
Eurographics Symposium on Geometry Processing 2017

J. A. Bærentzen and K. Hildebrandt

(Guest Editors)

Volume 36 (2017), Number 5

GWCNN: A Metric Alignment Layer for Deep Shape Analysis

Danielle Ezuz,1 Justin Solomon,2 Vladimir G. Kim,3 and Mirela Ben-Chen1

1Technion - Israel Institute of Technology
2MIT

3Adobe Research

Abstract

Deep neural networks provide a promising tool for incorporating semantic information in geometry processing applications.
Unlike image and video processing, however, geometry processing requires handling unstructured geometric data, and thus
data representation becomes an important challenge in this framework. Existing approaches tackle this challenge by converting
point clouds, meshes, or polygon soups into regular representations using, e.g., multi-view images, volumetric grids or pla-
nar parameterizations. In each of these cases, geometric data representation is treated as a fixed pre-process that is largely
disconnected from the machine learning tool. In contrast, we propose to optimize for the geometric representation during the
network learning process using a novel metric alignment layer. Our approach maps unstructured geometric data to a regular
domain by minimizing the metric distortion of the map using the regularized Gromov–Wasserstein objective. This objective is
parameterized by the metric of the target domain and is differentiable; thus, it can be easily incorporated into a deep network
framework. Furthermore, the objective aims to align the metrics of the input and output domains, promoting consistent output
for similar shapes. We show the effectiveness of our layer within a deep network trained for shape classification, demonstrating
state-of-the-art performance for nonrigid shapes.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry and Object

Modeling—Geometric algorithms, languages, and systems

1. Introduction

Recent advances in acquisition and modeling tools for 3D geome-

try, as well as the rising popularity of user-facing applications such

as VR, have led to unprecedented growth in geometric data. This

necessitates effective shape analysis algorithms that predict seman-

tic attributes of shapes, essential for organizing, searching, and us-

ing geometric datasets for content creation. Deep neural networks

hold significant promise for these tasks, providing a fundamental

tool for learning a mapping from low-level geometric features to

high-level semantic attributes. Unfortunately, these networks usu-

ally operate on regular inputs such as n-D grids, which are not natu-

ral representations for geometric data. Thus, most existing network

architectures pre-process the data by converting unstructured point

or triangle surface samples to regular representations.

One common way to do this conversion is to rasterize surfaces

to volumetric grids, where each cell either stores a binary oc-

cupancy function [QSN∗16] or a distance to the closest surface

point [SX16]. This leads to surface representations that only cap-

ture coarse geometry. One can also project 3D models to mul-

tiple external camera planes and analyze the corresponding im-

ages [SMKLM15]; this leads to redundancy in representation and

is only suitable for cases when the majority of the surface is visible

from a small number of pre-defined cameras. The main limitation

of the extrinsic approaches described above is that they are sen-

sitive to articulation and deformation. A common way to circum-

vent this problem is to analyze the surfaces intrinsically. To this

end, previous work explored flattening techniques such as geometry

images [SBR16] and local geodesic polar coordinates [BMRB16].

While these pre-processing steps typically embed surfaces to a reg-

ular domain enabling application of convolutional neural networks,

existing embedding procedures stay fixed across all problems and

cannot be tailored specifically to the task.

Our main contribution is a parametric and differentiable map-

ping layer that can be optimized for a specific problem and dataset.

Our key idea is to leverage an efficient algorithm that optimizes

the regularized Gromov–Wasserstein (GW) objective [SPKS16] to

map from unstructured data to a regular representation. Unlike

most correspondence algorithms, this regularized technique is dif-

ferentiable in the geometries of the mapped domains, making it

amenable to gradient-based optimization techniques.

Our pipeline is visualized in Figure 1. Given an input shape and

scalar geometric features, our layer maps the features to a com-

mon 2D grid. This yields a multi-channel image over the grid that

we feed into standard deep architectures. As we optimize the GW

c© 2017 The Author(s)

Computer Graphics Forum c© 2017 The Eurographics Association and John

Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

D. Ezuz, J. Solomon, V. Kim & M. Ben-Chen / GWCNN: A Metric Alignment Layer for Deep Shape Analysis

Descriptor
Computation
(pre-process)

Metric
Alignment

(network layer)

Other
CNN layers

...

Figure 1: Our pipeline. We first compute point-wise surface features that are mapped to a stack of 2D functions over a canonical domain via
our novel metric alignment layer (see Fig. 5). This provides a natural input for subsequent CNN layers.

objective [SPKS16], our input is given in the form of a pairwise
distance matrix and thus our layer can handle polygonal meshes,

point clouds or general graphs as long as pairwise distances are

computable. Further, the GW map minimizes distortion in pairwise

distances between the source and the target, leading to mapped fea-

tures that are consistent under isometric deformation of the source

geometry. Finally, we include the geometry of the 2D grid as a

variable during the learning stage, learning task-optimal mappings

from unstructured domains to the regular domain. We implement

our layer with the Torch library [CKF11] and use it within a deep

architecture for shape classification. Results demonstrate that our

approach outperforms state-of-the-art methods on standard bench-

marks for non-rigid shape classification and retrieval.

2. Related Work

A wide range of fundamental shape analysis problems such as

classification [BBGO11], segmentation [KHS10], and correspon-

dence [COC14] have been addressed with machine learning tech-

niques (see [XKH∗16] for a survey). Due to recent developments

and success of deep neural networks, researchers have focused

on developing appropriate shape representations suitable for deep

learning. In this section, we overview relevant extrinsic and intrin-

sic representations as well as other work related to our approach.

2.1. Representations for Deep Learning

Extrinsic. One straightforward representation for geometry is a

3D voxel grid, where each voxel stores a binary occupancy func-

tion [MS15] or a truncated distance to the surface [SX16]. Deep

CNNs have been used to analyze these grids for shape classifi-

cation [WSK∗15] and geometric modeling [BLRW16, WZX∗16].

This representation is inefficient since typical surfaces occupy only

a small fraction of the volume. Another alternative is to project

surfaces to external camera planes. One can analyze rendered im-

ages [SMKLM15, KAMC17] or depth images from multiple view-

points [WHC∗16] or from panoramic views [SBZB15]. These

techniques only work for shapes for which all relevant geomet-

ric details are visible from a fixed set of external cameras. Qi et

al. [QSN∗16] proposed view-dependent volumetric analysis with

anisotropic kernels, closing the gap between multi-view and volu-

metric approaches.

One can also directly analyze features of unordered surface ele-

ments such as mesh faces [GZC15], but this approach requires pow-

erful features that provide additional contextual information. Con-

currently with our work, Qi et al. [QSMG17] proposed a novel net-

work architecture that directly analyzes coordinates of unordered

point sets by using symmetric order-independent max pooling func-

tions.

Extrinsic techniques are sensitive to articulation and non-rigid

deformation, a common problem in shape analysis addressed via

intrinsic shape representations. Such representations often map the

shape to a common domain in a way that is invariant to nearly-

isometric deformation of the input.

Spectral. Several methods have been proposed for spectral anal-

ysis of functions on a graph [BZSL14, HBL15, DBV16, KW17].

While these methods are invariant to isometry, they are limited

to analyzing functions on a specific non-Euclidean domain (e.g.

a graph with fixed connectivity) and thus cannot be used to an-

alyze different geometries. Concurrent to our approach, Yi et

al. [YSGG17] propose to synchronize the spectral domains of the

graphs to enable cross-shape analysis. They create canonical shape

domains (described by their graph Laplacian eigenbases) as a pre-

process, and use extrinsic alignments between shapes to initialize

functional maps [OBCS∗12] to the common domain. While poten-

tially applicable to non-rigid shapes, they focus their analysis on

rigid man-made objects and use the consistent extrinsic alignment

provided in the ShapeNet dataset for the initialization.

Local mapping. Masci et al. [MBBV15] use geodesic polar co-

ordinates to parameterize a surface locally around every point.

Boscaini et al. [BMRB16] improve this approach with anisotropic

patches. These techniques operate on relatively small geodesic

patches which limits their ability to incorporate global context.

Global mapping. To remedy this, Sinha et al. [SBR16] proposed

to use geometry images [GGH02], a global shape parameterization

technique for manifold genus zero surfaces. To parameterize point

clouds or polygon soups, Sinha et al. use α-shapes [EM94] to cre-

ate a manifold input, and topological processing to ensure the input

is genus zero. Unfortunately, this pre-processing does not preserve

the original geometric details, such as the interior structure of the

model. Furthermore, the same surface can be parameterized in mul-

tiple ways depending on the placement of cuts. Thus, this method

also suffers from inconsistent mappings across similar surfaces.

c© 2017 The Author(s)

Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

D. Ezuz, J. Solomon, V. Kim & M. Ben-Chen / GWCNN: A Metric Alignment Layer for Deep Shape Analysis

In contrast to existing approaches, our metric alignment layer is

based on minimizing the regularized GW objective and thus ex-

plicitly optimizes for consistency in aligning surfaces to the regular

domain. Moreover, we learn the geometry of the canonical domain

specifically for the task at hand.

2.2. Shape Parameterization and Mapping.

Mapping a shape to another domain is a common task in shape

analysis with applications to texture mapping [LPRM02], model-

ing [PSS01], correspondence [AL16], and retrieval [SK16]. Sur-

face parameterization techniques [HLS08] typically require mani-

fold surfaces and do not aim to embed similar shapes consistently.

Spectral methods [ZvKD10] usually rely on the first few eigenfunc-

tions of a Laplacian operator and thus only encode low-frequency

attributes of shapes. Correspondence techniques map between ar-

bitrary geometric domains [AL16, OBCS∗12] while minimizing

some distortion metric, thus offering a certain degree of consistency

when mapping similar shapes. However, it is not immediately clear

how to optimize the embedding process for these methods with re-

spect to a back-propagated loss function of the neural network.

Typical deep learning algorithms require the gradient of the loss

function with respect to all parameters of the learned network. This

is problematic for shape parameterization as a customizable unit in

a network, since at some level the output is a permutation. To over-

come this issue, we use the metric alignment method of Solomon

et al. [SPKS16] because its use of entropic regularization makes

the objective differentiable in the input metric spaces. This differ-

entiability is also leveraged by Peyré et al. [PCS16] to compute

barycenters of sets of metric spaces.

3. Metric Alignment Layer

3.1. Problem Setup

The role of the metric alignment layer is to map scalar geometric

features given on an input shape Σ to features on a canonical do-

main Σ0. In our design of the layer we have the following goals:

Applicability. The layer should be applicable to multiple shape
representations, e.g. point clouds and triangle meshes, and its out-

put should be usable with standard network architectures.

Consistency. Given geometric features that are invariant to isome-

tries, the output of the layer should be invariant to isometries.

Learn-ability. The layer should be specified by a set of parame-
ters, which can be learned and tuned within a deep learning net-

work. Consequently, the layer should be differentiable with respect

to these parameters.

With these goals in mind, we make a few design choices. First,

since many network architectures are available for images, we de-

fine the canonical domain Σ0 to be n0 points laid out on the 2D

grid, and encode the k output features as a multi-channel image

f0 : Σ0 → R
k on this grid. Second, to allow for diverse input rep-

resentations, we use the Gromov–Wasserstein (GW) generalized

mapping algorithm [SPKS16]. The GW algorithm represents a map

Embedding to :

Selected
points:

Selected
points:

Embedding to :

, f ˜ , f̃

0 0

Γ(D,D 0)f Γ(D̃,D0)f̃

Figure 2: Visualization of the GW fuzzy map for two nearly iso-
metric shapes from FAUST [BRLB14]. (left) two shapes and corre-
sponding color coded points, (right) distributions on the grid ac-
cording to the GW map, high intensity indicates high probability
for a match.

as a “soft correspondence,” namely given two geometries Σ,Σ0

with n and n0 points respectively, the algorithm constructs a matrix

Γ ∈ R
n0×n such that a pair of points (p, p0) ∈ Σ×Σ0 is assigned

a high probability if they should be matched. We thus define the

output of the layer to be f0 = Γ f , where f : Σ → R
k are the fea-

tures defined on the input geometry. This mapping technique can

be applied to point clouds, polygon soups, or any other geometric

domain equipped with a metric.

Another advantage of using the GW algorithm is that it encour-

ages consistency as it tries to find an embedding that preserves the

metric of the source shape. Specifically, given the pairwise distance

matrix D ∈ R
n×n between points on the source domain Σ, and the

pairwise distance matrix D0 ∈ R
n0×n0 on the target domain Σ0, the

matrix Γ is constructed such that if a high probability is given to

(x,x0) and (y,y0), both in Σ× Σ0, then the distances D(x,y) and

D0(x0,y0) are similar. Figure 2 shows a GW map between a human

in different poses and a 2D grid. We visualize the map by select-

ing a few feature points on the human, assigning them consistent

colors and mapping the colors to the grid with the soft correspon-

dence produced by GW optimization. Note the similarity between

the resulting representations on the grid. We use a slightly distorted

target grid to avoid symmetric ambiguities in the target metric (see

Section 4).

Finally, the GW algorithm is differentiable with respect to the ge-

ometry of the target domain, represented by the metric D0. Hence,

we can set up optimization problems over the distance matrix D0

to modify the resulting map, which we demonstrate using the fol-

lowing toy experiment visualized in Figure 3. Given two shapes

Σ, Σ̃ of a one-headed and a two-headed bunny, we compute a Wave

Kernel Signature [ASC11] descriptor to define the source functions

f , f̃ (left and right) respectively. We embed them to the 2D grid Σ0

with the GW mapping which yields functions over the grid f0, f̃0
(center-top). As the surfaces are not isometric these mappings are

not consistent and the resulting images are dissimilar. This can be

c© 2017 The Author(s)

Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

D. Ezuz, J. Solomon, V. Kim & M. Ben-Chen / GWCNN: A Metric Alignment Layer for Deep Shape Analysis

 (WKS)
Initial Embedding

Learned Embedding

 (WKS)Σ, f Σ̃, f̃Γ(D,D0)f Γ(D̃,D0)f̃

Γ(D,D0)f Γ(D,D0)f̃

f0 = f̃0 =

f0 = ˜f̃0 =

Figure 3: Toy example, learning a target metric to optimize consis-
tency. Given input descriptors f , f̃ on two shapes we show embed-
dings to canonical domain (center) before optimization (top) and
after optimization (bottom).

amended by optimizing over D0 to minimize the image dissimilar-

ity:

D�
0 = argmin

D0

‖Γ(D,D0) f −Γ(D̃,D0) f̃‖2.

We use gradient descent to find a local optimum D�
0, and the re-

sulting mapped images f �0 and f̃ �0 are more consistent (center-

bottom). Figure 4 further demonstrates the improvement in consis-

tency when using the optimized domain. We map a function that

highlights the heads of the two-headed bunny (left) to the one-

headed bunny via the original and the optimized domains. When

using the original domain the two heads are mapped to the tail (cen-

ter) whereas with the optimized domain the heads are mapped to the

head (right).

We use a similar idea within a convolutional neural network ar-

chitecture, by constructing the metric alignment layer depicted in

Figure 5. The layer receives as input the distance matrices of the

source shapes D, as well as area weights μ. It then learns the target

metric D0 during training so that the mapped descriptors minimize

the loss function when plugged into the next layers. Therefore, we

effectively tune the regular embedding to produce mapped descrip-

tors that best suit our task.

3.2. Implementation

GW minimization. The computation of the mapping matrix Γ be-

tween the input domain Σ and the regular domain Σ0 is the main

Indicator function, Mapped via initial Mapped via optimized
f̃ = Γ−1(D̃,D 0)Γ(D,D 0)f f̃ = Γ−1(D̃,D 0)Γ(D,D 0)f

f

Figure 4: Mapping an indicator of the heads (left) to the single-
headed bunny before (center) and after (right) the optimization of
the target domain. See the text for details.

GW minimization

Learnable parameters:
Constant parameters:

Matrix
Multiplication

mapped
descriptors

Figure 5: Our metric alignment layer. The inputs are a pairwise
distance matrix D, a measure μ, and k per-point descriptors. The
layer maps the descriptors to a common domain by learning its
metric D0, and generates a mapping matrix Γ. Finally, the input
descriptors are multiplied by Γ to generate a stack of 2D images to
feed to the following layers.

building block of our metric alignment layer. We use the method

proposed by Solomon et al. [SPKS16, Algorithm 1] that requires

two distance metrics D and D0 for two domains and nonnegative

area measures μ,μ0. The output is a matrix Γ that locally minimizes

the regularized Gromov–Wasserstein distance measure:

GW 2
2 (μ0,μ,D0,D) :=

min
Γ∈M̄(μ0,μ)

[
∑
i jkl

(
D0i j −Dkl

)2 ΓikΓ jlμ0iμ0 jμkμl −αH (Γ)

]
(1)

where H (Γ) = −∑ik Γik ln(Γik)μ0iμk is the entropy of Γ, and

M̄(μ0,μ) :=
{

Γ ∈ R
n0×n
+ : Γμ = 1, ΓT μ0 = 1

}
is the set of pos-

sible fuzzy maps, also known as measure couplings. Intuitively, Γi j

represents the probability that the ith point of Σ0 corresponds to

the jth point of Σ. The parameter α controls the entropy, where

larger values create “fuzzier” maps. We set α = 0.005 throughout

all experiments and normalize each distance matrix by its maximal

value.

Derivatives. Typically, neural network parameters are optimized

using stochastic gradient descent, in which the chain rule is used

to differentiate the loss function with respect to the parameters in a

process called backpropagation. Standard implementations of this

procedure provide us with the gradient of the loss L with respect to

the map Γ, denoted by ∇ΓL; from this matrix, our goal is to com-

pute the gradient ∇D0
L of the loss L with respect to the metric D0,

which determines Γ through Gromov–Wasserstein optimization.

Recall that [SPKS16] alternates between a closed-form expo-

nential formula and Sinkhorn projection onto the cone of doubly

stochastic matrices to compute Γ. For every iteration i = 1, ..., I of

their algorithm, we denote the map by Γi and the input to Sinkhorn

projection as Ki. Given ∇ΓI L from backpropagation through the

later stages of our network, we obtain ∇D0
L by iteratively comput-

ing ∇Γi L, ∇Ki L in reverse order from i = I to i = 1.

Given ∇Γi L, ∇Ki L is computed using partial derivatives of

Sinkhorn projection of Ki onto the doubly stochastic cone.

While [BPC16] differentiates individual iterations of the Sinkhorn

algorithm for this task, for efficiency and storage reasons we choose

to compute the derivative of the converged term directly using an

c© 2017 The Author(s)

Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

D. Ezuz, J. Solomon, V. Kim & M. Ben-Chen / GWCNN: A Metric Alignment Layer for Deep Shape Analysis

implicit linear system derived from the following stationarity con-

ditions for Γi:

Γi= �v�Ki �w� Γi�μ0= �w�Ki�(v⊗μ0) = 1
Γiμ= �v�Ki(w⊗μ) = 1 1�v= 1�w,

(2)

where �v� ∈ R
n×n is a diagonal matrix with v on the diagonal.

Here, v and w are vectors of length n0, n, respectively, computed

during Sinkhorn projection. The first equation is the explicit com-

putation of Γi, while the second and third equations define a valid

fuzzy map; the last equation ensures that we have unique solution

for v,w. All are satisfied when Sinkhorn projection converges. Dif-

ferentiating these four equations with respect to each entry of Ki

yields a linear system whose solution gives the derivatives of Γi

with respect to the entries of Ki.

Using the chain rule and ∇Γi L we iteratively compute ∇Ki L and

∇Γi−1 L; chaining these computations together leads to ∇D0
L. Full

derivations and formulas are provided in the supplemental material.

Mapped descriptors. Once Γ is computed, we map the k point-

wise input features f ∈R
n×k to the regular domain Σ0 obtaining an

image f0 = Γ�μ� f . We then reshape the k mapped images f0 into

k matrices of size
√

n0 ×√
n0 (with

√
n0 = 32 for all experiments),

to represent a multi-channel image over the 2D grid. We then feed

the resulting k matrices of fixed size to a neural network that may

contain convolutional layers, which is expected to learn appropriate

kernels for each feature independently.

Parameters. For a given shape Σ we compute n evenly distributed

point samples, typically around 1000. To evenly sample n points

on a triangle mesh, we first randomly sample 10n triangles and

barycentric coordinates for each sampled triangle, where each tri-

angle is chosen with probability proportional to its area. Then we

cluster the sampled points to n clusters, and select the point closest

to the centroid of each cluster. The pairwise distances D are com-

puted using Dijkstra’s algorithm on a graph constructed by connect-

ing every sampled point to its 5 nearest neighbors and iteratively

connecting closest disconnected components. The measures μ are

taken to be one third of the area of neighboring faces for manifold

meshes, and unit for point clouds.

For intrinsic per-point features f of deformable manifold meshes

we use Gaussian curvature [BKP∗10], conformal factor [BCG08]

and the first entry of the Wave Kernel Signature [ASC11]. For ex-

trinsic per-point features of polygon soups we use PCA-based fea-

tures in the local point neighborhoods [KHS10], height, shape di-

ameter function [SSCO08], and absolute curvature using the pub-

licly available implementation [KCGF14]. The descriptors are nor-

malized to have zero mean and unit variance on the training set.

Computing the metric alignment matrix and its gradients re-

quires solving a large system of linear equations, and can become

a major bottleneck in training. To remedy this, we run our metric

alignment algorithm for a fixed number of iterations I = 5, and use

Γ from the previous epoch as the initial solution.

We implement this layer using the Torch library [CKF11] and

execute the metric alignment algorithm and its differentiation on

GPU using NVIDIA’s cuDNN [CWV∗14] and MAGMA [TDB10].

4. Shape Classification

Given the multi-channel 2D grid as the output of metric alignment

layer we can take advantage of standard CNN layers designed for

image analysis. In particular, for classification task we use a stack

of convolutional layers, batch normalization, ReLU and dropout

layers [SHK∗14], depicted in Figure 6.

While the differentiable metric alignment layer enables us to

train this network end-to-end, we found that pairwise distances of

the target domain are difficult to optimize directly. Thus, we cre-

ated a different mini-network dedicated to learning the common do-

main. Our mini-network only contains the metric alignment layer,

and follows the Siamese architecture [BBB∗93]. We construct our

loss function to favor images of shapes within the same category to

be as-similar-as-possible, and images of shapes from different cat-

egories to be separated by a margin. The input is a pair of shapes

Σ1,Σ2 with their category labels y1,y2 represented using pairwise

distance matrices D1,D2, measures μ1,μ2 and a set of k pointwise

descriptors f ,g. The features of each shape are mapped to the com-

mon domain Σ0 using the two copies of the metric alignment layer

with shared parameters. The embedding creates images f0,g0 and

we use L2 hinge loss function:

L (f0,g0) =

{
‖ f0 −g0‖2 y1 = y2

max(0,m−‖ f0 −g0‖2) y1 �= y2

(3)

where m is the margin. This loss function penalizes different em-

beddings of shapes of the same category, as well as similar embed-

dings of shapes of different categories.

We initialize the pairwise distances of the 2D grid D0 to the Eu-

clidean distances between the points of a distorted 2D grid Σ0. We

distort the metric in the 2D plane to avoid perfect symmetries that

lead to unnecessary ambiguity in the mapping. Since our metric

alignment optimization is fairly robust to random perturbations, we

introduce a consistent bias in the metric. In particular, we stretch

the rows and columns of the grid using the following formula for

each point of the grid with initial coordinates (x,y):

xdistorted = x (1+(αx −1)y) .

We apply a similar transformation for y coordinate, and set αx =

Figure 6: Our convolutional neural network for classification and
shape retrieval.

c© 2017 The Author(s)

Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

D. Ezuz, J. Solomon, V. Kim & M. Ben-Chen / GWCNN: A Metric Alignment Layer for Deep Shape Analysis

Geometry Images Without metric learning With metric learning

Figure 8: tSNE embedding [MH08] of mapped descriptors corresponding to different mapping methods: (left) Geometry images [SBR16],
(center) GW mapping to a fixed 2D grid, (right) GW mapping with a learned metric. We show the first 10 classes of SHREC’11 [LGB∗11],
where each point represents a shape, and shapes from the same class are in the same color. Note that after metric learning our mapped
descriptors are nicely clustered, aiding the classification and retrieval tasks we optimized the embedding for.

AlienAnts

Initial

Optimized

Figure 7: Embedding of a single descriptor before (top) and af-
ter (bottom) metric learning, for two categories of SHREC’11, 3
meshes from each category.

1.1,αy = 1.2 for all the experiments. This formula was chosen ar-

bitrarily to generate a common domain that is similar to a grid and

is not symmetric. At each epoch we compute a random permutation

of shapes, and take pairs of subsequent examples for training. We

use the Siamese network with the smallest training error.

Figure 7 illustrates the embedded features before (top) and after

(bottom) the metric learning step. Note how the images that corre-

spond to the meshes from the same category are similar to one an-

other after metric learning, and dissimilar across categories. In Fig-

ure 8 we visualize the proximity between these feature images via

a tSNE embedding [MH08]. Each dot corresponds to a model from

the SHREC’11 dataset [LGB∗11] and the color corresponds to the

ground truth class label. We use three methods to map the shape

features to an image: the method used by Sinha et al. [SBR16] (Ge-

ometry Images) for deep learning (left), GW mapping directly to

a 2D grid (middle), and GW mapping based on the learned met-

ric (right). Note that even without learning, the GW mapping to a

2D grid provides more consistency in the embedding, which is then

enhanced after metric learning.

After we train the metric alignment layer, we keep the learned

parameters D0 fixed, and train the other parameters of the clas-

sification network depicted in Figure 6. We tried fine-tuning our

D0 parameters in the whole network and train it end-to-end, but it

significantly slowed down the training step and did not yield any

significant improvement in accuracy.

We next evaluate the performance of our network on classifica-

tion and retrieval tasks on commonly used benchmarks.

5. Results

We test our method for classification and retrieval tasks on several

existing benchmarks, and also demonstrate the effect of different

design choices for the features and the metric.

Classification and retrieval of deformable shapes. We use the

SHREC’11 benchmark [LGB∗11] to test our method for classifi-

cation of articulated shapes. The dataset contains 600 shapes con-

taining both rigid (e.g., furniture) and non-rigid (e.g., humans, ani-

mals) shapes with significant articulations. We compute the intrin-

sic shape descriptors: Gaussian curvature (GC), Conformal Factor

(CF) and Wave Kernel Signature (WKS). We start by learning the

metric using the Siamese architecture described in Section 4 for

100 epochs. We set the margin to 50 (approximately the average

distance between pairs from different classes). Then we train the

classification network depicted in Figure 6. Due to the small dataset

size we did not use a validation set and stopped training after a fixed

number of epochs (200), similarly to Sinha et al. [SBR16]. We used

l1 and l2 regularization with weights 10−4, 10−5 respectively, as

well as weight decay 10−5.

We evaluate our classification network by measuring the percent-

age of correct classifications of shapes in the test set. We also use

the output of a penultimate fully connected layer as a global shape

descriptor, and evaluate the quality of retrieval using Mean Average

Precision (mAP). We use the metrics and the protocol established

in Sinha et al. [SBR16] and similarly run on two data splits: 10

training samples from each category (and 10 test shapes), and 16

training samples from each category (4 test shapes).

c© 2017 The Author(s)

Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

D. Ezuz, J. Solomon, V. Kim & M. Ben-Chen / GWCNN: A Metric Alignment Layer for Deep Shape Analysis

Classification Retrieval

Data \ method SG SN GI Ours SG SN GI Ours

SHREC, 10 62.6 52.7 88.6 90.3 0.65 0.1 0.65 0.87
SHREC, 16 70.8 48.4 96.6 96.6 0.74 0.13 0.72 0.96

Table 1: Performance on the SHREC’11 classification benchmark,
percentage of correct classification / mAP. We compare with Shape
Google [BBGO11] (SG), 3D ShapeNets [WSK∗15] (SN) and Ge-
ometry Images [SBR16] (GI).

We compare our results with three other methods: Shape

Google [BBGO11] (SG), which uses a bag of features represen-

tation, 3D ShapeNets [WSK∗15] (SN), which uses a volumetric

representation, and Geometry Images [SBR16] (GI), which uses a

deep network trained over a flattened shape. Note that GI use sub-

stantially larger images in their representation (32×32 pixels). We

present the accuracy and retrieval results in Table 1. Our method

produces more accurate classifications than state-of-the-art tools

using only 10 training examples, and performs comparably to ge-

ometry images with 16 training examples. Our retrieval mAP score

is consistently higher for all experiments.

Visualization of learned features. After mapping the shapes to

the common domain each shape is represented by a multi chan-

nel image. The output of the layers of the classification network is

therefore challenging to interpret directly. To visualize properties

of the classification network we map the output of each convolu-

tion layer back to the shape using the GW map, generating a shape

descriptor with 320 values for each vertex. Interestingly, the fea-

tures of the first layer highlight relatively low resolution properties,

while the features of the last layer capture finer details, as has been

shown for natural images classification. This is visualized in Fig-

ure 9 using distances in feature space. We pick a point p on a bird

model from SHREC, and plot the l2 distance between the features

of the first convolution layer of p and all the other points on the

shape (top), and similarly for the last convolution layer (bottom) .

We also show the distance between the features of the same point

p and all the points on two other shapes, one is another shape from

the same class and the second is from a different class of a different

kind of bird. The features of the first convolution layer are symmet-

ric and similar for points with similar functionality, even for birds

from different classes. However, the features of the last convolution

layer can distinguish between the two wings of the same bird, and

are different for birds of different classes.

Effect of learning the metric of the common domain. We next

investigate how important is it to learn the metric of the common

domain in comparison to simpler alternatives. We run experiments

with 10 training examples on the SHREC’11 dataset. First, we use

the initial metric of the grid, computed using distorted Euclidean

distances between grid cells (Section 4). Another option is to use

the undistorted metric of the grid, which will yield some symmetric

ambiguities. To resolve these ambiguities, we can augment the data

at training time and feed all the elements of the symmetry group

to the classification CNN (i.e., rotations and reflections of the 2D

square). Both options are presented in Table 2 and yield inferior

results to our method.

Effect of input features. In Table 3 we compare our method when

Metric Classification Retrieval

Ours (metric learning) 90.3 0.87
Distorted grid (no learning) 88.66 0.85

Augmented grid (no learning) 86.66 0.87

Table 2: Results of our method with and without metric learning
on SHREC’11 with 10 training samples per class.

Features Classification Retrieval

GC,CF,WKS, Geodesic 90.3 0.87
GC,CF,WKS, Euclidean 84.6 0.81

GC, CF, Geodesic 89.3 0.87

GC, Geodesic 89 0.84

Table 3: Comparison of our method with different geometric
features on SHREC’11 with 10 training samples per class. The
features are Gaussian curvature (GC), Conformal factor (CF),
Wave Kernel Signature (WKS), Geodesic distances (Geodesic), Eu-
clidean distances (Euclidean).

using Euclidean distances for computing the distance matrices for

the input shapes, and with different geometric features. Note that

since SHREC’11 has many models with severe articulations the use

of an extrinsic (Euclidean) distance metric significantly decreases

the quality of the results. Our retrieval results are higher than the

other methods (Table 1) even with very simple features.

Classification and retrieval of rigid shapes. We also evalu-

ate our method on the ModelNet40 and ModelNet10 bench-

marks [WSK∗15] that contain mostly rigid shapes. For these

datasets we use as features the distance histogram, PCA in the lo-

cal neighborhood of a point and the height, computed using the

publicly available code [KCGF14]. Due to the size of this dataset

we do the initial metric optimization with the Siamese network

only for 10 epochs. We set the margin to 120 (approximately the

average distance between pairs from different classes). We do 5-

fold cross validation during training and use l2 regularization with

the weight 10−3, as well as weight decay 10−4. The results are

presented in Table 4. Our method provides competitive retrieval

results with respect to GI, but classification suffers from lack of

resolution (we use 32× 32 images to represent a shape, whereas

GI uses images of size 64× 64). Our method under-performs on

ModelNet40 when compared to multi-view representation meth-

ods, e.g. MVCNN [SMKLM15] (classification and retrieval rates

of 90.1 and 0.79, respectively), or [QSN∗16] (classification rate

91.4). Therefore, it appears that some of our design choices lead

to non-optimal performance on rigid shapes, however as our main

focus is non-rigid shapes, we leave further investigation of this di-

rection for future work.

Classification Retrieval

Data \ method SN GI Ours SN GI Ours

ModelNet10 83.5 88.4 85.8 0.68 0.75 0.74

ModelNet40 77 83.9 74.6 0.49 0.51 0.59

Table 4: Performance on ModelNet. We compare with 3D
ShapeNets [WSK∗15] (SN) and Geometry Images [SBR16] (GI).

c© 2017 The Author(s)

Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

D. Ezuz, J. Solomon, V. Kim & M. Ben-Chen / GWCNN: A Metric Alignment Layer for Deep Shape Analysis

First layer

Last layer

Class Bird 1 Class Bird 1 Class Bird 2 Class Bird 1 Class Bird 1 Class Bird 2

Figure 9: Features learned at the first convolution layer (top row) vs. last convolution layer (bottom row) of the classification network for
SHREC’11. We visualize the distance between a selected point (tip of the nose or tip of the wing) and other points on the same or different
shapes. Note that features from the last convolution layer provide more details and differentiate between birds from different classes.

Timing. The new metric alignment layer takes about 1s to compute

an initial matrix Γ (50 internal GW iterations) for shapes with ap-

proximately 1000 points. After computing the initial maps we only

use 5 internal GW iterations and computing Γ takes about 0.2s.

Computing the gradient with respect to D0 takes about 1s. Our ap-

proach took 12h to train the Siamese network for SHREC’11 clas-

sification (100 epochs), and 6m to train the classification network.

Training the Siamese network for ModelNet40 took 25h and 20m

to train the classification network.

Limitations. While learning the optimal embedding is beneficial,

the number of parameters grows quadratically with the number of

discrete elements in the target domain; this affects training com-

plexity. While the GW computation is robust to uniformly dis-

tributed noise in the input pairwise distances, topological noise

might drastically change pairwise geodesic distances and under-

mine the quality of near-isometric mappings. Finally, the user’s

choice of point-wise shape descriptors affects the applicability of

the method, and thus requires some prior knowledge about the ana-

lyzed dataset. We found our method and design choices to be more

suitable for nonrigid shape analysis, as is evident from poor perfor-

mance of our method on the ModelNet40 dataset.

6. Conclusion and Future Work

The main contribution of this work is a novel metric alignment

layer that is based on a differentiable and parametric algorithm

that embeds non-structured input to a structured domain suitable

for deep learning architectures. Our layer works with a range of

geometric representations such as point clouds and polygon soups

and can capture intrinsic as well as extrinsic geometric structure as

long as it is possible to compute a metric over the domain. Unlike

any of the existing techniques our embedding layer can be trained

specifically for a particular dataset and loss function.

Future work. We believe that there are many directions to ex-

plore using metric alignment. Since convolutions need to be rede-

fined as the geometry of the regular domain changes, modeling the

regular domain as a general graph and applying a convolution op-

erator on that graph [BZSL14] should further improve our results.

Incorporating automatic feature learning can also potentially im-

prove results and reduce user intervention. While end-to-end learn-

ing did not provide a significant performance boost and was omitted

from the current training, the above changes coupled with computa-

tional speedups may enable learning metric alignment jointly with

the subsequent network layers. Training deep networks for other

geometry analysis tasks, such as keypoint detection and segmen-

tation, is also an interesting future direction. More generally, met-

ric alignment may help in the analysis of images with deformable

structures, as long as a meaningful non-Euclidean metric over the

image grid exits (e.g., [BS09]).

Acknowledgments. This project started as an internship project

at Adobe Research. We thank Fisher Yu for his assistance with

the classification network design. J. Solomon acknowledges fund-

ing from an MIT Skoltech Seed Fund grant (“Boundary Element

Methods for Shape Analysis”) and from the MIT Research Support

Committee (“Structured Optimization for Geometric Problems”).

M. Ben-Chen acknowledges funding from ISF grant 699/12 and a

gift from Adobe.

References

[AL16] AIGERMAN N., LIPMAN Y.: Hyperbolic Orbifold Tutte Embed-
dings. ACM SIGGRAPH Asia (2016). 3

[ASC11] AUBRY M., SCHLICKEWEI U., CREMERS D.: The Wave Ker-
nel Signature: A Quantum Mechanical Approach to Shape Analysis. In
ICCV Workshops (2011), IEEE, pp. 1626–1633. 3, 5

[BBB∗93] BROMLEY J., BENTZ J. W., BOTTOU L., GUYON I., LECUN

Y., MOORE C., S"ACKINGER E., SHAH R.: Signature Verification Us-
ing a "Siamese" Time Delay Neural Network. IJPRAI 7, 4 (1993), 669–
688. 5

[BBGO11] BRONSTEIN A. M., BRONSTEIN M. M., GUIBAS L. J.,
OVSJANIKOV M.: Shape Google: Geometric Words and Expressions
for Invariant Shape Retrieval. TOG 30, 1 (Feb. 2011). 2, 7

[BCG08] BEN-CHEN M., GOTSMAN C.: Characterizing Shape Using
Conformal Factors. In 3DOR (2008), pp. 1–8. 5

[BKP∗10] BOTSCH M., KOBBELT L., PAULY M., ALLIEZ P., LEVY B.:
Polygon Mesh Processing. AK Peters Series. Taylor & Francis, 2010. 5

c© 2017 The Author(s)

Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

D. Ezuz, J. Solomon, V. Kim & M. Ben-Chen / GWCNN: A Metric Alignment Layer for Deep Shape Analysis

[BLRW16] BROCK A., LIM T., RITCHIE J., WESTON N.: Genera-
tive and Discriminative Voxel Modeling with Convolutional Neural Net-
works. arXiv preprint arXiv:1608.04236 (2016). 2

[BMRB16] BOSCAINI D., MASCI J., RODOLÀ E., BRONSTEIN M. M.:
Learning Shape Correspondence with Anisotropic Convolutional Neural
Networks. In NIPS (2016). 1, 2

[BPC16] BONNEEL N., PEYR’E G., CUTURI M.: Wasserstein Barycen-
tric Coordinates: Histogram Regression Using Optimal Transport. TOG
35, 4 (2016). 4

[BRLB14] BOGO F., ROMERO J., LOPER M., BLACK M. J.: FAUST:
Dataset and Evaluation for 3D Mesh Registration. In Proc. CVPR, IEEE
(2014), IEEE. 3

[BS09] BAI X., SAPIRO G.: Geodesic Matting: A Framework for Fast In-
teractive Image and Video Segmentation and Matting. IJCV 82, 2 (2009),
113–132. 8

[BZSL14] BRUNA J., ZAREMBA W., SZLAM A., LECUN Y.: Spectral
Networks and Locally Connected Networks on Graphs. In Proc. ICLR
(2014). 2, 8

[CKF11] COLLOBERT R., KAVUKCUOGLU K., FARABET C.: Torch7:
A Matlab-like Environment for Machine Learning. In BigLearn, NIPS
Workshop (2011), no. EPFL-CONF-192376. 2, 5

[COC14] CORMAN E., OVSJANIKOV M., CHAMBOLLE A.: Supervised
Descriptor Learning for Non-Rigid Shape Matching. Proc. ECCV Work-
shops, NORDIA (2014). 2

[CWV∗14] CHETLUR S., WOOLLEY C., VANDERMERSCH P., COHEN

J., TRAN J., CATANZARO B., SHELHAMER E.: Cudnn: Efficient Prim-
itives for Deep Learning. arXiv preprint arXiv:1410.0759 (2014). 5

[DBV16] DEFFERRARD M., BRESSON X., VANDERGHEYNST P.: Con-
volutional Neural Networks on Graphs with Fast Localized Spectral Fil-
tering. In NIPS (2016), pp. 3837–3845. 2

[EM94] EDELSBRUNNER H., MÃIJCKE E. P.: Three-dimensional Alpha
Shapes. TOG (1994). 2

[GGH02] GU X., GORTLER S., HOPPE. H.: Geometry Images. In SIG-
GRAPH (2002). 2

[GZC15] GUO K., ZOU D., CHEN X.: 3D Mesh Labeling Via Deep
Convolutional Neural Networks. TOG 35, 1 (2015). 2

[HBL15] HENAFF M., BRUNA J., LECUN Y.: Deep Convolutional
Networks on Graph-structured Data. arXiv preprint arXiv:1506.05163
(2015). 2

[HLS08] HORMANN K., L’EVY B., SHEFFER A.: Mesh Parameteriza-
tion: Theory and Practice. SIGGRAPH Asia, Course Notes (2008). 3

[KAMC17] KALOGERAKIS E., AVERKIOU M., MAJI S., CHAUDHURI

S.: 3D Shape Segmentation with Projective Convolutional Networks.
Proc. CVPR, IEEE (2017). 2

[KCGF14] KIM V. G., CHAUDHURI S., GUIBAS L., FUNKHOUSER T.:
Shape2Pose: Human-Centric Shape Analysis. TOG 33, 4 (2014). 5, 7

[KHS10] KALOGERAKIS E., HERTZMANN A., SINGH K.: Learning 3D
Mesh Segmentation and Labeling. TOG 29, 3 (2010). 2, 5

[KW17] KIPF T. N., WELLING M.: Semi-supervised Classification with
Graph Convolutional Networks. In Proc. ICLR (2017). 2

[LGB∗11] LIAN Z., GODIL A., BUSTOS B., DAOUDI M., HERMANS

J., KAWAMURA S., KURITA Y., LAVOU’E G., NGUYEN H., OHBUCHI

R., ET AL.: SHREC’11 Track: Shape Retrieval on Non-rigid 3D Water-
tight Meshes. In 3DOR (2011), pp. 79–88. 6

[LPRM02] LEVY B., PETITJEAN S., RAY N., MAILLOT J.: Least
Squares Conformal Maps. SIGGRAPH (2002). 3

[MBBV15] MASCI J., BOSCAINI D., BRONSTEIN M., VAN-
DERGHEYNST P.: Geodesic Convolutional Neural Networks on
Riemannian Manifolds. In Proc. ICCV Workshops (2015), pp. 37–45. 2

[MH08] MAATEN L. V. D., HINTON G.: Visualizing Data Using t-SNE.
Journal of Machine Learning Research 9, Nov (2008), 2579–2605. 6

[MS15] MATURANA D., SCHERER S.: Voxnet: A 3d Convolutional Neu-
ral Network for Real-time Object Recognition. In IROS (2015), IEEE,
pp. 922–928. 2

[OBCS∗12] OVSJANIKOV M., BEN-CHEN M., SOLOMON J.,
BUTSCHER A., GUIBAS L.: Functional Maps: a Flexible Rep-
resentation of Maps between Shapes. TOG 31, 4 (2012), 30. 2,
3

[PCS16] PEYR’E G., CUTURI M., SOLOMON J.: Gromov–Wasserstein
Averaging of Kernel and Distance Matrices. In ICML (2016). 3

[PSS01] PRAUN E., SWELDENS W., SCHRODER P.: Consistent Mesh
Parameterizations. SIGGRAPH (2001). 3

[QSMG17] QI C. R., SU H., MO K., GUIBAS L. J.: PointNet: Deep
Learning on Point Sets for 3D Classification and Segmentation. Proc.
CVPR, IEEE (2017). 2

[QSN∗16] QI C. R., SU H., NIESSNER M., DAI A., YAN M., GUIBAS

L.: Volumetric and Multi-View CNNs for Object Classification on 3D
Data. In Proc. CVPR, IEEE (2016). 1, 2, 7

[SBR16] SINHA A., BAI J., RAMANI K.: Deep Learning 3D Shape Sur-
faces Using Geometry Images. In ECCV (2016), Springer, pp. 223–240.
1, 2, 6, 7

[SBZB15] SHI B., BAI S., ZHOU Z., BAI X.: Deeppano: Deep
Panoramic Representation for 3-d Shape Recognition. IEEE Signal Pro-
cessing Letters 22, 12 (2015), 2339–2343. 2

[SHK∗14] SRIVASTAVA N., HINTON G. E., KRIZHEVSKY A.,
SUTSKEVER I., SALAKHUTDINOV R.: Dropout: a Simple Way to Pre-
vent Neural Networks from Overfitting. Journal of Machine Learning
Research 15, 1 (2014), 1929–1958. 5

[SK16] SAHILLIOĞLU Y., KAVAN L.: Detail-preserving Mesh Unfold-
ing for Non-rigid Shape Retrieval. TOG 35, 2 (2016). 3

[SMKLM15] SU H., MAJI S., KALOGERAKIS E., LEARNED-MILLER

E.: Multi-view Convolutional Neural Networks for 3d Shape Recogni-
tion. In Proc. ICCV (2015), pp. 945–953. 1, 2, 7

[SPKS16] SOLOMON J., PEYR’E G., KIM V. G., SRA S.: Entropic Met-
ric Alignment for Correspondence Problems. TOG 35, 4 (July 2016). 1,
2, 3, 4

[SSCO08] SHAPIRA L., SHAMIR A., COHEN-OR D.: Consistent Mesh
Partitioning and Skeletonisation Using the Shape Diameter Function.
Vis. Comput. 24, 4 (2008), 249–259. 5

[SX16] SONG S., XIAO J.: Deep Sliding Shapes for Amodal 3D Object
Detection in RGB-D Images. In Proc. CVPR, IEEE (2016). 1, 2

[TDB10] TOMOV S., DONGARRA J., BABOULIN M.: Towards Dense
Linear Algebra for Hybrid GPU Accelerated Manycore Systems. Paral-
lel Computing 36, 5-6 (June 2010), 232–240. 5

[WHC∗16] WEI L., HUANG Q., CEYLAN D., VOUGA E., LI H.: Dense
Human Body Correspondences Using Convolutional Networks. In Proc.
CVPR, IEEE (June 2016). 2

[WSK∗15] WU Z., SONG S., KHOSLA A., YU F., ZHANG L., TANG

X., XIAO J.: 3d Shapenets: A Deep Representation for Volumetric
Shapes. In Proc. CVPR (2015), pp. 1912–1920. 2, 7

[WZX∗16] WU J., ZHANG C., XUE T., FREEMAN B., TENENBAUM

J.: Learning a Probabilistic Latent Space of Object Shapes Via 3d
Generative-adversarial Modeling. In NIPS (2016), pp. 82–90. 2

[XKH∗16] XU K., KIM V. G., HUANG Q., MITRA N. J., KALOGER-
AKIS E.: Data-Driven Shape Analysis and Processing. SIGGRAPH Asia
Course notes (2016). 2

[YSGG17] YI L., SU H., GUO X., GUIBAS L.: SyncSpecCNN: Syn-
chronized Spectral CNN for 3D Shape Segmentation. Proc. CVPR, IEEE
(2017). 2

[ZvKD10] ZHANG H., VAN KAICK O., DYER R.: Spectral Mesh Pro-
cessing. Computer Graphics Forum 29, 6 (2010), 1865–1894. 3

c© 2017 The Author(s)

Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

