surfaces
from the TOSCA data set. Specifically, for each model, we picked
a random model within the same class, and then computed a map
from one to the other use each algorithm. Results of this experi-
ment are shown in Figure 8, where each curve depicts the percent-
age of correspondences with error below some normalized geodesic
distance for a different method. Please note that our method (blue
curve) detects over 75% correct correspondences for a small thresh-
old of 0.05 and converges to finding almost all correct correspon-
dences within geodesic error 0.2. We visually examine maps pro-
duced with our method and observe several small misalignments
in some faces and limbs of animals mostly due to badly selected
feature points.

In the bottom image of Figure 8, we show the fraction of correspon-
dences within the distance threshold, if we also allow maps that in-
vert surface orientation. This plot reveals that methods based on
geodesic distances: GMDS and HKM (green, magenta and black
curves) are commonly confused by bilateral reflective symmetry
and intrinsic 180� rotation present in humans and animals. Note
that although methods based on conformal geometry cannot pro-
duce a reflected solution, they still can intrinsically rotate a surface
by 180� mapping front of a human to the back. In this case, errors
also become smaller, since distances between front and back of a
limb are smaller than distances between left and right limbs. Still
the ranking of methods is largely the same.

Near isometric pairs in SCAPE The next experiment compared
maps found between nearly isometric models in the SCAPE data
set. For each SCAPE model, we picked another one at random, to-
taling to 71 pairs, and computed the mapping. Results are shown
in Figure 9. These meshes are less smooth than TOSCA meshes,
which explains the decrease in performance for algorithms based on
conformal geometry, since mid-edge uniformization suffers from
non-delaunay triangles, but does not affect GMDS (green) and heat
kernel methods (magenta and black). The main source of error in
this data set is confusion due to intrinsic symmetry in humans. Note
that due to the aforementioned problem with individual conformal
maps the resulting blended map in some cases does not have enough
accuracy to distinguish between front and back of a human. Also
note that although Möbius Voting (red) always provides better cov-
erage than the best conformal map it suffers from picking inconsis-
tent correspondences, which explains similar performance of these
two methods in this experiment.

Non-isometric humans In a realistic settings, it is desirable to
obtain correspondences between surfaces with different resolutions,
tessellations, and even semantic variations. In this experiment, we
used all 71 human models from SCAPE data set, 43 from TOSCA
(including gorilla), and 18 from SHREC (excluding two humans



Figure 8: TOSCA: performance of various methods on nearly-
isometric human and animal models. We depict a geodesic distance
on the x-axis, and a percentage of correspondences within the pre-
scribed distance of the ground truth on y-axis.

with non-zero genus), totaling 132 meshes. We used each method to
find a map from each model to another selected at random from this
set (excluding near-isometric examples from previous experiments)
and plotted results in Figure 10. As in the experiment with SCAPE
models, results mainly suffer from symmetric flips. Note that while
our method performed just as well as in the isometric case, Möbius
Voting is suffering from inconsistent correspondences, because for
large deformations locally accumulated votes have more noise. Ob-
serve also that if one is allowed to invert surface orientation, HKM
with 2 correspondences and GMDS (black and green curves) out-
perform Möbius Voting because they produce more consistent re-
sults.

Non-isometric animals In another comparison, we found a map
from every animal model in TOSCA and Watertight data sets to
a random animal model (excluding near-isometric pairs). Thus, we
used 31 TOSCA models and 20 Watertight models to produce maps
between 51 pairs using each inter-surface mapping method. Note in
Figure 11, that Möbius Voting performed significantly better than
for non-isometric humans since there is no intrinsic near-symmetry
in animals (the left-to-right symmetry requires inverting orienta-
tion of the surface, which is impossible with conformal maps).
However, our method still out-performs Möbius Voting on aver-
age, while providing a consistent map (avoiding outlier correspon-
dences, which can appear with Möbius Voting). Since limbs and
outliers usually cover only a small part of the surface area, these
errors do not contribute largely to the fraction of correspondences.
However the difference becomes more obvious if we look at max-
imal per mesh errors, whose average is presented in Table 1. Our
method performs more uniformly across different experiments and
produces smaller maximal per map errors.

Figure 9: SCAPE: humans. Most of our errors on this data set are
due to confusion by 180� rotations that map the front of a body to
the back.

Visualization We also present visualizations of maps produced
by each method for two examples in Figure 13. Please refer to the
caption of that figure for more details.

8.4 Per-class performance

Finally, we investigated performance of our algorithm for a va-
riety of object classes in the SHREC Watertight 2007 data set,
where models vary in semantic content, resolution, and tessella-
tion. As in other experiments, we mapped every model in each
considered class to a random model within the same class, yield-
ing 218 blended maps. In Figure 12, we observe that our method
gives the best performance for articulated figures, but it also suc-
cessfully handles many cases from other classes (such as planes,
fish or birds). Some examples, as well as discussion of results can
be found in Figure 14.

8.5 Timing

We assume that our method is used in a non-interactive manner for
a large collection of surfaces that require pairwise maps. Thus, we
want our method to find the best maps as quickly as possible with
no user intervention. The running time of our method depends on
two factors: the number of vertices in the mesh |M| and the number
of extracted feature points |P|. In a pre-processing stage, we find
feature points and precompute geodesic distances for them which
requires about 30s for a Scape model with 12500 vertices, 60s for
a TOSCA model with 27894 vertices (cat), and 170s for a TOSCA
model with 52565 vertices (David) on 2.2GHz Opteron 275 pro-
cessor. The remaining part of the algorithm mainly depends on the
number of selected feature points |P|. For a pair of SCAPE mod-
els usually |PM1 | = |PM2 | = 5, and our algorithm takes 50s, of
which 24s spent on calculating per map confidences, 22s spent on



Figure 10: Humans: performance of various methods on non-
isometric pairs of humans. Our method outperforms other ap-
proaches because it extracts two consistent solutions (due to in-
trinsic symmetry) and then uses local cues (integrated confidence)
to choose the best map.

filling the weight matrix, and 4s is spent on processing eigenvec-
tors and finding correspondences for every vertex on a surface. For
a pair of cats from TOSCA data set with |PM1 | = |PM2 | = 6,
confidence calculations take 86s, and the matrix is filled in 212s. In
the hardest cases (e.g., ants, centaur), we randomly remove maps
until we are left with 10,000, thus in the slowest case confidences
are calculated in 364s, and the matrix is filled in 1411s. A more
intelligent pruning of the blending matrix is required to obtain bet-
ter results for more complex shapes with larger number of relevant
feature points.

9 Conclusion and Future Work

We have developed a method for finding a map between surfaces
by blending a collection of low dimensional maps. Our approach is
fully automatic, it outperforms several state of the art methods, and
it provides mapping between non-isometric surfaces.

In the future, we hope to investigate blending of non-conformal
maps and how the performance of our approach is affected by
this choice. We believe that combining multiple types of low-
dimensional maps might improve results, since different types of
maps may be better for different parts of a surface. A limitation
of the current approach is that it is able to find only global map-
pings, and hence is not guaranteed to work in cases of partial near-
isometric matching. Furthermore, we have currently implemented
uniformization only for genus zero surfaces, leaving generalization
to higher genus to future work. Finally, observing that blended
maps define a low-dimensional space of maps between surfaces,
we think it is interesting to investigate other ways to create flexible
maps with few degrees of freedom with the goal of understanding

Figure 11: Animals: performance of various methods on non-
isometric pairs from TOSCA and SHREC Watertight’07 data sets.
Although the performance of Möbius Voting is more similar to ours
in this test, it suffers from inconsistent outliers as seen in Table 1,
which shows average of maximal per mesh errors.

the limits of polynomial time algorithms for mapping non-isometric
surfaces.
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Figure 13: This figure shows a comparison of our method (Blended Map) to others. In the top row we see a map between two humans.
A common problem a single conformal map is that it collapses one of extremities to a small area, as seen in areas (A) and (E). Image
area (B) reveals an inconsistent correspondence assigned by Möbius Voting on a shoulder. Areas (C) and (C’) show that adding a second
correspondence improves results for some examples, in this case a left hand was correctly mapped with two heat kernel maps. Note however,
that maps produced by searching for nearest neighbors in some space usually do not produce continuous maps (HKM and GMDS (D)
methods). For stronger deformations, for example mapping a cat to a dog, it is challenging to even find a general structure of a map. For
example, in cases labeled (F), (G), (H) coarse correspondences map at least some limbs (or a whole body) incorrectly. Note that for such
strong deformations a single heat kernel map is not sufficient to map the whole body, augmenting a second correspondence improves the
result for tail, but other limbs are still mapped incorrectly (G), (G’).



Figure 14: Performance of our method on various classes. The first three rows of this plot include success cases for our method, and the
bottom row depicts four typical failure cases. Note that our method successfully handles highly non-isometric pairs. Observe that our method
does not rely on local geometry cues, and thus succeeds in a map even if local geometry of surfaces is very different, for example, there is
no local resemblance of a shape of giraffe and a shape of a cat, or shape of a dog and a cow. The fact that conformal maps do not preserve
geodesic distances can also serve as an advantage in case of partial scaling. For example, in the rightmost armadillo example one of the
models is missing part of a hand, but associating a full hand with a stump does not propagate any errors to the rest of the shape. You can
observe the most common failures of our methods in the bottom row. We believe the most common problem is misalignment in feature points.
For example, fish and dolphin in the first image have different orientation of a tail, thus conformal maps generated by feature points on a tail
twist map on the body. Another common issue is symmetric flip as depicted for ant and airplane examples. Note that the the only hint for
our method on deciding which is the correct solution is a small asymmetry in location of ant’s limbs and orientation of plane’s tail. This in
many cases is too subtle to be captured by our integrated confidence value. Note also that for creatures with more than 7 feature points we
prune the blending matrix to bound processing time. This introduces an undesired bias, which can (as in the example with the ant) result in
incorrect eigenvectors; for example, two limbs of the ant are twisted. Finally, individual conformal maps can also be low quality if objects
have long, thin parts. Specifically, map for glasses introduces a lot of distortion of tips of a frame which is not distributed uniformly.


