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Figure 1: Given an incomplete point scan with occlusions (a1), our method leverages training data (a2) to estimate the structure of the underlying shape, including parts and
symmetries (b). Our inference algorithm is capable of discovering the major symmetries, despite the occlusion of symmetric counterparts. The estimated structure is used to augment
the point cloud with additional points from symmetry (c1) and database (c2) priors, which are further fused to produce the final completed point cloud (d). Note how the final result
leverages symmetry whenever possible for self-completion (e.g., stem, armrests), and falls back to database information transfer in case all symmetric parts are occluded (e.g., back).

Abstract

Acquiring 3D geometry of an object is a tedious and time-consuming
task, typically requiring scanning the surface from multiple view-
points. In this work we focus on reconstructing complete geometry
from a single scan acquired with a low-quality consumer-level scan-
ning device. Our method uses a collection of example 3D shapes
to build structural part-based priors that are necessary to complete
the shape. In our representation, we associate a local coordinate
system to each part and learn the distribution of positions and orien-
tations of all the other parts from the database, which implicitly also
defines positions of symmetry planes and symmetry axes. At the
inference stage, this knowledge enables us to analyze incomplete
point clouds with substantial occlusions, because observing only a
few regions is still sufficient to infer the global structure. Once the
parts and the symmetries are estimated, both data sources, symmetry
and database, are fused to complete the point cloud. We evaluate
our technique on a synthetic dataset containing 481 shapes, and on
real scans acquired with a Kinect scanner. Our method demonstrates
high accuracy for the estimated part structure and detected symme-
tries, enabling higher quality shape completions in comparison to
alternative techniques.
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1 Introduction

Despite the recent advances in 3D scanning technology, rapid ac-
quisition of complete 3D geometry still remains one of the key
challenges in robotics and graphics. A typical scan obtained with
a consumer-level device may have large missing regions due to
limitations in the depth range of the scanner, lighting conditions,
and reflective properties of the underlying materials. Even without
these hardware limitations, to generate a complete scan, the user or

an autonomous agent have to acquire the geometry from multiple
viewpoints, which is time-consuming and can be infeasible if the en-
vironment poses limitations on the choice of viewpoints. Incomplete
geometry leads to challenges for autonomous agents in planning an
interaction with an object, limits capabilities of geometry analysis
algorithms (e.g., in inferring semantic parts), and produces content
that has little use in virtual reality applications. To address this
problem, we propose a method for completing a point cloud from a
single-view scan by introducing structural priors including expected
symmetries and geometries of parts. In a preprocessing step, we
leverage a collection of segmented 3D shapes to learn a structural
prior which captures positions and orientations of parts and global
and partial symmetries between parts that are expected in a given
class of shapes. This data-driven approach enables us to estimate the
global part structure and to detect symmetries in partial and seem-
ingly asymmetric scans. Having access to this global part structure,
the input scan can then in turn be completed, by exploiting geometry
from both the observed partial scan itself (via symmetries) as well
as the shape collection.

Although symmetric objects can be completed by copying observed
regions to occluded counter-parts, existing symmetry detection algo-
rithms (e.g., [Pauly et al. 2008; Mitra et al. 2006]) infer symmetry
from the input shape, which means that they need to observe at least
some fraction of the occluded counter-part to detect the symmetry.
Moreover, even if symmetries are successfully detected, not all oc-
cluded regions are guaranteed to have visible counterparts. In these
cases, the shape can be completed by copying the occluded regions
from the input database. To do so, our method predicts locations,
scales, and orientations of occluded parts in the partial input scan.
Unlike previous work that leverages global rigid shape alignment to
make these predictions [Shen et al. 2012; Kim et al. 2013a], we treat
each part as a potential reference coordinate system, which enables
detecting a global structure even if only a fraction of the surface is
visible. To produce the final completed shape, our method efficiently
combines both data sources by preferentially using self-symmetries
and reverting to copying database patches only if symmetric counter-
parts are not available. By combining both data sources, the partial
input scan itself and a shape collection, we take advantage of com-
plementary cues, resulting in higher accuracy and completeness of
the reconstructed shape.

The main technical contribution of our paper is an algorithm to es-



timate the structure of a partially scanned shape. In particular, we
compute a segmentation and labeling of the input point cloud, esti-
mate the position, size, and orientation of visible and occluded parts,
and detect partial and global symmetries. The estimated structure
for the teaser shape is depicted in Figure 1.b, where parts are shown
as oriented boxes and symmetries are the plane of reflection (for all
parts) and the axis of rotation (for the stem). The key advantage
of our method is robustness to severe occlusions. We achieve it by
placing each part in a local coordinate system and aggregating local
cues in an optimization scheme to predict the shape structure.

In offline processing, given a collection of segmented shapes, we
compute per-point local shape features and train point-to-part clas-
sifiers. Also, for all pairs of parts we learn distributions for their
relative position, scale, and orientation. During the inference, we
define a global optimization problem that favors a part arrangement
that is consistent with local observations (e.g., feature-based clas-
sification and locally-estimated coordinate systems). We optimize
our objective function in several steps. First, we label each input
point based on local shape descriptors. Second, we use these pre-
dictions to produce multiple candidate part representations for each
shape segment, and then select among the predictions by defining a
joint optimization problem that finds optimal representations for all
parts. Third, we re-segment the point cloud based on proximity to
estimated parts. Fourth, we improve continuous parameters such as
position, scale, and orientation of parts and estimate symmetry axes
to provide additional constraints on part relations. Finally, we inject
multiple candidate part representations for missing parts, and repeat
the procedure starting with the second step. Once the structure is
inferred, we use the symmetries and database parts to produce the
complete point cloud.

We run experiments with 5 shape collections containing 481 seg-
mented shapes, and attempt to complete the shapes obtained via
simulated scans as well as real Kinect depth images. To evaluate our
system we devise a novel benchmark for data-driven shape comple-
tion. We found that fusing symmetry and database priors produces
better completions than relying on only one of the two data sources.
We also found that our data-driven symmetry detection technique
produces more accurate symmetry parameters for partial scans than
state-of-the-art methods that assume that the input shape is complete.
Similarly, our approach to detecting part structure estimates more
accurate part parameters on partial scans, and produces completions
that are closer to the true surface.

Key Contributions:
– a probabilistic shape model that can be applied to analyze

partial scans with severe occlusions;

– a data-driven structure estimation algorithm that simultane-
ously segments the partial input scan, estimates positions,
scales, and orientations of visible and occluded parts, and
detects global and local symmetries;

– a shape completion technique that combines a database of parts
and symmetries to produce a more accurate result;

– a benchmark for evaluating shape completion methods.

2 Related Work

There is a large body of work on analyzing single-view scans that
enables segmenting [Silberman et al. 2012] and recognizing [Lai
et al. 2011; Janoch et al. 2011] salient objects. The main objective
of this work is to complete a shape from a partial single-view scan
with missing or occluded regions. In this problem, we assume that
the object has been successfully segmented and correctly classified.
Our objective is also different from the goal pursued by surface
reconstruction algorithms that typically assume that most of the

surface was captured by the scanner (e.g., see [Kazhdan and Hoppe
2013; Choi et al. 2015]). In the presence of significant occlusions the
shape completion problem becomes ill-posed and one has to rely on
additional priors such as physics, symmetry, and exemplar geome-
tries. Leveraging physics (e.g., gravity and stability) only enables
coarse completions that do not produce plausible geometry [Shao
et al. 2014; Zheng et al. 2013]. Thus, in this overview of related
work, we only discuss techniques that use symmetry or a database
of similar exemplars to complete a shape with significant missing
regions. In addition, since it is crucial to estimate part structure
for effectively using both of these priors, we also discuss related
advances in part-based models.

Symmetry-driven shape completion. Several existing approaches
leverage symmetry analysis to fill the occluded regions from their
visible counter-parts. Thrun et al. [2005] use reflective symmetries
and continuous rotational symmetries. Pauly et al. [2008] replicate
regular structures that form a lattice with discrete rotational, transla-
tional, and scaling symmetries. Zheng et al. [2010] detect repeating
structures to consolidate and densify LiDAR scans of buildings. All
of these methods rely on the assumption that symmetries can be
detected in the scanned data itself. This narrows the use cases to
the scans where many repeating parts are visible (in order to detect
the symmetries), with some repeating elements being occluded (in
order for the symmetry to be useful in shape completion). While
available symmetry detection algorithms assume a nearly complete
shape [Mitra et al. 2013], Sipiran et al. [2014] focus on leveraging
local features to handle larger occluded regions, yet, their method
still requires some repeated structures to be visible. Unlike these
techniques we treat symmetry detection in a data-driven approach
that is trained on a collection of complete 3D shapes, and where
we leverage visible parts to obtain hints for positions of symmetry
planes and axes.

Data-driven shape completion. Another alternative solution for
completing a shape is copying example patches or parts from the
database. Pauly et al. [2005] retrieve and align shapes to do the
completion. Other approaches take advantage of efficient feature-
based descriptors and simply use the most similar object to complete
the 3D scan [Nan et al. 2012; Kim et al. 2013b; Li et al. 2015].
These techniques always rely on the assumption that the database
includes a very similar shape, and thus, their value is limited to cases
when a database captures all shape variations expected in the scans.
Shen et al. [2012] expand the space of variations by aligning parts
from multiple objects to complete the point clouds. In some cases
they reconstruct parts that are not visible in the 3D scan (due to
hardware resolution), but they use RGB image in these cases. Their
method also heavily relies on the assumption that it is relatively
easy to rigidly align each shape in a database to the point cloud. In
contrast, our method does not use RGB data and does not assume
that a single rigid transformation is sufficient to bring input scan and
the training dataset to the same coordinate system, and thus, detects
part structure even if only a small fraction of the surface is visible.

Part-based models. Our part representation is motivated by prob-
abilistic deformable part models that found many successful ap-
plications in computer vision [Felzenszwalb et al. 2008]. Going
beyond a single tree-structured part model, hierarchical part gram-
mars have been developed for parsing images [Han and Zhu 2009],
3D scenes [Wu et al. 2014], and facades [Martinovic and Van Gool
2013]. Even though these models typically handle occlusions, they
focus on classifying visible regions instead of predicting the oc-
cluded parts. Since the goal of our work is to complete detailed
geometry from a partial scan of a 3D object, our part representa-
tion is equipped with additional geometric information, such as
self-symmetries, positions, orientation, and scales of parts.

Probabilistic part models have been developed for 3D shapes to



estimate part compatibility [Chaudhuri et al. 2011; Kalogerakis
et al. 2012; Xu et al. 2012], represent relations between parts [Fish
et al. 2014], and their co-variations [Yumer and Kara 2014]. These
methods, however, focus on shape modeling and editing, and cannot
be directly used to analyze unlabeled point clouds. Several methods
have been developed for detecting part structure of unlabeled shapes
without any supervision [Golovinskiy and Funkhouser 2009; Sidi
et al. 2011; Hu et al. 2012; Huang et al. 2011; Huang et al. 2014]
or with some user input [Kalogerakis et al. 2010; Xie et al. 2014;
Makadia and Yumer 2014; Yumer et al. 2014]. All of these previous
techniques assume that the entire object is visible and thus cannot
be applied to predict parts in occluded regions. The method that is
the most similar to ours, Kim et al. [2013a], represents part structure
as an arrangement of deformable boxes that can further be used to
analyze novel shapes. To handle significant occlusions we extend
their approach to include relationships between parts (i.e., relative
orientations, positions, scales, and symmetries). The key advantage
of our representation over methods that use global reference frame
(e.g., [Kim et al. 2013a; Shen et al. 2012]) is that any visible part
can serve as a reference to guide the prediction of occluded parts.

3 Overview

We tackle the shape completion problem with a data-driven tech-
nique that uses a database of segmented objects to build priors on
part-level shape variations. We assume that the scanned shape has
been classified and segmented from the surrounding geometry —
thus our priors are trained independently for each shape category.
We formulate an optimization problem which explores the space of
possible part arrangements that are compatible with the provided
partial scan. In a training phase, our system extracts the priors
from a shape database, and then uses them during the inference
to guide the search towards more plausible solutions. Crucially,
those priors capture the relations between parts so that the observed
parts can inform about the presence and location of the unobserved
parts. Moreover, this framework naturally enables the exploitation
of partial symmetries contained within a part, or between multiple
parts.

We use a simple part model and associate a small number of con-
tinuous parameters for each part to increase their expressiveness.
Specifically, the representation of a part includes a local coordinate
system (i.e. a pose in SE(3) including an offset and an orientation)
and an axis-aligned anisotropic scaling. Our priors on part relations
capture the covariance of those continuous parameters between all
possible pairs of parts. Those pairwise relations enable us to halluci-
nate unobserved parts in occluded regions. Given a partial scan we
use the learned priors to jointly infer the structure:

i) Assignments of input points to parts.

ii) Presence, label, and continuous parameters of parts.

iii) Parameters of partial symmetries, such as a reflection planes
and rotation axes.

Once a proxy structure of parts and partial symmetry relations is
estimated, the shape can be completed by copying observed points
to symmetric areas. If all of the repeating structures are occluded,
the system relies on the recovered part structure to retrieve possible
substitute parts from the part-annotated database, and copies points
from the retrieved parts to complete the point cloud.

The following sections describes in detail our structure estimation
process (Sec. 4) and the shape completion process that uses the
inferred structure to fill missing regions (Sec. 5).

4 Structure Estimation

The first and most critical step of our method is the estimation of the
shape structure for a given point cloud. In particular, given a point
cloud P , the goal of this step is to detect a set of parts B, part labels
LB , part parameters ΘB , symmetry relations A, their parameters
ΘA, and an assignment of input points to parts: m ∶ P → B.
Figure 2, shows an example structure, where the position, size, and
orientation of a part is depicted by an oriented box, and symmetries
are depicted by planes of reflections and axes of rotation. To estimate
these parameters we define an energy function that balances between
the likelihood of the estimated structure in the input point cloud
vs. the prior structures observed in training examples.

Several of the terms in the energy function are learned from the
patterns discovered in a collection of training examples. In a training
step, our system takes as input a collection of co-aligned 3D meshes
with ground-truth part labels L fom the given category. We assume
that our input shapes are consistently segmented and each segment
has a unique label (e.g., legs of a chair have four unique labels), while
not all labels have to present in every instance (e.g., only swivel
chairs would have a stem part). Our system uniformly samples
points on each example mesh and the resulting labeled point clouds
are used as the training data, as explained in more detail in the
next subsections. The following subsections define the structure
parameters (Sec. 4.1), the energy function (Sec. 4.2), and the
inference procedure to find the optimal set of parameters for a given
input (Sec. 4.3).

4.1 Structure Parameters

Our structure is represented by a set of parts B and symmetries
A (see Figure 2). We now provide details for part and symmetry
parameters.

Part parameters. To ensure that our estimated part structure is
consistent with the training examples, each part b ∈ B has a unique
label lb ∈ LB . To use our part representation for partial scans, we
attach a local coordinate system to the part, which enables us to
represent part relations without a global reference frame. More
specifically, a part b is parametrized with a rotation Rb ∈ SO(3),
translation tb ∈ R3, and an anisotropic axis-aligned scaling sb ∈ R3.
Thus our part parameters θb ∈ ΘB are defined by θb = (Rb, tb, sb).
As seen in Figure 2 (and everywhere else in the paper), we depict θb
with a unit cube that is scaled, rotated, and translated according to
part parameters.

Partial symmetry parameters. Symmetries provide additional reg-
ularization on the estimated part structure, and are also critical for
the shape completion step. Symmetric counter-parts (i.e., the labels
of symmetric parts) are typically provided with the training data for
a given class of objects. We found that rotational and reflectional
symmetries are sufficient for all datasets presented in this paper
(e.g., see Figure 2). Symmetries are defined on either a single part
and/or pairs of parts. For example, the back of a chair (a single
part) and armrests (a pair of parts) share the same reflection plane.
A symmetry relation a ∈ A is therefore defined by its parameters
θa ∈ ΘA and a tuple of symmetric counter-parts (ba, b′a) ∈ B ×B.
Our inference procedure optimizes for the parameters θa so that
the induced linear transformation Ta maps part ba to b′a. For self-
symmetric parts, we have ba = b′a, and symmetries involving more
than two parts can be modeled with several pairwise symmetries
by constraining the symmetry parameters to be equal. Reflectional
symmetries are uniquely described by a plane of reflection (i.e., a
plane normal na and a scalar offset da), whereas rotational sym-
metries are given by a rotations axis and a rotation angle. Minimal
parameterizations of 3D lines are slightly cumbersome (e.g., with



Figure 2: This figure shows parts and symmetry relations provided in training examples.
Oriented boxes depict part positions, scales, and orientations, the red plane indicates
reflective symmetry, and the red line depicts the axis of rotation.

Plücker coordinates). We therefore use an over-parameterization in
terms of axis direction da and translation ta for defining the rotation
axis {X∣X = ta + λda, λ ∈ R}. These parameters define θa.

4.2 Structure Fitting Energy

In this section we define an objective function that is designed to
capture how well the input point cloud P is represented by the
structure parameters (LB ,ΘB ,ΘA), and a point-part assignment
m. Our energy combines low-level geometric cues that come from
the partial scan and mid-level regularization terms learned from the
training data. The low-level terms include per-point feature-based
classification scores and segmentation smoothness, while the mid-
level terms penalize based on distances between scan points and
parts, pairwise part relations, and partial symmetries.

Point classification. We extract local geometric features of the ob-
served points and feed them into point classifiers whose classification
scores w are used as input evidence

Epnt(LB ,m) = ∑
b∈B

1

nb
∑
p∈P

δ(m(p) = b)(− logw(p, lb)), (1)

where nb = ∣{p ∈ P ∣m(p) = b}∣ is the set of points assigned to part
b, δ(.) is the indicator function. We use the training data to learn the
point classifier w(p, l) ∈ [0,1] which captures how likely it is that
an observed point p belongs to part l ∈ L. In particular, for a given
object category, we use local geometric features to build a random
classification forest [Breiman 2001] for the parts provided in the
training data. Since we use local features our per-point classifiers
assume that all symmetric parts belong to the same category (e.g.,
all chair legs are assigned to the same class). To ensure that our
approach can handle outliers in the input point cloud, we define a
null part bnull and set w(p, lbnull) = 0.1.

Our geometric features are computed from eigenvalues λ and eigen-
vectors v of a covariance matrix capturing the distribution of points
within a local neighborhood: λ1/λ0, λ2/λ0, vT

0 g, vT
2 g where g

denotes the up- or gravity direction. We also use height, absolute
curvature and shape diameter function (SDF). Features are estimated
over neighborhoods of sizes 0.1,0.2,0.3,0.4,0.5 of mesh radius.
We compute the features with the publicly available implementation
of [Kim et al. 2014].

Segmentation smoothness. We add a Potts-like regularization term
to favor that nearby points belong to a similar segment

Esmooth(m) = ∑
pi∈P

∑
pj∈N(pi)

δ(m(pi) ≠m(pj)) (d − ∥pi − pj∥2)
2

,

(2)

where N(p) is the set of neighboring points within distance thresh-
old d = 0.05 of mesh radius.

Parts-points distances. Our intuition is that scanned points should
be close to the surface of the part they are assigned to and also
that the part should fit tightly around the points. For simplicity,
we assume that the surface of a part should roughly align with the

surface of an oriented box defined by θb. We found this assumption
to be sufficient to analyze datasets presented in this paper.

Thus, given a point cloud and a surface that corresponds to θb, we
sample points Q on the surface, and use a variation of the sum of
minimum distances (SMD) [Eiter and Mannila 1997] that factors in
visibility to quantify our intuition:

ESMD(LB ,ΘB ,m) = ∑
b∈B

EP→Q(lb, θb,m) +EQ→P (θb), (3)

EP→Q(lb, θb,m) = 1

nb
∑
p∈P

δ(m(p) = lb)min
q∈Q

∥p −Tbq∥2
2 , (4)

EQ→P (θb,m) = 1

vb
∑
q∈Q

v(Tbq) min
p∈P ∶m(p)=b

∥p −Tbq∥2
2 , (5)

where v ∶ Q → {0,1} is a visibility indicator function which
evaluates to v(q) = 1 if point q is visible and 0 if it is occluded,
vb = ∑q∈Q v(Tbq), and Tbq =Rb diag (sb)q + tb.

Considering visibility is important as otherwise occluded regions
could lead to truncated parts. We compute visibility by rendering
input points as small spheres (0.01 of mesh radius) and use depth-
buffer lookup to test visibility for a given point in space.

The points Q are sampled on the surface of an axis-aligned unit
cube, with 1000 points in total. The sampling is chosen adaptively
per part such that a spatially uniform sampling density results after
applying the anisotropic scaling.

Part relations. The part-level regularization term captures the over-
all geometric layout of all the parts, based on their pairwise relations.
A major challenge in defining part relations for analyzing partial
scans is that those relations have to be expressed without making any
assumption about a global reference frame. Our solution is to use
the local coordinate system of each part to represent the distribution
for parameters of another part. In particular, we design a pairwise
part feature x(θb, θb′) ∈ RN that captures the geometric relation
between parts b, and b′, where the pose and the size of a part b in the
coordinate system of part b′ is captured by

Tb→b′ = [RT
b′ −RT

b′tb′] [
Rb tb
0 1

]

⎡⎢⎢⎢⎢⎢⎢⎣

sb,1
sb,2

sb,3
1

⎤⎥⎥⎥⎥⎥⎥⎦

∈ R3×4.

(6)

Note that we define the part pose such that a point p ∈ R3 expressed
in part b’s local coordinate system is mapped to a global reference
frame by Rbp + tb. Therefore, the first three columns of Tb→b′

capture the orientation and scale of part b as seen from part b′’s local
coordinate system, whereas the last column denotes the centroid of
part b again seen from part b′. Since we assume that training shapes
are consistently oriented upwards with respect to consistent gravity
direction g, we also include the absolute height as a feature:

hT
b = gT [Rb tb]

⎡⎢⎢⎢⎢⎢⎢⎣

sb,1
sb,2

sb,3
1

⎤⎥⎥⎥⎥⎥⎥⎦

∈ R4. (7)

The complete feature is then the concatenation:

x(θb, θb′) = (vec (Tb→b′)T hT
b vec (Tb′→b) hT

b′)
T

, (8)

where vec (T) denotes the column-wise vectorization of matrix T.

We learn a prior on the feature described in Equation 8 using the
training data. In particular, we use PCA on each segment to find
an initial guess for an oriented box, and run an ICP procedure to



Figure 3: This figure visualizes the variance of part structure for a single reference part
(chair seat, airplane fuselage, and bike front frame). High color saturation indicates
low pairwise part relation energy Epair between the reference and a colored part.

anisotropically deform the box to the underlying segment and esti-
mate position and scale. We sort the PCA-based axes to have the
same direction and ordering as their closest global coordinate axes
to ensure that part parameters are compatible across all shapes (this
becomes feasible since all the training shapes are co-aligned). Then,
for every pair of part labels (l, l′), the distribution of the feature
vector for parts with those labels is modeled with a multivariate
normal distribution. We then extract the L2 mean vectors and co-
variance matrices of feature vectors µ(l, l′) ∈ RN ,Σ(l, l′) ∈ RN×N ,
and these define our probabilistic part model. We now define the
pairwise part relation penalty using the Mahalanobis distance:

Epair(LB ,ΘB) = ∑
(b,b′)∈B×B

∥x(θb, θb′) − µ(lb, lb′)∥2
Σ(lb,lb′ )

. (9)

Figure 3 shows examples how the pairwise relation energy varies
according to the poses and scales of parts for a single reference
part. This pairwise part relation term is crucial to reason about the
overall structure of the shape. For example, this term can resolve
noisy point classifier scores, where the point-to-part assignment is
ambiguous or where the correct part-assignment is not ranked at the
top by the point classifier. Moreover, the input to a point classifier is
generally restricted to a local neighborhood around a point, so they
cannot discern symmetric parts. Lastly, pairwise relations between
observed and an unobserved parts can be aggregated to generate a
prediction for the pose of the unobserved part. We will make use of
that in the inference stage, as will be described in the next section.

Partial and global symmetries. Symmetry is another important
mid-level cue used in our energy function. It is defined by the
symmetry parameters ΘA, where A is the set of expected symmetry
relations that were observed in the training data. We define the
symmetry term as:

Esymm(ΘA,m) = ∑
a∈A

∑
p∈P ∶m(p)=ba

min
p′∈P ∶m(p′)=b′a

ρ (∥p′ −Tap∥
2

2
) ,

(10)

which roughly captures for each symmetry a how well a point p on
a part ba = m(p) maps to its symmetric counter-part b′a under the
transformation Ta. Here, ρ(d) = min(d, dmax) is a truncated robust
cost to handle partially observed symmetric parts.

Constraints. In our optimization we represent the rotation of a
part as a 3 × 3 matrix Rb ∈ R3×3 with an additional orthogonality
constraint C(ΘB) ∶ ∀b ∈ B ∶ RT

b Rb = I3. The determinant of Rb

is checked during initialization s.t. ∣Rb∣ = 1 to ensure valid rotation
matrices (during continuous optimization, the update step would
need to be quite large to reach a state with ∣Rb∣ = −1 which we in
fact never observed). Unit length constraints C(ΘA) are added for
plane normals na and direction vectors da of rotational symmetries.

We also include symmetry relation constraints between part co-
ordinate systems θb that ensure that part-to-part symmetries are
preserved at the scale of boxes. For parts ba and b′a related by a
partial symmetry a we define the following constraint:

[Rb′a
tb′a

0 1
]diag ([sb′a ,1]) = Ta [Rba tba

0 1
]diag ([sba ,1]) .

(11)

Let us call the set of those part-symmetry constraints by
C(ΘA,ΘB).

Final energy. In the inference procedure we optimize the following
final objective function:

E = w1Epnt +w2Esmooth +w3ESMD +w4Epair +w5Esymm

s.t. C(ΘA),C(ΘB),C(ΘA,ΘB), (12)

where wi are weight parameters, we empirically set w1 = 0.0025,
w2 = w3 = 1,w4 = 10−4,w5 = 102 for all experiments presented in
this paper.

4.3 Structure Inference

In this section we present an optimization procedure for Equation 12
with respect to the parts B (parameters ΘB and labels LB), symme-
tries A (parameters ΘA), and point-to-part assignments MP . This
is a mixed discrete-continuous optimization problem, which is dif-
ficult to optimize over all variables jointly. Thus, we provide an
alternating optimization scheme that selects an appropriate approach
to update a subset of variables, holding the remaining ones fixed.
We initialize our optimization with feature-based per-point classifi-
cation, and then alternate between optimizing for part labels LB and
part pose parameters ΘB (as a global discrete optimization), point-
to-part assignments MP , part pose parameters ΘB and symmetry
parameters ΘA (as local continuous optimization), and generation of
additional candidate parts for occluded regions. The global discrete
optimization provides us with a rough estimate of low-energy pose
parameters ΘB and the continuous optimization further refines that
estimate. To keep our exposition simple, we initially assume that all
shapes in the database have the same number and labels of parts (i.e.,
∣L∣ = ∣B∣), and then we explain how this is generalized to cases when
not all parts exist in all shapes. Figure 4 illustrates our optimization
pipeline.

Initialization. Our method is bootstrapped by estimating candidate
part parameters based on the per-point classification scores w(p, l).
Several candidate part representations Θcand are generated for each
part label by decomposing the input scan into multiple segments.
In particular, we consider all points p that are assigned to label l
with high confidence w(p, l) > τclass as vertices of a graph (all our
experiments set τclass = 0.7). Edges are introduced if the distance
between two points is below τdist = 0.2 of the scan radius. Each
connected component of the resulting graph yields a hypothesis
θcand ∈ Θcand by fitting an oriented box (the same procedure as in
training parameter estimation is used). Each hypothesis also stores
which points have been used for its estimation.

However, unlike the training set, we cannot expect the partial input
scan to be co-aligned with the rest of the database. PCA-based
axes are therefore ambiguous in their direction (and often, their
ordering). Thus, instead of adding a single hypothesis θcand per
connected component, we in fact add 24 of them: each possible
choice of assigning PCA-axes to a right-handed coordinate system
provides one hypothesis. The next optimization step then picks the
most suitable hypothesis for each part.

Part labels and orientations prediction. We start our iterative
algorithm with a discrete optimization step which selects the best
part representations ΘB and labels LB from a set of hypothesis,
while keeping the remaining variables fixed. We formulate this step
as a Markov random field, where nodes are candidate representations
Θcand, pairwise potentials are defined by part relations Epair, and
unary potentials are defined with per-point energies Epnt (based
on points assigned to a given representation). The node labels are
defined by part labels with an extra null part L ∪ {lnull}. The null
part exists because only ∣B∣ of ∣Θcand∣ can correspond to real parts. A
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Figure 4: This figure illustrates our inference pipeline. First, we detect initial part representations, and then iteratively solve a global MRF to find labels and orientations of parts,
re-segment the point cloud, optimize for continuous part pose parameters and symmetries, and generate additional suggestions for novel parts. Our method iterates until part
parameters remain fixed which leads to the final structure prediction (on the right).

unary cost of τnull = − log(w(p, lbnull)) must be paid to assign a node
to the null part. To ensure that there is at most one part per label, the
pairwise cost for two representations to have the same label is set
to τsame =∞. This multi-label assignment problem is solved using
TRW-S algorithm [Kolmogorov 2006], which effectively minimizes

min
ΘB⊂Θcand,LB∪{lnull}

w1Epnt +w4Epair, (13)

where the energy terms are understood to be augmented with the
unary cost for label lnull and pairwise mutual exclusion.

Point segmentation. After estimating part labels and parameters,
we re-estimate the point-to-part assignments MP while keeping
all terms not affected by these assignments fixed. This is naturally
treated as a segmentation problem. We again construct a MRF where
this time, nodes are points and the labels are point assignments to
parts B. We define unary potentials based on the point-to-part dis-
tances EP→Q and classifier scores Epnt and pairwise terms based
on the Potts-model Esmooth. In this step we ignore part-to-point
distances EQ→P and symmetric distances Esymm since it is com-
putationally impractical to estimate the involved correspondences
without knowing all point-to-part assignments. The resulting MRF
is solved with TRW-S algorithm, thereby minimizing

min
MP

w3EP→Q +w1Epnt +w2Esmooth. (14)

Part pose optimization. Now that the coarse part structure of the
shape is estimated and points are segmented, we refine the contin-
uous part and symmetry parameters ΘB , ΘA. As part parameters
change the correspondences between points and parts (ESMD) and
the notion of symmetric points (Esymm) change as well. Thus, in
this step we leverage an ICP-inspired procedure, where we alternate
between estimating corresponding points (P → Q, Q → P , and
P →a P ), and parameters ΘB , ΘA. The first step is a trivial nearest
neighbor lookup. To update the continuous parameters we use an in-
terior point algorithm [Wächter and Biegler 2006] using numerically
estimated gradients, optimizing the following:

min
ΘB ,ΘA

w3ESMD +w4Epair +w5Esymm

s.t. C(ΘA),C(ΘB),C(ΘA,ΘB) (15)

The algorithm terminates when the point-to-part and symmetric
point-to-point correspondences do not change.

Additional candidate generation. All previous iterative steps are
likely to produce locally optimal solutions that are close to the
initial part candidates Θcand. In our initialization step we produced
these candidates based on the observed point cloud, but now that
we estimated a global part structure for the observed points we

have an opportunity to augment the candidate set with parameters
for occluded parts, that can only be inferred via part relations and
symmetry. Similarly to Fish et al. [2014], for each part b in the initial
candidate set, we generate a hypotheses for a missing part parameter
θb′ using the conditional mean of the pairwise relation between b and
b′ given θb. Note that we reject parameters θb′ that suggest that there
is a part in an un-occluded area without points support. In particular,
we reject such hypothesis if more than 80% of the surface is visible.
We then repeat the iterative procedure starting with part labels and
orientation prediction with the new candidate representations Θcand

that include best solutions from the previous iteration as well as
newly generated candidates. This interplay between refining poses,
sampling new hypothesis based on non-local evidence, and solving
an assignment problem leads to a powerful framework for recovering
a proxy part structure.

Handling variance in part topology. Most of the previous dis-
cussion focused on cases when one expects all parts to exist in all
shapes, i.e., ∣B∣ = ∣L∣. This does not hold in practice when object in-
stances can contain different alternatives for parts (e.g., swivel chair
vs four-legged chair), or can have optional parts (e.g., arm-rests). In
our training dataset we record all possible permutations of parts and
run an independent optimization for each part configuration. We
then pick the lowest-energy solution.

5 Shape Completion

We leverage the estimated part structure to complete the shape, using
part information ΘB and symmetry information ΘA. In this final
step of our pipeline our goal is to densify the point cloud with
additional points that correspond to the geometry in the occluded
regions.

The symmetry is always a preferred source of data since the scanned
data itself is likely to have qualities of the original attributes (if it is
indeed symmetric). Thus, we copy all observed points that belong
to symmetric parts to their symmetric counter-parts with symmetry
transforms Ta. Let us denote these reflected points as Psymm.

To complete regions that do not have visible symmetric parts, we
next retrieve candidate parts from the database. If our part includes
visible points we use the method of Shen et al. [2012] for retrieval.
Specifically, for each part b, we define a voxel occupancy grid Vb

with voxel size 0.01 for each axis. We compute a similar grid for
training parts Vb′ , and measure part-to-part similarity as in previous
work: (1−α) <Vb,Vb′>

Nb
+α <Vb,Vb′>

Nb′
, whereNb andNb′ is the number

of occupied voxels in grids Vb and Vb′ , and α = 0.7. If a part is
fully occluded we simply compare the dimensions of the bounding
box, defining similarity as: exp(−∣∣sb − sb′ ∣∣2). We denote those
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Figure 5: This figure demonstrates our evaluation technique. Given the input point
cloud (a), we run our algorithm to complete the shape (b), and then evaluate accuracy
and completeness. The accuracy image (c) colors the points of the completed shape
based on the distance to the nearest point on the true shape (see error bar on the right).
The completeness image (d) colors the points of the true shape based on the distance to
the nearest point on the completed shape. See supplemental material for the results on
the entire benchmark.

database-driven points as Pdata.

We use our visibility grid as defined by the term v(q) to decide
whether to use any of the two point sets. Specifically, for each
occluded grid cell, we check if there exist points inPsymm to complete
the shape in that cell. If this is not the case, points from Pdata are
used. This produces a densified point cloud Pcomplete.

6 Results

In this section, we demonstrate experimental results of the proposed
algorithm. First, we define a novel synthetic benchmark for evalu-
ating shape completion techniques. We then evaluate our method
on the benchmark, as well as symmetry-only and database-only
completions where structure is still estimated with our algorithm.
We also compare to previous work on shape completion that used
alternative structure estimation algorithms that were more prone to
partiality in the input scans. Finally, we show qualitative results on
Kinect scans.

Shape Completion Benchmark. We use several public shape col-
lections to generate our quantitative benchmark. Our benchmark
includes 58 airplanes, 64 chairs, and 35 bicycles from Part Assembly
dataset [Shen et al. 2012], 37 tables from ShapeNet1, 287 chairs from
COSEG dataset [Wang et al. 2012]. All models in these datasets
have been manually decomposed into 6-9 parts, annotated with sym-
metry planes and axes (see Figure 2), co-aligned and approximately
scaled to the size of real-life objects.

In our experiments, we follow a leave-one-out approach where train-
ing is performed on all but one left-out shape. We depict one such
experiment in Figure 5. For the hold-out shape we sample 100,000
points Ptrue, randomly select a viewpoint, and remove the occluded
points to generate a partial point cloud P (Figure 5.a). We then
run our method to produce a completed shape Pcomplete (Figure 5.b),
and measure two types of errors: accuracy and completeness. The
accuracy records the fraction of points in Pcomplete that are within
τeval = 0.02 of a point in Ptrue. Figure 5.c depicts accuracy errors for
all points on Pcomplete where blue indicates that error is below τeval
(i.e., non-blue were incorrectly added by our method). The com-
pleteness records the fraction of points in Ptrue that are within τeval of
a point within Pcomplete, and Figure 5.d depicts completeness errors
for all points in Ptrue (i.e., non-blue points were not completed by
our method). The supplemental material also provides statistics for
the accuracy of per-point labels produced by our structure prediction
algorithm.

Shape completion results. We evaluate our method primarily by
completing synthetic scans. We demonstrate some of the challenging
cases successfully handled by our method in Figure 6. Our inference
procedure detects structure despite significant missing regions, and

1http://shapenet.cs.stanford.edu

Input Completion Input Completion

Figure 6: This figure demonstrates some challenging partial scans successfully com-
pleted by our algorithm.

Input Structure Psymm ∪ P Pdata ∪ P Pcomplete

Figure 7: This figure demonstrates our shape completion results: input point cloud,
estimated structure, symmetry-only completion accuracy, data-base only completion
accuracy, and the final combined result. Note how symmetry-only completion consis-
tently leaves large blank regions, and database-driven approach hallucinates pieces of
geometry that should not be there (see red regions). In contrast, our method effectively
combines both priors to produce accurate and complete shapes.

then takes advantage of symmetries and exemplar parts to complete
the missing data. We also refer to the supplemental material for the
results on the entire benchmark.

Comparison to database and symmetry priors. In this experi-
ment, we evaluate the importance of fusing database and symmetry
priors. In particular, we compare Pcomplete, Pdata ∪P , and Psymm ∪P .
Figure 7 demonstrates some qualitative results. Unsurprisingly,
database-only completions are often not accurate since the database
might not include shapes with similar parts. While symmetry-only
completions produce more accurate results, they typically have large
incomplete areas. Figure 11 supports these qualitative observations
quantitatively: in this figure the centre of a box in a 2D plane corre-
sponds to its accuracy (x-axis) and completeness (y-axis), and the
size of the box corresponds to standard deviations. We observe that
our method provides the most complete surface, at expense of being
slightly less accurate than symmetry-only completions.

Comparison to Shen et al. [2012]. The completion results we dis-
cussed so far all benefit from our structure estimation algorithm. In
this experiment we compare our work to alignment-based structure
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Figure 8: In this figure we compare our method to our implementation of Shen et al.
[2012]. In their work the structure is estimated by rigidly aligning a database shape to
a partial scan, which is prone to error since both shapes must have relatively compatible
global coordinates. In our work, each part provides a coordinate system, so we estimate
part structure more reliably, which leads to more accurate completions (for fairness we
do not use symmetry cues for our completions in this figure).

estimated in Shen et al. [2012]. Since their implementation is not
publicly available and relies on a slightly different input (they use
color images in addition to depth), we re-implemented a version of
their algorithm that only leverages geometric cues. In particular, we
first try every rotation around the up axis to align every training 3D
shape to the input point cloud. Since our training data is co-aligned
we pick the best rotation that minimizes the sum of average distances
between input point cloud and training examples. We then select
parts to complete the surface in occluded regions using Shen et al.’s
part-to-part similarity metric. Note that we do not implement the
final part conjoining step, but we believe that this does not affect the
comparison, since our method would also benefit from enforcing
contacts after parts are retrieved. We present some qualitative results
in Figure 8 (for fairness, we do not use symmetry cues for our results
in that figure). Note that the Shen et al.’s method fails to correctly
estimate front orientations when large missing regions are present,
and also fails to align parts if the size of the input object is not typical
for the objects in the database. This leads to an inferior quantitative
performance, as can be seen in Figure 11.

Comparison to symmetry detection. Existing symmetry detection
techniques only handle small amount of occlusions since they infer
the symmetric relations from the data itself, and thus, by nature, have
to be able to observe some repetitions before detecting a symmetry.
Our symmetry detection, however, is data-driven, and it allows
handling more severe occlusions. In particular we compared our
method to a state-of-the art symmetry detection algorithm — a
method based on Planar Reflective Symmetry Transform [Podolak
et al. 2006]. Figure 9 demonstrates shape completions with detected
symmetries. We observe that missing regions can mislead Podolak et
al.’s method to pick an approximate symmetry (e.g., if one wing of an
airplane is missing top-to-bottom symmetry becomes stronger than
left-to-right symmetry). This problem is quantitatively evaluated in
Figure 10 showing that Podolak et al.’s approach gets confused by
top-to-bottom symmetry of an airplane in about 20% of the cases
while our method does not make this mistake (see supplemental
material for the result over all categories). On the other hand, our
method suffers from more fine-scale errors in cases where [Podolak
et al. 2006] succeeds. This can be explained by the part priors that
introduce a small bias. We believe that these small errors can be
eliminated if needed, e.g. by gradually increasing the weight w5

of the symmetry energy term Esymm throughout the optimization.

Input Podolak et al. 2006 Psymm ∪ P

Figure 9: In this figure we compare our method to the symmetry detection technique of
Podolak et al. [2006]. Detection of a symmetry plane under severe occlusions is difficult
since some of the repeating elements might be occluded. Our data-driven approach
is more reliable in such cases because it exploits part priors to estimate symmetries.
For fairness, in this figure, we show symmetry-only completions without copying points
from the database.

Final4_Assembly airplanes

0.03 7.5 0.07 1.23

Fine-scale errorsFine-scale errors

Figure 10: This figure depicts the performance of our method and Podolak et al. [2006]
for symmetry detection in the airplane dataset by evaluating the error of the predicted
symmetry planes. The left histogram shows errors in plane normals (as the angle
between the normal of the true symmetry plane and the predicted normal), and the
right histogram shows errors in distances to the origin (as a difference between true
and predicted distances). Note that our method (green bars) does not have large-scale
errors in normals in comparison to Podolak et al. [2006] (red bars) which fails in about
20% of the cases (see Figure 9 for some example failures). The inset shows that our
approach suffers from smaller-scale errors, which explains why both symmetry-only
completions have comparable average quantitative performance on the benchmark.

Although quantitative performance of both techniques for symmetry-
based shape completion is comparable with self-occlusions (see
Figure 11), our symmetry-based completion becomes more reliable
under stronger occlusions (see Figure 12).

Effect of stronger occlusions. In this experiment we evaluate the
effect of stronger occlusions. In addition to self-occlusions we
also generate a random square that occludes a surface from a given
viewpoint, and tweak the area until only about 50% of the surface
is visible (effectively decreasing the completeness of the baseline
result). We evaluated the results on airplanes and bicycle datasets
and observed that our symmetry-only reconstructions produce more
complete results whereas our database-only reconstructions improve
more significantly over alignment-based methods. As before the
fused result produces the most complete shapes (see Figure 12).

Effect of individual energy terms. In this experiment we evaluate
the effect of each individual energy term used in the structure esti-
mation algorithm (Section 4.2). In particular, we run our pipeline on
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Figure 11: This figure summarizes quantitative results on our shape completion bench-
mark. Each box corresponds to performance of a different method, where the centre
of a box corresponds to mean accuracy (x-axis) and mean completeness (y-axis), and
width and height are set to standard deviations. The dashed line provides a baseline
of using the input itself as the output (the accuracy of this method is always 1). Not
surprisingly, symmetry-based completions provide the highest accuracy, but typically
lack completeness, while database-driven completions are less accurate. Our method
provides the most complete shapes in all datasets with relatively small drop in accuracy.
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Figure 12: We evaluate the performance of our and alternative methods in the presence
of stronger occlusions (simulated by a square between the surface and the viewpoint,
which effectively shifts the completeness of the baseline). The gap in performance
between our approach and alternative techniques increases as occlusions get stronger.
See supplemental material for all results.

part assembly chair dataset with the following modifications:
(a) we remove per-point classifiers everywhere except initializa-

tion (w1 = 0 and the points are labeled based on their distances
to the oriented part boxes),

(b) we remove the smoothness energy (w2 = 0),
(c) we remove the part-related energy terms (w4 = w5 = 0, the

local coordinate system for parts is based on the initial guess),
(d) we remove the symmetry terms and constraints (w5 = 0),

To evaluate the quality of the predicted structure we measure the
Hausdorff distance between estimated and ground truth part abstrac-
tions (i.e., the oriented boxes). As shown in Figure 13, the pairwise
terms in (d) and per-point classifier terms in (b) greatly affect to the
overall performance. Although the symmetry terms and constraints
(a) do not significantly affect Hausdorff distance, the accuracy of
symmetry planes and rotation axis is important for the quality of the
reconstruction. While smoothness term (c) does not play a signifi-
cant role for benchmark examples, it is a useful regularization for
noisier Kinect scans.
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Figure 13: This plot shows the Hausdorff distance between estimated part structure
and ground truth when disabling some of the energy terms. For (a)-(d) cases, please
see the text.

Analyzing Kinect scans. We tested our method with the scan data
obtained with a Kinect 2. We manually generated a background
segmentation mask — however, one could use the heuristic provided
in [Shen et al. 2012] to find the foreground object. Note that unlike
simulated scans, the data also exhibits high-frequency surface noise
due to sensor limitations. Despite the noise, our method estimated
the correct structure, and produced reasonable shape completions
as shown in Figure 14. These preliminary results suggest that our
system can be a useful tool for autonomous agents interacting with
environments. First, our estimated part structure could be directly
used to understand the orientation of the object and semantics of
its regions (e.g., with the provided analysis the agent might avoid
putting items on the seat to keep the area open for a human). Second,
the completed point cloud can be used in other geometry analysis
tasks that rely on global cues, such as predicting affordances [Kim
et al. 2014] and understanding style [Xu et al. 2010]. Third, the
predicted completions can guide the autonomous agent (or a human
user) to scan the regions that are likely to yield additional geometric
details. While it is possible for us to also directly deform meshes
from the input database to the completed point clouds, we opted out
to presenting just the densified output, aiming to preserve as much
of the original features of the scanned shape as possible. This leads
to results that are less amenable to photorealistic image synthesis,
yet, might be more useful in other virtual reality applications. For
example, one might use the densified points to quickly visualize how
a for-sale product might fit in pre-defined indoor environment or
use them as a coarse reference in a modeling interface. For these
applications, the results can be further color-coded depending on
whether a point is real or was completed with a prior.

Timing. We implemented our algorithm in a single-threaded CPU-
only C++ program, and execute it on a 2.6 GHz Intel processor.
In the training stage the longest step is computing local geometric
features, which takes about 3min per shape. After that the classifier
is built in about 3min (as measured for a dataset of 60 shapes). Other
steps of the training stage are negligible. At the inference stage, a
model is analyzed in about 4 minutes, where about 0.6min is spent
on global label and orientation prediction, about 3.4min are spent
on continuous pose optimization, and the other steps are negligible.

Limitations. Our method has some limitations. First, our model
does not take part connections into account. We believe that one can
use optimization proposed by Shen et al. [2012], to ensure that the
final model is connected. Second, we can improve our results for
Kinect scans by leveraging RGB image information as in Shen et
al. Third, we also assume that the shapes do not have significant
variations in which parts form an object, and thus it is more suitable
for analyzing individual man-made objects with relatively consistent
part structure. However, we believe that our method can be extended
to 3D scenes with two critical changes: redefining part relations to
include a notion of hierarchy (i.e., groupings of objects and parts
reduce complexity of the representation [Liu et al. 2014]), and gen-
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Figure 14: We evaluate the performance of our method on single-view scans acquired
with Kinect 2. We show the input RGBD data (note that the color image is not used by
our method), a foreground point cloud, our estimated part structure, and the completed
shapes.

exp5_coseg_chairs, 388, 87

Figure 15: Failure example due to partial symmetry of the input point cloud. The
visible part of the back is interpreted as a side of a back, so the estimated structure is
incorrect.

eralizing the symmetry term to a regularization term that favors
repetitions on different levels of the hierarchy (i.e., objects often re-
peat in a scene, but transformation typically cannot be learned [Kim
et al. 2012]). Finally, our structure estimation fails in some cases, for
example Figure 15 demonstrates that partial symmetry of an object
can lead our system to an incorrect interpretation of the observed
data.

7 Conclusion and Future Work

In summary, we provide the first system that completes a shape
using both symmetric relations and database parts. In addition to
leveraging this high-level idea, our main technical contribution is
a data-driven technique for estimating shape structure from incom-
plete point clouds. The key difference from previous approaches is
that our method does not rely on a global coordinate system, instead
every part defines local coordinates, and then all parts are jointly
optimized to find the most plausible arrangement. This enables the
prediction of parts in occluded regions, and the estimation of sym-

metries even if the input partial scan is asymmetric due to occlusions.
Finally, we devise a quantitative benchmark for data-driven shape
completion, which will be a valuable asset for the community. We
demonstrate that our method outperforms all alternative techniques
on the benchmark.

In the future, we plan to extend our framework to complete oc-
clusions in 3D scenes with a hierarchical representation for part
relations. Another interesting research direction is to enable user
interaction to fix problems with shape completions. For example,
the input in Figure 16 is ambiguous since there are multiple inter-
pretations for the support structure of the chair. We modified our
optimization to return multiple local minima in the energy function
and it prompted two interpretations for the user to choose from.
We will continue developing interfaces for exploring variations in
plausible shape completions. The main technical challenge for that
direction is the generation of sufficiently diverse, but still plausible
solutions.

Exp15_assembly_chairs, 4136

Figure 16: The input points cloud is ambiguous so we show several local minima in
the solution space to let the user choose from plausible configurations.
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