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Abstract

Many shape and image processing tools rely on computation of cor-
respondences between geometric domains. Efficient methods that
stably extract “soft” matches in the presence of diverse geometric
structures have proven to be valuable for shape retrieval and transfer
of labels or semantic information. With these applications in mind,
we present an algorithm for probabilistic correspondence that opti-
mizes an entropy-regularized Gromov-Wasserstein (GW) objective.
Built upon recent developments in numerical optimal transportation,
our algorithm is compact, provably convergent, and applicable to
any geometric domain expressible as a metric measure matrix. We
provide comprehensive experiments illustrating the convergence
and applicability of our algorithm to a variety of graphics tasks.
Furthermore, we expand entropic GW correspondence to a frame-
work for other matching problems, incorporating partial distance
matrices, user guidance, shape exploration, symmetry detection, and
joint analysis of more than two domains. These applications expand
the scope of entropic GW correspondence to major shape analysis
problems and are stable to distortion and noise.
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1 Introduction

A basic component of the geometry processing toolbox is a tool for
mapping or correspondence, the problem of finding which points on
a target domain correspond to points on a source. Many variations
of this problem have been considered in the graphics literature, e.g.
with some sparse correspondences provided by the user. Regardless,
the basic task of geometric correspondence facilitates the transfer of
properties and edits from one shape to another.

The primary factor that distinguishes correspondence algorithms
is the choice of objective functions. Different choices of objective
functions express contrasting notions of which correspondences are
“desirable.” Classical theorems from differential geometry and most
modern algorithms consider local distortion, producing maps that
take tangent planes to tangent planes with as little stretch as possible;
slightly larger neighborhoods might be taken into account by e.g.
aligning heat kernels. These approaches are justified by classical
differential geometry when the matched domains satisfy conditions
like near-isometry or near-conformality, but when these conditions
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Figure 1: Entropic GW can find correspondences between a source
surface (left) and a surface with similar structure, a surface with
shared semantic structure, a noisy 3D point cloud, an icon, and a
hand drawing. Each fuzzy map was computed using the same code.

are violated these algorithms suffer from having to patch together
local elastic terms into a single global map.

In this paper, we propose a new correspondence algorithm that
minimizes distortion of long- and short-range distances alike. We
study an entropically-regularized version of the Gromov-Wasserstein
(GW) mapping objective function from [Mémoli 2011] measuring
the distortion of geodesic distances. The optimizer is a probabilistic
matching expressed as a “fuzzy” correspondence matrix in the style
of [Kim et al. 2012; Solomon et al. 2012]; we control sharpness of
the correspondence via the weight of an entropic regularizer.

Although [Mémoli 2011] and subsequent work identified the possi-
bility of using GW distances for geometric correspondence, computa-
tional challenges hampered their practical application. To overcome
these challenges, we build upon recent methods for regularized op-
timal transportation introduced in [Benamou et al. 2015; Solomon
et al. 2015]. While optimal transportation is a fundamentally differ-
ent optimization problem from regularized GW computation (linear
versus quadratic matching), the core of our method relies upon
solving a sequence of regularized optimal transport problems.

Our remarkably compact algorithm (see Algorithm 1) exhibits global
convergence, i.e., it provably reaches a local minimum of the regu-
larized GW objective function regardless of the initial guess. Our
algorithm can be applied to any domain expressible as a metric mea-
sure space (see §2). Concretely, only distance matrices are required
as input, and hence the method can be applied to many classes of
domains including meshes, point clouds, graphs, and even more
abstract structures.

A major advantage of our framework is its extensibility. In addition
to the conventional correspondence problem, we apply our method
to organizing shape collections and show how to find correspon-
dences given user guidance or incomplete pairwise distances. We
also provide algorithms to extract multiple maps in the presence of
symmetry and to compute consistent maps within a collection.

Contributions. We present a fuzzy mapping algorithm minimiz-
ing the Gromov-Wasserstein (GW) objective with entropic regular-
ization. In summary, our key contributions are the following:

e discretization of an entropically-regularized GW objective suit-
able for domains in graphics and geometry processing;

e a simple-to-implement algorithm for minimizing this objective
that relies only upon scalable low-level linear algebra;
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e a convergence proof for the iterative optimization algorithm;

e comprehensive experiments establishing reliability, efficiency,
and versatility of the regularized GW algorithm; and

e proof-of-concept extensions of regularized GW correspon-
dence to a large variety of problems, demonstrating its versa-
tility within the geometry processing and graphics toolboxes.

2 Related Work

Our algorithm is a general technique for mapping, a problem that
has a long history in graphics. In this section, we focus on works
relevant to our discussion; see [van Kaick et al. 2011] for a thorough
survey of correspondence algorithms.

Gromov-Wasserstein (GW) distances. We focus on the GW
mapping objective [Mémoli 2007], a relaxation of the Gromov-
Hausdorff (GH) distance between metric spaces [Gromov 2001].
GH measures the single distance most distorted by a map. While
it has been applied to geometry processing [Bronstein et al. 2010],
GH is costly to optimize and prioritizes one distance value at a time.

GW is a distance between metric measure spaces, i.e., metric spaces
equipped with a probability distribution (see [Mémoli 2011; Mémoli
2014; Sturm 2012] for more details). This additional feature is
crucial, especially because it allows one to measure the expected dis-
tortion of distances. Matchings considered by GW distances thus dif-
fer from the point-to-point maps considered by Gromov-Hausdorff
distances. GW distances optimize over probabilistic “measure cou-
plings” (see §3), the continuous counterpart of “fuzzy” mapping
matrices introduced in [Kim et al. 2012; Solomon et al. 2012]. Us-
ing an additional probability distribution on a metric space is also
beneficial from an application point of view, because one can encode
additional information (such as spatially varying confidence or noise
level) in the probability distribution; see §5.3 for an example.

Mapping objectives. Most mathematical methods for correspon-
dence are built around criteria for a desirable map, expressed in
algorithmic design choices or as terms in an objective function.
Here, we attempt to place GW distances in this larger context.

Many mapping methods attempt to minimize local distortion, mea-
suring the stretch of the source onto the target. In differential ge-
ometry, harmonic maps minimize a local measure of stretch and
shear [Urakawa 2013]. Heat kernel-based methods like [Ovsjanikov
et al. 2010] prefer maps that distort local distances and curvatures;
Kezurer et al. [2015] use a similar objective. “Kernelized sort-
ing” [Quadrianto et al. 2009] optimizes the Hilbert Schmidt Indepen-
dence Criterion [Smola et al. 2007], which coincides with the GW
objective function after replacing geodesic distances with diffusion
kernels. Fried et al. [2015] apply this machinery to image layout
problems. These methods are subject to the challenge of assembling
many local constraints into one map.

Other mapping methods seek to preserve global structure. Bron-
stein et al. [2006] showed that one such objective is effective for
nonrigid mesh registration, optimized using simple gradient-based
steps; Aflalo and Kimmel [2013] introduce a spectral approximation
in the presence of a Laplacian operator for machine learning applica-
tions. These methods can make it difficult to localize points in small
neighborhoods but are well-suited to fuzzy mapping applications.
Our regularized GW mapping technique belongs to this class but is
accompanied by a more stable optimization routine than its peers.

If more is known about the mapped geometry, specialized algorithms
may apply. For instance, Kim et al. [2011] seek nearly conformal
maps between surfaces and We et al. [2015] train for maps between
human body models. Chen and Koltun [2015] rely on extrinsic

alignment to reduce matching ambiguity for triangulated surfaces.
We aim to devise a versatile method that does not depend on these
assumptions, making it applicable to many domains (see §4).

Our measure couplings bear some rough similarity to the functional
map matrices of Ovsjanikov et al. [2012], but the underlying vari-
ables are different. We minimize geometric distortion, while they
use weaker “‘commutativity” regularizers and descriptors. Functional
map matrices in the Laplace-Beltrami basis also can take on negative
values, which are explicitly avoided in our probabilistic formulation.

Optimal transportation. As we will see in §3, the GW matching
objective function inherits part of its name from the Wasserstein
distance between probability distributions on a geometric domain.
These latter distances have recently been applied to several problems
in graphics; a small sampling includes [Bonneel et al. 2011; De Goes
et al. 2011; Mérigot 2011; de Goes et al. 2012; Schwartzburg et al.
2014; Solomon et al. 2014; de Goes et al. 2015; Solomon et al. 2015].
Despite this relationship, the Wasserstein and GW distances serve
contrasting purposes and require different computational machinery.

GW and Wasserstein distances apply to different problems. Wasser-
stein distances are between distributions on the same geometric
domain. GW distances are between different geometric domains.
From an optimization standpoint, Wasserstein distances are defined
by a convex linear program [Villani 2003; Rubner et al. 2000], while
GW distances require solving a nonconvex quadratic program.

Nonetheless, we leverage algorithms for Wasserstein distances as
building blocks. We apply entropic regularization, proposed for
optimal transportation in [Cuturi 2013; Benamou et al. 2015] and in-
troduced to graphics in [Solomon et al. 2015]; the entropic Sinkhorn
algorithm comprises our inner loop. Our algorithm resembles “‘sof-
tassign” in machine learning [Rangarajan et al. 1997] (see §3.3).
The entropic term controls the fuzziness of our coupling; highly-
regularized problems can generate meaningful rough maps in just a
few iterations, while decreasing the regularizer better approximates
the GW problem at the cost of more expensive optimization.

Quadratic assignment and correspondence. GW computa-
tion is an instance of the quadratic assignment problem [Pardalos
and Wolkowicz 1994; Loiola et al. 2007; Cela 2013]. Solving this
problem with global optimality and point-to-point constraints likely
is algorithmically intractable—even within a constant approximation
factor [Sahni and Gonzalez 1976]. After relaxing integer constraints
the problem remains similarly intractable [Sahni 1974].

Optimization. Limited attention has been dedicated to the prob-
lem of computing GW distances efficiently. Initial work used
general-purpose solvers. Mémoli [2009] introduces a spectral ap-
proximation bounded by solving a sequence of linear programs.

An alternative approach with theoretical guarantees is convex re-
laxation, removing constraints from nonconvex problems until they
become convex programs. Some theoretical results provide con-
ditions under which these methods recover a global optimum for
the original problem, that is, when the relaxations are tight. While
the potential for global optimality is attractive, the number of re-
laxed variables can be huge. For instance, Kezurer et al. [2015]
optimize over n? x n’ semidefinite matrices, where n is the number
of mapped points, and [Solomon et al. 2012; Solomon et al. 2013]
include many large-scale transportation subproblems. Furthermore,
relaxed problems with non-unique solutions, e.g. mapping in the
presence of symmetries, admit large spaces of unusable outputs.
See [Aflalo et al. 2014; Aflalo et al. 2015; Lyzinski et al. 2015]
for similar trade-offs in graph matching. Eigenvalue relaxations,
e.g. [Leordeanu and Hebert 2005], also provide some notion of



global optimality, with much less favorable conditions for tightness
and after removing many constraints.

Our algorithm instead inherits convergence and /ocal optimality
from recent work on nonconvex optimization [Bot et al. 2015]. It
resembles a discretized gradient flow in the Kullback-Leibler (KL)
metric, similar to the forward—backward proximal gradient algo-
rithm [Bauschke and Combettes 2011; Combettes and Pesquet 2011]
extended to Bregman divergences [Bauschke et al. 2006]. Guaran-
tees for nonconvex objectives come from the Kurdyka-t.ojasiewicz
(also KL) property [Kurdyka 1998; Lojasiewicz 1963; Lojasiewicz
1993], applied to nonconvex optimization by Attouch et al. [2010].

3 Matching a Pair of Domains

3.1 Gromov-Wasserstein Matching

Suppose we are given two geometric domains Yo and ¥ accom-
panied with nonnegative unit measures po and p, resp. Follow-
ing [Mémoli 2011], define the space M (uo, p) of measure cou-
plings as the set of measures v € Prob(Xo x X) satisfying

Y(So x £) = po(So) and (o x S) = p(S)
for all measurable So C ¥ and S C X. We will treat y as a “soft
correspondence” in the language of [Solomon et al. 2012], that is, a

high probability assigned by v to (po,p) € o X X indicates that
po and p should be matched.

To add geometric structure, assume Yo and X are additionally ac-
companied with pairwise distance functions do : 3o X X9 — Ry
and d : X x ¥ — R. The 2-Gromov-Wasserstein (GW) distance be-
tween (po, do) and (u, d) measures the minimal distortion induced
by a measure coupling between the two domains:

GW%((H‘O’ do), (/"’7 d)) =

min [do(z,2")—d(y,y")]” dv(z,y) dy(a',y').
yEM(po,1) J Jeoxs
@

In contrast to optimal transportation, this optimization is a potentially
nonconvex quadratic program rather than a linear program due to
the product of two d~y’s.

The GW objective is constructed from the assumption that if a map
pairs z — y and 2’ — v/, then the distance between x and x’
on Xy should be similar to the distance between y and v’ on X.
If d is the geodesic distance function, then the objective is zero
when ~ encodes an isometry between Yo and 3. That said, ~ is
meaningful even when 3y and ¥ are not isometric, measuring the
optimal deviation from preserving the distance structure of a surface.

While our subsequent derivation could be written in continuous
language, for clarity and to focus on computational applications we
transition to discrete notation. Assume Y, is discretized using no
points and that X is discretized using n points; we accompany these
samplings with discrete measures pt, € R’° and p € R} such that
1Tu0 = 1T = 1. In our experiments, we take o, 1 either to
be constant vectors or—for triangle meshes—vectors of per-vertex
barycentric area weights; future work might consider more general
choices of these vectors. We use symmetric matrices Do € R'}°*"™°

and D € R*™ to denote pairwise distances on %o and 3.

In this language, the set of measure couplings is

M(ppg, p):={T €RT*":Tp=1,T " py =1}, (2

and the 2-Gromov-Wasserstein distance is

GW;(Do,D) = min > (Doi; —Die) T Tyebto; b i -
reM
(3)

We think of I" as a function sampled from ¥ X 3, so the products
I‘Tuo and I' e integrate out 2 and X, resp. The linear constraints
defining M reflect the fact that T" should marginalize to the constant
probability measure on 3o and 2.

Define an inner product of measure couplings as

(D,T') = " T Tl pag; bt

ik

After expanding the square, we can write

GW3(Do,D)=2 min (T, A(T")), )
rem

where
1 1
A(T):= 5 D3 (oI Tt " = Dol T[] D+ 5 1pg T[ulD".

The superscript A2 denotes the elementwise square of a matrix, and
[v] is the diagonal matrix constructed from vector v.

Applying the marginalization constraints (2) shows

GWa()=C(Do, D) ~2 max (T, Do[uo [T [u]D).  (5)

where

C(Do, D Z Dou Moito; + Z DkZHkIJ'e

ij

This maximization problem for I' is a nonconvex quadratic program
for I', removing the possibility of using convex optimization tools.
Any time ¥ or 3 admit a symmetry, the objective has multiple
optima, one for each symmetry. For example, when mapping human
models, the two optima will be the orientation-preserving map and
a left-to-right flipped map. Unlike convex relaxations, however, a
convex combination of the orientation-preserving and orientation-
reversing maps will not necessarily be optimal.

3.2 Entropic Regularization

Following [Solomon et al. 2015], we define the entropy of a measure
coupling as
H(T):= —(I',InT),

H(T) is large when I' has many nonzero entries and is small when
I" encodes a map close to a permutation matrix.

Suppose we regularize the objective (5) by adding —aH (T") for
some « > (. As illustrated in Figure 2, larger values of « increase
the softness of I', effectively smoothing the base GW objective
function. As o — 0, optimal matchings I'" begin to resemble permu-
tation matrices (see [Quadrianto et al. 2009, eq. (10)]) and no longer
superpose symmetric matches.

Now, define the KL-divergence between I', T € R’,°*" as

L. _
L(T|T) : Zuozuk [( Fk) —Fik+rik:|-

This KL divergence contains an additional linear term from the one
in [Solomon et al. 2015], but since it only involves I' it is a con-
stant in their objective. This use of “generalized” KL (also called




Source surface

Target surface (v = 8 X 1073)

Target surface (v = 7 X 10™%4)

Figure 2: Effect of regularization parameter o. Colored points (left) are mapped to colored distributions (right). As o decreases, the map
sharpens; eventually, eight-way symmetry is broken in favor of a more bijective map matching tentacles based on asymmetries in their lengths.

function GROMOV-WASSERSTEIN(t, Do, 1, D, o, 1)
// Computes a local minimizer T of (6)

I' «+ ONES(ng X n)
fori=1,2,3,...

K « exp(Do[po[T[1]D T /a)

T < SINKHORN-PROJECTION(K"" @ TN(1=™); Ko, 1)
return I'

function SINKHORN-PROJECTION(K; 14, 1)
// Finds T minimizing KL(T'|K) subject to T' € M(pq, 1)
v,w<1
forj=1,2,3,...
v—10K(w®u)
w—10KT(ve u,)
return [v]K[w]

Algorithm 1: Iteration for finding regularized Gromov-Wasserstein
distances. ®, @ denote elementwise multiplication and division.

I-divergence) will figure into our method for joint domain analysis
(§5.5) and identifies KL divergence as a Bregman divergence [Breg-
man 1967].

Finally, define
fa(T) := exp(Do[po[T[p]D/ ).

After regularizing by adding —aH (T') to the objective (5), an iden-
tical argument to the one in [Benamou et al. 2015] shows that we
can recover I' by solving the following minimization problem:

argmin oKL(T|f,(T)). (6)
reM(pg,p)

The fact that I" appears twice makes this objective nonconvex. As
derived in Appendix A, we compute I' using KL-projected gradient
descent:

A7 A(1—n)
r* ¢ arg min KL (r‘[fa(r““))] '® [r“)} ’), %)
remM

where ® denotes elementwise (Hadamard) matrix multiplication.

Iteration (7) is a convex program identical to the optimal transporta-
tion problems considered in [Benamou et al. 2015]; as derived in
that paper, it can be optimized using iterative Sinkhorn projection.
The parameter 7 € (0, 1] controls the inertia of the iterative scheme;
7 acts similarly to the “learning rate” parameter of gradient descent
algorithms. Pseudocode is provided in Algorithm 1.

3.3 Convergence

Convergence of (7) as k — oo is a subtle matter. While existing
work suggests monotonicity of the objective (6) under weak assump-
tions (see below), this does not guarantee convergence of the iterates

T T T ;<F‘7A(‘F)‘>‘*
— —H(I)

w
]

(]

[y

Objective term

1073 1072 107!
(e}

Figure 3: Dependence of objective terms on regularizer o for the
experiment in Figure 2.

I'®). Given the dependence of our subsequent discussion on this
algorithm as well as its appearance in many other contexts, we prove
the following convergence result:

Proposition 1. {T'®)}° | converges 1o a critical point of (6) when
- 20,0112
1 < /1tea, where ¢ := [ming; pro; p;] /[ ko |I” |2l [ Do [ | D-

As « increases, the required bound loosens, reflecting the improved
conditioning of the optimization problem. We prove this result in
the appendix by expressing it as an instance of a modern method for
nonconvex optimization [Bot et al. 2015].

From a practical standpoint, we halt GW,, iteration when the relative
change in T" or objective value is less than a fixed threshold (107
in our experiments).

Comparison to softassign. While we derived it for GW,
matching, iteration (7) with n = 1 is similar to the “softassign”
algorithm in machine learning for quadratic assignment [Gold and
Rangarajan 1996; Rangarajan et al. 1996]. Rangarajan et al. [1997;
1999] consider the convergence of softassign. They mainly focus on
monotonicity of the objective rather than convergence of the iterates.
More critically, their analysis assumes convexity; see, e.g., the con-
clusion of the proof of [Rangarajan et al. 1999, Theorem 1]. Such
an assumption is unlikely to be valid for geometric problems with
local and global symmetries. Their analysis introduces convexity
via a “self-amplification term” along the diagonal of the objective
matrix, which modifies the optimization problem and obliterates the
possibility of identifying symmetric ambiguity.

3.4 Parameter Selection

Figure 3 illustrates the trade-off between the two objective terms for
the experiments in Figure 2 as a function of a.. As o increases, so
does the GW objective (3) while negative entropy decreases. A phase
transition in the GW objective indicates a change in the nature of the
map, in this case from mapping individual tentacles to superposing
all tentacle targets. This example illustrates a more general pattern:
large choices of « lead to higher-entropy correspondence matrices
that still contain meaningful match information, while lower a’s
make for sharper map matrices that express a single coherent match-
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ing. When « is small but there exist multiple symmetric maps, they
can be extracted using the method in §5.4.

Our algorithm converges faster with a warm start, and hence we can
generate plots like the one in Figure 3 efficiently by incrementally
adjusting « and updating I'. User-guided selection of « can be
guided using this plot to find significant changes in the map as it
depends on regularization.

4 Experiments

Algorithm 1 provides an extremely simple technique for optimizing
the GW, objective function. We view this simplicity as an advan-
tage; our algorithm is implementable in nearly any framework and
generalizable to many classes of domains. In this section, we verify
that simplicity does not come at the cost of performance through
experiments designed to reveal properties of our iterative technique.

Convergence. Figure 4 illustrates convergence of our algorithm
on the experiments in Figure 2, with several choices of 7. The
experiments illustrate that the bound on 7 in Proposition 1 is loose,
that is, some choices of 7 > ¢/14ca still exhibit convergence. In
our experiments, the algorithm appears to converge monotonically
even when 1 = 1. While we are unable to provide rigorous proof of
convergence in this regime, from an engineering standpoint larger
7 values can hasten completion time. Figure 4a shows an example
with n > 1 that does not converge. As a trade-off, Figure 4b
illustrates that the larger steps can skip past optima with better
objective values; in this case, the different local optima correspond
to different matchings of the octopus’s tentacles.

Sensitivity. Since Algorithm 1 optimizes a non-convex objective,
the output may depend on the initial I". Figure 5 tests sensitivity to
the initial guess. Like the previous test, for a given matching task
we plot the optimized GW objective (I', A(T")) as a function of ¢
this roughly should increase as « increases. In this test, however, we
randomly generate an initial I" in each trial.
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(a) Triangle mesh matching (no = n = 502)
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Figure 5: Sensitivity to initial guess of I" for matching (a) surfaces
and (b) planar point samples.

We evaluate surface matching stability in Figure 5a; distance ma-
trices Do, D contain geodesic distances. This test, representative
of many similar experiments involving surfaces, shows little depen-
dence on the initial I" even for sharp matchings (low «), as reflected
by the single coherent curve of objective values.

To reveal a case where multiple optima appear, we consider the
task of matching two Poisson disk samples from a right triangle in
Figure 5b; here, Do, D contain planar Euclidean distances. Since
the triangle has a reflectional symmetry, we expect there to be two
nearly-optimal maps from the source to the target. When « is
sufficiently small, we do observe two different optimized objectives
for the same « depending on which symmetric map is closer to the
initial estimate of I'. For large enough « (displayed above the plot),
the optimal coupling superposes the two optimal maps and the two
parallel curves merge.

Efficiency. Figure 6 tests efficiency of our technique. Here, we
plot the GW,, objective as a function of time, measured using a
single-threaded implementation in Matlab on a 2.1 GHz Intel i7
CPU with 8GB memory. [Mémoli 2011] and subsequent works men-
tion two optimization algorithms (without regularization): gradient
descent and alternation. The latter solves an optimal transportation-
style linear program in each step. Our method directly improves that
technique, so to compare to a more distant alternative we consider
gradient-based routines popular in graphics. In particular, we employ
a standard implementation of the interior point method [Waltz et al.
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Figure 8: Mapping a graph onto a shape (ng=27,1=2502, a =
1.8 x 1074).

2006] with “limited-memory” BFGS Hessian estimates. Both in
terms of elapsed time and number of iterations, our method reaches
a critical point far faster than the interior point alternative. The
difference widens as the size of the problem increases.

Robustness. To demonstrate the robustness of GW,-based
matching, Figure 7 illustrates couplings between pairs of triangulated
surfaces computed using our algorithm. Even when the surfaces
undergo significant geometric and topological changes (e.g. adding
slats to the chair backs and matching a cup to a mug twice its height)
that deviate considerably from isometry, conformality, and other
assumptions imposed by surface matching algorithms, our method
stably recovers a reasonable correspondence. We visualize maps by
showing rows of the measure coupling color coded on a target from
corresponding points on a source.

Generality. Throughout this paper, we attempt to demonstrate our
algorithm on a variety of matching tasks. In this section, we highlight
a few additional examples to underscore its wide applicability.

Figure 1 (page 1) tests our algorithm’s flexibility to domain class.
Here, we map a triangle mesh to five different classes of target do-
mains. Despite the contrasting structures and even dimensionalities
of the targets, our algorithm extracts a meaningful correspondence.

Similarly, Figure 8 shows an example of mapping a graph onto a
surface. Here, distances Dg on the graph are all-pairs shortest-path
distances with unit edge weights, and D contains geodesic distances
on the target surface. Convergence for this example was particularly
fast given the small size of the source domain.

Figure 9 applies our machinery to mapping a set of images onto a
grid layout; as a point of comparison, Fried et al. [2015] recently
proposed a more complicated optimization routine for the same
problem. Here, Dy contains distances between average LAB color

Figure 9: Mapping 196 images onto a 14 x 14 image grid while
preserving color similarity. (Images from Flickr public domain collection.)

over an image, and D contains Euclidean distances between grid
cells. For this application, we need to extract a matching rather than
a soft measure coupling I'. To do so, after optimizing for I', we
solve a linear assignment problem

t

,T)
>0
1=1n

maxp
S.t.

el

I'1=1no.

When ng = n, this linear program admits a permutation matrix
solution computable using a standard convex optimization tool or
any of the many fast solvers for assignment problems.

Figure 10 shows an example
matching a triangle mesh to a point
cloud. Here, we match a noisy and
sparse point cloud face scan to a
generic mesh of a face. Since the
two shapes are in approximately
the same pose, we take Do, D
to contain Euclidean (rather than
geodesic) distances. We use mesh-
based area weights on the source and uniform area weights on the
target. The match is successful despite the nonuniform sampling of
the point cloud and a missing patch on the nose.

Figure 10: Point clouds.

The supplemental document includes a 2D shape

matching test (data from [Thakoor et al. 2007]).

The shapes are point clouds without topology. We

use the rounding procedure outlined for image lay-

out to display the maps, transferring colors from

the matched point on a source shape (boxed). Our

algorithm recovers smooth maps for most 2D test ~ Figure 11
cases. The most challenging test in the dataset is the “fork™ class;
these shapes admit symmetries and thin structures that make it dif-
ficult to extract a point-to-point map after applying the entropic
regularizer. Figure 11 shows an example before rounding.



Figure 7: Additional surface correspondences computed using Algorithm 1 (¢ =5x10"* n=1). As in [Solomon et al. 2015], colored points
on the left are mapped to colored distributions on the right. §5.4 details a method for addressing the symmetry reversal in the third map.
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A1 =7,23=0 A1 =4,A3=3 6 iterations 14 iterations
[ [Kezurer et al. 2015], 2499 variables GWa, a=10"7, 49 variables |

Figure 12: Comparison to SDP matching. The points on the left
of the vertical dotted lines are mapped to the right; edge dark-
ness indicates value of T'. The two largest eigenvalues are shown
for [Kezurer et al. 2015]; the second test case is not tight. The
number of iterations for six digits of precision is shown for GW,, .

Comparison. Here we provide a few examples qualitatively
demonstrating how our method differs from existing work.

Figure 12 compares to [Kezurer et al. 2015] for a 2D matching
problem using pairwise Euclidean distances. We show a symmetric
test case and an asymmetric test case. For fair comparison, we
use their SDP relaxation on the GW objective. Our unoptimized
implementation instantiated 2499 variables to match seven points
using their method, which has O(n*) variables for n matched points.
Beyond an obvious difference in timings, their relaxation was not
tight in the symmetric test. While optimization via the interior point
method recovered a map that arbitrarily superposed the two equally
optimal maps, the weights of the superposition were not isotropic
or controllable. Our method recovered a sharp map; the symmetric
map can be recovered as described in §5.4.

The supplemental document includes a comparison to [Aflalo et al.
2015] in which we minimize ||DoI’ — I'D||pro over doubly stochas-
tic I'. To match their setup, we assume no =n with uniform area
weights. Although their method does not require an SDP, the convex-
ity of their objective is problematic for (nearly-)symmetric domains;
see the supplemental document for discussion.

Figure 13 compares to
the Blended Intrinsic
Maps (BIM) method
of [Kim et al. 2011] for
triangle mesh correspon-
dence. BIM constructs

point-to-point maps

between triangulated

surfaces by patching Source BIM GW,
together conformal Figure 13: Blended intrinsic maps.

(angle-preserving) maps. For comparison, we compute a sharp
GW,, map (=5 x10"*) and show the highest-probability match
for each source point. Because BIM restricts to conformal maps
rather than minimizing a measure of stretch like GW,, it cannot
capture the stretch of the neck and legs from the bull source model
to the giraffe target. GW,, more evenly distributes the distortion.

Figure 14 illustrates performance on benchmarks from [Kim et al.
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60 [~ B

40

—— SCAPE
—— SHREC °07 animals | |

% correspondences

20 -

0 | | | |
0 0.05 0.1 015 0.2

Geodesic error
Figure 14: Benchmark tests from [Kim et al. 2011].

0.25

2011]; the units of the plots and experiments are identical to the
ones used in their paper to ease comparison to [Kim et al. 2011] and
follow-on work. For these experiments, we round measure couplings
to sharp maps by mapping source points to the maximum of their
corresponding rows in the coupling. Despite our method’s generality
and design for rough rather than dense correspondence, it behaves
comparably to algorithms for dense, isometry-invariant mapping on
the near-isometric SCAPE dataset. Error is higher the non-isometric
SHREC 07 dataset; for some geometrically diverse surface pairs,
GW,, takes the front of one animal to the back of another. While
the plots show results without user guidance, these negative results
could easily be addressed using the supervised matching pipeline
outlined in §5.2.

5 Applications and Extensions

The basic GW,, optimization can be applied to many graphics tasks
and admits countless extensions to variations of the original prob-
lem. To emphasize how GW, fits into different pipelines, here we
provide several examples of adapting GW, to diverse matching
problems, accompanied by proof-of-concept examples validating
stability to these changes.

5.1 Organizing Shape Collections

The GW, objective value after minimization is a distance between
metric spaces. These distances can be used for shape retrieval,
search, exploration, or organization of shape databases. GW,
distances between geodesic distance matrices are isometry-invariant,
popular for deformable shape retrieval [Bronstein et al. 2011; Rusta-
mov et al. 2013]. For example, Figure 15 shows a multidimensional
scaling (MDS) embedding of 80 models from four different cate-
gories in the SHREC dataset [Giorgi et al. 2007] using pairwise
GW,, distances. Note that models from the same class form distinct
clusters.

Computing pairwise GW,, distances can be prohibitively expensive
for large datasets, so we leverage the observation of Rustamov et
al. [2013] that collections of similar 3D models can be compared to a
single “base shape.” In this case, we use the GW,, maps I} o (where
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Figure 15: MDS embedding of four classes from SHREC dataset.
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Figure 16: Recovery of galloping horse sequence.

0 is the base shape) as a feature vector for shape :. We reproduce
the result presented in the work of Rustamov et al., recovering
the circular structure of meshes from a galloping horse animation
sequence (Figure 16). Unlike Rustamov et al., however, our method
does not require ground truth maps between shapes as input.

5.2 Supervised Matching

An important feature of a matching tool is the ability to incorporate
user input, e.g. ground truth matches of points or regions. In the
GW, framework, one way to enforce these constraints is to provide
a stencil S specifying a sparsity pattern for the map I'. Incorporating
constraints in this form is as simple as replacing K <+~ K ® S in
Algorithm 1 before Sinkhorn projection.

Figure 17 illustrates a prototype “user session’ in interactive map
design. Initially, we optimize with high regularization and no con-
straints, yielding a superposition of symmetric maps. The user is
prompted with the highest-entropy row (leftmost target; source point
marked in black) and inputs a ground truth match, marked in black
in the remaining target images. The map is recomputed with a lower
regularizer and the ground truth match in S, disambiguating the
rotational symmetry (center target). GW, is still unable to disam-
biguate the top-bottom reflectional symmetry, so the user further
constrains the upper half of the source to map to the upper half of the
target by using § to zero out undesired matches. With this additional
change and after decreasing regularization, the algorithm produces a
near point-to-point map (rightmost target). Each map update takes a
few seconds.

5.3 Weighted Distance Matrix

In some scenarios, only distances in a particular range are relevant
to matching, e.g. keeping certain points close to one another while
pushing others far apart. In other contexts, distance values may be
known with varying confidence.

More generally, suppose in addition to distance matrices Dy €

Figure 18: Mapping a set of 185 images onto a two shapes while
preserving color similarity. (Images from Flickr public domain collection.)

R0 and D € R *™ we are given symmetric weight matrices

W, € R°"™ and W € R}*™. We could solve a weighted
version of the GW, matching problem (3) that prioritizes maps
preserving distances corresponding to large W values:

min » " (Doi; —Dre) T T5iWoi, W s po, o b bty (8)
TeM ke

For instance, (W, W) might contain confidence values expressing
the quality of the entries of (Do, D). Or, W, W could take values
in {e, 1} reducing the weight of distances that are unknown or do
not need to be preserved by I.

Following the same simplifications as §3.1, we can optimize this
objective by minimizing (T', Aw (T")), where
1
Aw(T) =5 [D5” ® Wol[o[ T [u]W
— [Do @ Wol[,]T[p][D @ W]

+ 3 WolkoIT[u] D™ & W)

The remainder of the derivation in §3.1 remains unchanged, and
hence we can optimize (8) using a small modification of Algorithm 1

corresponding to the new update rule
A1=n)
o[re] ™).

e ()

In practice, giving W exactly zero entries can cause numerical
problems during Sinkhorn rescaling, so we bound it below by a
small € > 0.

An

I"wl) —argmin KL(T
rem

Figure 18 illustrates an application of this technique (o = 3 X
1073, =2.5x10"?). Here, we extend the image example from
§4 to map images onto shapes on a shared grid. We take W;; =1
if 2 and j are in the same connected component and W;; =0 oth-
erwise; this objective does not enforce color continuity between
the connected components. As a result, the components exhibit
different (but still smooth) color variations, e.g. the clusters of blue
images on the two components are distant from each other. Note the
optimization decides which image appears in which cluster.

5.4 Symmetry Detection

[Pauly 2015] recently posed the question of whether optimal trans-
portation can be used for symmetry analysis. We outline one strategy
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Figure 17: Steps in supervised map design user session, outlined in §5.2.

here for dealing with symmetries intrinsic to the distance matrices
Dy, D leveraging the non-convexity of the GW,, objective function.

Suppose Algorithm 1 yields a measure coupling I" corresponding to
amap Xo — 2. If the distance matrix D on X has a symmetry, then
there exists a second coupling T with a similar GW,, objective
value encoding the symmetric map. We optimize for this map by
biasing the GW,, objective slightly against I" in (6):

£ (15 T) i= exp([Dolp T [1]D — eT]/a). - ©)

Now, the symmetric map should have a slightly lower objective
value than I', which we can compute using the same algorithm.

Figure 19 illustrates an example of

symmetric map computation. Al-

gorithm 1 yielded the left-right re-

versing map between the meshes

of humans (same as Figure 7),

which is equally optimal to the

orientation-preserving map. Fix-

ing this map as T’ and optimizing o I T’

for I' using (9) (e=10"°) yields Figure 19: Symmetric maps.
the orientation-preserving map as desired.

Figure 20 shows the more con-

ventional case of intrinsic “self”-

symmetry detection. In this case,

we seek maps from the mouse

model onto itself that preserve dis-

tance structure (v = 1073%,¢ =

1073). To avoid the obvious iden-

tity map, we optimize for I'’ after Yo T’
taking I" to be the identity matrix. ~ Figure 20: Self symmetry.
This yields the left-right symmetric map of the model.

Notice the construction of this technique relies upon the non-
convexity of the GW, objective. In particular, averaging the
orientation-preserving and orientation-reversing maps increases the
GW, objective, a property that cannot hold for convex functions.

5.5 Joint Domain Analysis

A valuable property of mapping within a collection is consistency. If
we map A to B, B to C, and C back to A, we may wish to constrain
the composition to approximate the identity. Consistency can help
improve a collection of maps by reinforcing correct matches.

Suppose we are given domains {Dy, ..., D,} with pairwise cou-
plings Ti; € M(u,,p;); Tj and Ty can be composed as
;[ ;]Tsx (see appendix). Following [Huang and Guibas 2013],
if the I;;’s are consistent, they factor through an “urshape,” that
is, we could map every D; to a single target and back out. If the
urshape approximately consists of m uniformly-sampled points, we

function SYMMETRIC-NNMF(B)
A + RANDOM(pm X m)
for/=1,2,3,...
U+ AR[(BoAAT)A]
A+UJlovUT1]
return A /B~ AAT

Algorithm 2: Nonnegative matrix factorization minimizing
KL(B|AAT) with respect to A.

// Initialize with nontrivial A

can write T, ..., T, € M(p;,1/m) such that T; = DT} /i :

L\ |
L
. (10)
I,
—— —— ———
A AT

This shows that G admits a low-rank, symmetric nonnegative fac-
torization proportional to AA T

Suppose we are given metric matrices D1, . .., D,. For simplicity,
we assume D; € R"™™ Vi with constant area weights. From (10),
we optimize for a set of nearly-consistent maps I5; as follows:

ming,a SKL(G|AA ")+, KL(Ty; |fa(T:j; Di, D;))
s.t. G has blocks I';; and A has blocks I
Lij, T € M(Y/m,1/m) Vi, j

(a1
The second term is the GW,, objective (6), and the first approxi-
mates G as AA T, This resembles factorizations in probabilistic
latent semantic analysis (pLSA) [Hofmann 1999], which approxi-
mate B ~ WH by minimizing KL (B|WH) [Gaussier and Goutte
2005].

‘We minimize (11) by alternating between G and A.. Each alternation
has a straightforward algorithm detailed below and in Algorithm 3.
Our method ensures that the objective of (11) decreases in each step,
but we leave to future work a result like Proposition 1.

First, suppose A is fixed and that we optimize for G. Denote by
F.(G) the matrix with blocks f, (I};; D;, D;). Algebraic manipu-
lation of (11) with A fixed yields an equivalent problem

ming KL (G ’FQ(G)MH) ® (AAT)N
s.t. G has blocks T;; and A has blocks T; (12)
L;, L € M(l/m7 l/m) Vi, 7,

where § := 1/1+3. Problem (12) decouples over the mxm blocks of
G, and each individual problem is an instance of the GW,, objective
with elementwise scaling from AAT.

Now, suppose G is fixed, leaving minimization of KL(G|AAT)
with respect to A. Unlike pLSA, we factor G ~ AA " rather than



function JOINT-GW, (D1, ..., Dy;6,n)

// Computes consistent maps via (12).

A < ONES(pm X m)
G < ONES(pm X pm)
fork=1,2,3,...
Go %AAT // Consistent pairwise maps
fori,j =1,2,...,p // Fix A and optimize G
I;; < BLOCK-PROJECTION(D;, Dj, (Go)ij;9,m)
BLOCK(G, 1, 7) < I}; // Replace block of G
A + SYMMETRIC-NNMF(G /) @ F,, (G)"(1=1/9)

return (A, G)

function BLOCK-PROJECTION(D;, D, V;6,7)
// Blockwise projection for consistent GW

T <~ ONES(m x m)
for/=1,2,3,...

K« fa(l-\)/\(l—é) ® VAE

I' < SINKHORN-PROJECTION(K" @ T"(*™7); L /1)
return I'

Algorithm 3: Algorithm for joint GW matching.

Source point

Inconsistent Consistent
Figure 21: Consistent mapping via low-rank factorization reveals
the left-right symmetric ambiguity of mapping between twenty mod-
els of eyeglasses (. = 1073, 8 = 1, n = 100, rank 15).

A ~ WH. We minimize with respect to a single A rather than min-
imizing KL(G|WH) over W and H independently. Algorithm 2
provides a simple iteration for this factorization, using majorization-
minimization [Hunter and Lange 2000]. We prove the following
monotonicity property in the appendix:

Proposition 2. Denote the iterates of Algorithm 2 as AY  Then,
KL(G|A([)A([)T) decreases as a function of £, with monotonicity
unless A is a critical point of KL(G|AAT).

The work of [Lanckriet and Sriperumbudur 2009] might be used to
obtain more refined convergence results.

Figure 21 illustrates an example of consistent mapping using the
technique outlined above. In this case, we compute consistent maps
between 20 models of eyeglasses, each sampled with 100 points.
Pairwise mapping using the GW,, objective yields maps with ar-
bitrary, inconsistent left-right flips. Adding the low-rank term (11)
produces maps that superpose the ambiguous symmetry. For this
experiment, we take A to be rank 15; this choice of dimension-

ality accelerates convergence of the alternating algorithm and is
reasonable given the symmetry we expect in the final maps.

6 Discussion and Conclusion

Empirically, it appears our entropic regularizer transforms a
quadratic matching energy and constraint landscape—well-known
to be difficult to navigate—to a smooth one whose basins can be
reached via a variant of projected gradient descent. In this sense,
despite the presence of multiple local optima for some mapping
tasks, it is likely outside the class of “scary” optimization objectives
avoided in tractable numerical tools [Sun et al. 2015] since these
local optima all represent meaningful correspondences.

Our results suggest many potential extensions and challenging av-
enues for future research. Principally, what remains is extension
to partial matching, e.g. taking part of a surface to a full target or
vice versa. An obvious approach is to drop either prescribed row or
column sums for I, but this leads to a larger space in which GW,,
appears to have more local optima; this is reasonable in that there
often exist many ways to align a patch of a domain with a larger
space. Application-specific regularization may help in this case.
An additional extension might be to improve the efficiency of our
technique by alleviating the need for distance matrices on structured
domains, similar to [Solomon et al. 2015].

While a theme of this work is that regularization can make challeng-
ing matching problems tractable, the longest-standing challenge is
to optimize GW and related objectives without smoothing. Gen-
eral quadratic matching is NP-hard, but algorithms for minimizing
quadratic objectives derived from smooth geometric domains may
have greater hope of succeeding. Recent progress for tasks in graph-
ics including [Chen and Koltun 2015; Wei et al. 2015] suggests that
there is much to do in this direction.

There is a formidable spectrum of tools for geometric correspon-
dence. Methods tuned to individual domain classes are well-explored
for detailed, application-specific analysis. Contrastingly, regularized
GW optimization is a widely-applicable, straightforward, and easily-
extended tool for rough correspondence given minimal guidance or
assumptions. Our examples show how an identical short piece of
code can be used to understand shapes, surfaces, image collections,
graphs, icons, and so on. This practical contribution is paired with
an unconditional convergence guarantee, a reasonable compromise
between slow globally optimal and fast heuristic approaches. As
it stands, metric alignment via entropic GW distances provides an
easy, stable approach to soft correspondence suitable across a wide
collection of matching tasks.
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A Proof of Proposition 1

We appeal to [Bot et al. 2015, Theorem 12], which establishes
convergence of a general nonconvex optimization algorithm. They



consider the iteration (in their notation, fix 8,, = 0 and a,, = &)
2™ arg min {DF (u, x(k>)+§[u . Vg(x<k))+f(u)]}, (13)

where F' is a Bregman divergence parameterized by convex F'(z):

Dr(z,y) :==F(z) — F(y) = VF(y) - (z — y).

Make the following substitutions:
9(T):= —1/2(T, Do [ 1o [ T[] D)
= Vg(T') = o] Dolpo T[] D[w]
f(T):=—aH(T) + x[I € M]
F():=—-H(T) = Dr((T,I')=KL(T'|T)

Here, x|[-] is the {0, 00} indicator of a set. Then, the algorithm
becomes

) arg m% {KL(I‘|1"(’“))—§[<I‘,Do[[uoﬂr(k) [[N}]D>+O‘H(F)}}'

After algebraic simplification, this is exactly the iteration (7) with

fa
1+ &a

L n
— &= 70&(1—17)'

Notice when 7 = 0, we must have £ = 0 and the T'*s do not
change. Contrastingly, n — 1 as £ — oo.

n =

The choice of f is proper, lower semicontinuous, and bounded below,
and g is differentiable with Lipschitz constant Ly 4:

IVg(T) = Vg(@)[l = [l 1] Dol | (T — T°) [ D[]
< Jlpol* |l [Dol[| D] - T — T

Lyg

The function z — zlnz is 1-strongly convex. Hence, I' —
—H(T) is o-strongly convex, where o := min;; pto; ;. Finally,
f g is coercive since it is non-infinite on a compact set, and it satis-
fies the requirements of the Kurdyka-f.ojasiewicz inequality because
it is definable in an o-minimal structure over the reals (see [Coste
1999]).

Next, we check the requirements of [Bot et al. 2015, Lemma 5] for
convergence; we refer the reader to their paper for notation. Our
iteration (13) does not include a linear term and hence we can take
Mo = 0. To ensure My > 0, weneed o0 — {Lvg > 0, or

mini; pro; B,

[0l ]I Do D]

If we define c as the right-hand side, then we need n < ¢@/1+ca.
Regardless, under this condition we satisfy all the requirements for
convergence, as desired.

£<

B Composition of Couplings

To check that Ty [+, ] Ty is a valid composition of T;; and Ty, we
simply verify that this product is a measure coupling in M (p;, i1, ):

(T [21T50 ) ey, = Tij[pe]1 = Tijp; = 1
(T [, 1T5) 1y = Tl I, = T[] = T = 1

Intuitively, this composition formula formalizes the notion

P(mGDi’—)ZGDk) = / P(wGDiHyGDj)P(yGDjHZGD;@).
Y

€D;

C Proof of Proposition 2

We employ a standard result from the theory of majorization-
minimization. Suppose functions F'(A) and G(A, A’) satisfy

FA)=G(A,A)VA >0
F(A) <G(A,A)YA,A' >0.
Then, the following iteration monotonically decreases F/(A(9):

A argmin G(A, AY),
A>0

with strict decrease unless A®) is a stationary point of F'. This
follows directly from the definition of A) and structure of F, G.

In our case, we take
F(A)
~ Z [ #In(AAT ), + (AA )Zk} after removing constants

-3 Gy Mg

AE = Tand \¥ > 0.

=KL(G|AAT)

=[laT1)?

where ) is any set of constants satisfying >
By Jensen’s inequality,

m

i Az'mAkm
F(A) < ||AT1)? ZGMZ)\’CI =S
Take GG
AF = NKG) = TR
m 'rn( ) Zm/ Gim/ ka/

With this choice, by the inequalities above the following G satisfies
the criteria from majorization-minimization:

ZG klnz An AA’;’;A’W.

This function is strictly convex in A. The iterations of our algorithm
solve the root-finding problem VA G(A, A¥) = 0 in closed form.
Note that solutions of VaG(A, A®) = 0 satisfy A > 0 without
adding the constraint explicitly thanks to the log term.

G(A,A) = ||AT1|?
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