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Abstract

Affinity graphs are widely used in deep architectures, in-
cluding graph convolutional neural networks and attention
networks. Thus far, the literature has focused on abstract-
ing features from such graphs, while the learning of the
affinities themselves has been overlooked. Here we pro-
pose a principled method to directly supervise the learning
of weights in affinity graphs, to exploit meaningful connec-
tions between entities in the data source. Applied to a visual
attention network [9], our affinity supervision improves re-
lationship recovery between objects, even without the use
of manually annotated relationship labels. We further show
that affinity learning between objects boosts scene catego-
rization performance and that the supervision of affinity can
also be applied to graphs built from mini-batches, for neu-
ral network training. In an image classification task we
demonstrate consistent improvement over the baseline, with
diverse network architectures and datasets.

1. Introduction

Recent advances in graph representation learning have
lead to principled approaches for abstracting features from
such structures. In the context of deep learning, graph con-
volutional neural networks networks (GCNs) have shown
great promise [3, 15]. The affinity graphs in GCNs, whose
nodes represent entities in the data source and whose edges
represent pairwise affinity, are usually constructed from a
predefined metric space and are therefore fixed during the
training process [3, 15, 22, 28]. In related work, self-
attention mechanisms [26] and graph attention networks
[27] have been proposed. Here, using pairwise weights be-
tween entities, a fully connected affinity graph is used for
feature aggregation. In contrast to the graphs in GCNs, the
parametrized edge weights change during the training of
the graph attention module. More recent approaches also
consider elaborate edge weight parametrization strategies
[13, 18] to further improve the flexibility of graph structure
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learning. However, the learning of edge (attention) weights
in the graph is entirely supervised by a main objective loss,
to improve performance in a downstream task.

Whereas representation learning from affinity graphs has
demonstrated great success in various applications [9, 33,
29, 11, 10], little work has been done thus far to directly
supervise the learning of affinity weights. In the present
article, we propose to explicitly supervise the learning of
the affinity graph weights by introducing a notion of target
affinity mass, which is a collection of affinity weights that
need to be emphasized. We further propose to optimize a
novel loss function to increase the target affinity mass dur-
ing the training of a neural network, to benefit various vi-
sual recognition tasks. The proposed affinity supervision
method is generalizable, supporting flexible design of su-
pervision targets according to the need of different tasks.
This feature is not seen in the related works, since the learn-
ing of such graphs are either constrained by distance metrics
[13] or dependent on the main objective loss [26, 27, 18].

With the proposed supervision of the learning of affinity
weights, a visual attention network [9] is able to compete
in a relationship proposal task with the present state-of-the-
art [32] without any explicit use of relationship labels. En-
abling relationship labels provides an additional 25% boost
over [32] in relative terms. This improved relationship re-
covery is particularly beneficial when applied to a scene
categorization task, since scenes are comprised of collec-
tions of distinct objects. We also explore the general idea
of affinity supervised mini-batch training of a neural net-
work, which is common to a vast number of computer vi-
sion and other applications. For image classification tasks
we demonstrate a consistent improvement over the baseline,
across multiple architectures and datasets. Our proposed
affinity supervision method leads to no computational over-
head, since we do not introduce additional parameters.

2. Related Work

2.1. Graph Convolutional Neural Networks

In GCNs layer-wise convolutional operations are applied
to abstract features in graph structures. Current approaches
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Figure 1: A comparison of recovered relationships on test
images, with no relationship annotations used during train-
ing. We shows the reference object (blue box), regions with
which it learns relationships (orange boxes) and the rela-
tionship weights in red text (zoom in on the PDF). Left:
baseline visual attention networks [9] often recover rela-
tionships between a reference object and its immediate sur-
rounding context. Right: our proposed affinity supervision
better emphasizes potential relationships between distinct
and spatially separated objects.

build the affinity graph from a predefined input [3, 22, 28]
or embedding space [7, 26], following which features are
learned using graph based filtering in either the spatial or
spectral domain. Little work has been carried out so far to
directly learn the structure of the affinity graph itself. In
this article, we propose a generic method for supervising
the learning of pairwise affinities in such a graph, without
the need for additional ground truth annotations.

2.2. Visual Attention Networks

Attention mechanisms, first proposed in [26], have been
successfully applied to a diverge range of computer vision
tasks [9, 33, 29]. In the context of object detection [9], the
attention module uses learned pairwise attention weights
between region proposals, followed by per region feature
aggregation, to boost object detection. The learned atten-
tion weights do not necessarily reflect relations between en-
tities in a typical scene. In fact, for a given reference object
(region), relation networks [9] tend to predict high attention
weights with scaled or shifted bounding boxes surrounding
the same object instance (Figure 1).

A present limitation of visual attention networks is their

minimization of only the main objective loss during train-
ing [9, 33, 29], without any direct supervision of attention
between entities. Whereas attention based feature aggrega-
tion has been shown to boost performance for general vision
tasks [11, 10], the examples in Figure 1 provide evidence
that relationships between distinct entities may not be suf-
ficiently captured. In this paper we address this limitation
by directly supervising the learning of attention. An affinity
graph is first build from the pair-wise attention weights and
a novel target affinity mass loss is then applied to guide the
learning of attention between distinct objects, allowing the
recovery of more plausible relationships.

2.3. Mini-batch Training

The training of a neural network often requires working
with mini-batches of data, because typical datasets are too
large for present architectures to handle. The optimization
of mini-batch training is thus a research topic in its own
right. Much work has focused on improving the learning
strategies, going beyond stochastic gradient decent (SGD),
including [23, 5, 1, 14]. In addition, batch normalization
[12] has shown to improve the speed, performance, and
stability of mini-batch training, via the normalization of
each neuron’s output to form a unified Gaussian distribu-
tion across the mini-batch.

In the present article we show that our affinity supervi-
sion on a graph built from mini-batch features can benefit
the training of a neural network. By increasing the affinity
(similarity) between mini-batch entries that belong to the
same category, performance in image classification on a di-
verse set of benchmarks, is consistently improved. We shall
discuss mini-batch affinity learning in more detail in Sec-
tion 5.

3. Affinity Graph Supervision
We now introduce our approach to supervising the

weights in an affinity graph. Later we shall cover two ap-
plications: affinity supervision on visual attention networks
(built on top of Relation Networks [9]) in Section 4 and
affinity supervision on a batch similarity graph in Section 5.

3.1. Affinity Graph

We assume that there are N entities generated by a fea-
ture embedding framework, for example, a region proposal
network (RPN) together with ROI pooling on a single image
[25], or a regular CNN applied over a batch of images. Let
f i be the embedding feature for the i-th entity. We define
an affinity function A which computes an affinity weight
between a pair of entities m and entity n, as

ωmn = A(fm, fn). (1)

A specific form of this affinity function applied in attention
networks [9, 26] is reviewed in Section 4, and another sim-



ple form of this affinity function applied in batch training is
defined in section 5.

We now build an affinity graph G whose vertices m rep-
resent entities in the data source with features Fin = {fm}
and whose edge weights {ωmn} represent pairwise affini-
ties between the vertices. We define the graph adjacency
matrix for this affinity graph as the N ×N matrixW with
entries {ωmn}. We propose to supervise the learning ofW
so that those matrix entries ωmn selected by a customized
supervision target matrix T will increase, thus gaining em-
phasis over the other entries.

3.2. Affinity Target T

We now explain the role of a supervision target matrix T
for affinity graph learning. In general, T ∈ RN×N with

T [i, j] =

{
1 if (i, j) ∈ S
0 otherwise,

(2)

where S stands for a set of possible connections between
entities in the data source.

Target Affinity Mass We would like W to have higher
weights at those entries where T [i, j] = 1, to place empha-
sis on the entries that are selected by the supervision target.
We capture this via a notion of target affinity massM of the
affinity graph, defined as

M =
∑
W̃ � T , (3)

where W̃ = softmax(W) is a matrix-wise softmax oper-
ation. A study on affinity mass design is available in the
supplementary material.

3.3. Affinity Mass Loss LG
We propose to optimize the learning of the parameters θ

of a neural network to achieve

max
θ

M. (4)

Our aim is to devise a strategy to maximizeM with an em-
pirically determined choice of loss form. There are sev-
eral loss forms that could be considered, including smooth
L1 loss, L2 loss, and a focal loss variant. Defining x =
1−M ∈ [0, 1], we define losses

L2(x) = x2 (5)

and

smoothL1
(x) =

{
x2 if |x| < 0.5

|x| − 0.25 otherwise.
(6)

The focal loss on M is a negative log likelihood loss,
weighted by the focal normalization term proposed in [19],
which is defined as

LG = Lfocal(M) = −(1−M)γ log(M). (7)

The focal term (1−M)γ [19] helps narrow the gap between
well converged affinity masses and those that are far from
convergence.

Empirically, we have found that the focal loss variant
gives the best results in practice, as described in the ablation
study reported in Section 6.4. The choice of the γ term
depends on the particular tasks, so we provide experiments
to justify our choices in Section 6.4.

3.4. Optimization and Convergence of LG
The minimization of the affinity mass loss LG places

greater emphasis on entries in W which correspond to
ground truth connections in S , through network train-
ing. However, when optimized in conjunction with a main
objective loss, which could be an object detection loss
Lmain = Ldet + Lrpn in visual attention networks or a
cross entropy loss Lmain = Lclass in mini-batch training, a
balance between Lmain and LG is required. The total loss
can be written as

L = Lmain + λLG. (8)

Empirically, we choose λ = 0.01 for visual attention net-
works and for mini-batch training, we choose λ = 0.1. Fig-
ure 5 demonstrates the convergence of the target mass, justi-
fying the effectiveness of using loss LG in the optimization
of equation 4.

4. Affinity in Attention Networks
We review the computation of attention weights in [26],

given a pair of nodes from the attention graph defined in
Section 3.1. Let an entity node m consist of its feature em-
bedding, defined as fm. The collection of input features of
all the nodes then becomes Fin = {fm}. Consider node
m as a reference object with the attention weight ω̃mn in-
dicating its affinity to a surrounding entity node n. This
affinity is computed as a softmax activation over the scaled
dot products ωmn defined as:

ω̃mn =
exp(ωmn)∑
k exp(ω

kn)
, ωmn =

< WKfm,WQf
n >√

dk
.

(9)
Both WK and WQ are matrices and so this linear trans-
formation projects the embedding features fm and fn into
metric spaces to measure how well they match. The fea-
ture dimension after projection is dk. With the above for-
mulation, the attention graph affinity matrix is defined as
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Figure 2: An overview of our affinity graph supervision in visual attention networks, in application to two tasks. The blue
dashed box surrounds the visual attention network backbone, implemented according to Relation Networks [9]. The purple
dashed box highlights our core component for affinity learning and for relation proposal generation. The green dashed box
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to a value of 1 for the corresponding entry in matrix T . See the text in Section 4.1 for a detailed description. A detailed
illustration of the attention module is in the supplementary material.

W = {ωmn}. For a given reference entity node m, the at-
tention module also outputs a weighted aggregation of m’s
neighbouring nodes’ features, which is

fmout =
∑
n

ω̃mnfn. (10)

The set of eature outputs for all nodes is thus defined as
Fout = {fmout}. Additional details are provided in [26, 9].

4.1. Affinity Target Design

For visual attention networks, we want our attention
weights to focus on relationships between objects from dif-
ferent categories, so for each entry T [a, b] of the supervision
target matrix T , we assign T [a, b] = 1 only when:

1. proposal a overlaps with ground truth object α’s
bounding box with intersection over union > 0.5.

2. proposal b overlaps with ground truth object β’s
bounding box with intersection over union > 0.5.

3. ground truth objects α and β are two different objects
coming from different classes.

Note that NO relation annotation is required to construct
such supervision target.

We choose to emphasize relationships between exem-
plars from different categories in the target matrix, because

this can provide additional contextual features in the atten-
tion aggregation (equation 10) for certain tasks. Empha-
sizing relationships between objects within the same cate-
gory might be better suited to modeling co-occurence. We
provide a visualization of the affinity target and additional
studies, in the supplementary material. We now discuss ap-
plications that could benefit from affinity supervision of the
attention weights: object detection, relationship proposal
generation, and scene categorization.

4.2. Object Detection and Relationship Proposals

In Figure 2 (part A to part B) we demonstrate the use
of attention networks for object detection and relationship
proposal generation. Here part A is identical to Relation
Networks [9]. The network is end-to-end trainable with
detection loss, RPN loss and the target affinity mass loss.
In addition to the ROI pooling features Fin ∈ RNobj×1024

from the Faster R-CNN backbone of [25], contextual fea-
tures Fout from attention aggregation are applied to boost
detection performance. The final feature descriptor for the
detection head is F + Fc, following [9]. In parallel, the
attention matrix outputW ∈ RN×N is used to generate re-
lationship proposals by finding the top K weighted pairs in
the matrix.



4.3. Scene Categorization

In Figure 2 (part A to part C) we demonstrate an ap-
plication of visual attention networks to scene categoriza-
tion. Since there are no bounding box annotations in most
scene recognition datasets, we adopt a visual attention net-
work (described in the previous section), pretrained on the
MSCOCO dataset, in conjunction with a new scene recog-
nition branch (part C in Figure 2), to perform scene recog-
nition. From the CNN backbone, we apply an additional
1× 1 convolution layer, followed by a global average pool-
ing to acquire the scene level feature descriptor Fs. The
attention module takes as input the object proposals’ visual
features Fin, and outputs the aggregation result as the scene
contextual feature Fc. The input to the scene classification
head thus becomes Fmeta = concat(Fs,Fc), and the class
scores are output. In order to maintain the learned relation-
ship weights from the pre-trained visual attention network,
which helps encode object relation context in the aggrega-
tion result Fout, we fix the parameters in part A (blue box),
but make all other layers in part C trainable.

5. Affinity in mini-Batch

Moving beyond the specific problems of object detec-
tion, relationship proposal generation and scene categoriza-
tion, we now turn to a more general application of affinity
supervision, that of mini-batch training in neural networks.
Owing to the large size of most databases and limitations
in memory, virtually all deep learning models are trained
using mini-batches. We shall demonstrate that emphasizing
pairwise affinities between entities during training can boost
performance for a variety of image classification tasks.

5.1. Affinity Graph

We consider image classification over a batch of N im-
ages, processed by a convolutional neural network (CNN)
to generate feature representations. Using the notation in
Section 3, we denote the feature vectors of this batch of im-
ages as Fin = {f i}, where i ∈ 1...N is the image index
in the batch. We then build a batch affinity graph G whose
nodes represent images, and the edge ωmn ∈ W encode
pairwise feature similarity between node m and n.

Distance Metric. A straightforward L2 distance based
measure 1 can be applied to compute the edge weights as

ωmn = A(fm, fn) = −‖f
m − fn‖22

2
. (11)

1More elaborate distance metrics could also be considered, but that is
beyond the focus of this article.
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representin entries in massM (see equation 3).

5.2. Affinity Target Design

In the mini-batch training setting, we would like feature
representations from the same class to be closer to each
other in a metric space, with those from different classes
being spread apart. To this end, we build the affinity target
matrix T as follows. For each entry T [a, b] in the matrix,
we assign T [a, b] = 1 only when mini-batch node a and b
belong to the same category. Thus, the affinity target here
selects those entries inW which represent pairwise similar-
ity between images from the same class. During the opti-
mization of the affinity mass loss (defined in Section 3.3),
the network will increase the affinity value from the entries
inW selected by T , while suppressing the other ones. This
should in principle leads to improved representation learn-
ing and thus benefit the underlying classification task.

5.3. Overview of Approach

A schematic overview of our mini-batch affinity learn-
ing approach is presented in Figure 3. Given a batch of
N images, we first generate the feature representations Fin



from a CNN followed by fully connected layers. We then
send Fin to an affinity graph module, which contains a pair-
wise distance metric computation followed by a matrix-
wise softmax activation, to acquire the affinity graph matrix
W̃ . Next, we built the affinity target matrix T from the im-
age category labels following Section 5.2. An element-wise
multiplication with W̃ is used to acquire the target affinity
massM, which is used in computing the affinity mass loss.
During training, the network is optimized by both cross en-
tropy loss Lclass and the target affinity loss LG, using the
balancing scheme discussed in Section 3.4.

6. Experiments
6.1. Datasets

VOC07:, which is part of the PASCAL VOC detection
dataset [6], with 5k images in trainval and 5k in test set.
We used this trainval/test split for model ablation purposes.
MSCOCO: which consists of 80 object categories [20].
We used the 30k validation images for training and the 5k
“minival” images for testing, which is common practice [9].
Visual Genome: which is a large relationship understand-
ing benchmark [16], consisting of 150 object categories and
human annotated relationship labels between objects. We
used 70k images for training and 30K for testing, as in the
scene graph literature [31, 30].
MIT67: which is a scene categorization benchmark with
67 scene categories, with 80 training images and 20 test im-
ages in each category [24]. We used this official split.
CIFAR10/100: which is a popular benchmark dataset con-
taining 32 by 32 tiny images from 10 or 100 categories [17].
We used the official train/test split and we randomly sam-
pled 10% of train set to form a validation set.
Tiny Imagenet: which is a simplified version of the
ILSVRC 2012 image classification challenge [4] containing
200 classes [2] with 500 training images and 50 validation
images in each class. We used the official validation set as
the test set since the official test set is not publicly available.
For validation, we randomly sample 10% of the training set.

6.2. Network Training Details

Visual Attention Networks. We first train visual atten-
tion networks [9] end-to-end, using detection loss, RPN
loss and affinity mass loss (Figure 2 parts A and B). The
loss scale for affinity loss is chosen to be 0.01 as discussed
in Section 3.4. Upon convergence, the network can be di-
rectly applied for object detection and relationship proposal
tasks. For scene categorization, we first acquire a visual at-
tention network that is pretrained on the COCO dataset, and
then use the structural modification in Section 6.6 (Figure 2
parts A and C) to fine tune it on the MIT67 dataset. Unless
stated otherwise, all visual attention networks are based on
a ResNet101 [8] architecture, trained with a batch size of 2

(images), using a learning rate of 5e− 4 which is decreased
to 5e− 5 after 5 epochs. There are 8 epochs in total for the
each training session. We apply stochastic gradient decent
(SGD) with momentum optimizer and set the momentum to
0.9. We evaluate the model at the end of 8 epochs on the
test set to report our results.

Mini-batch Affinity Supervision. We applied various
architectures including ResNet-20/56/110 for CIFAR and
ResNet-18/50/101 for tiny ImageNet, as described in [8].
2 The CIFAR networks are trained for 200 epochs with a
batch size of 128. We set the initial learning rate to 0.1
and reduce it by a factor of 10 at epochs 100 and 150, re-
spectively. The tiny ImageNet networks are trained for 90
epochs with a batch size of 128, an initial learning rate of
0.1, and a factor of 10 reduction at epochs 30 and 60. For
all experiments in mini-batch affinity supervision, the SGD
optimizer with momentum is applied, with the weight de-
cay and momentum set to 5e− 4 and 0.9. For data augmen-
tation during training, we have applied random horizontal
flipping. 3 During training we save the best performing
model on the validation set, and report test set performance
on this model.

6.3. Tasks and Metrics

We evaluate affinity graph supervision on the following
tasks, using the associated performance metrics.
Relationship Proposal Generation. We evaluate the
learned relationships on the Visual Genome dataset, using
a recall metric which measures the percentage of ground
truth relations that are covered in the predicted top K rela-
tionship list, which is consistent with [32, 31, 30].
Classification. For the MIT67, CIFAR10/100 and Tiny Im-
ageNet evaluation, we use classification accuracy.
Object Detection. For completeness we also evaluate ob-
ject detection on VOC07, using mAP (mean average preci-
sion) as the evaluation metric [6, 20]. Additional detection
results on MSCOCO are in the supplementary material.

6.4. Ablation Study on Loss Functions

We first carry out ablation studies to examine different
loss functions for optimizing the target affinity massM as
well as varying focal terms r, as introduced in Section 3.3.
The results in Table 1 show that focal loss is in general bet-
ter than smooth L1 and L2 losses, when supervising the tar-
get mass. In our experiments on visual attention networks,
we therefore apply focal loss with γ = 2, which empirically
gives the best performance in terms of recovering relation-
ships while still maintaining a good performance in detec-

2The network architectures are exactly the same as those in the original
ResNet paper [8].

3For the CIFAR datasets, we also applied 4-pixel padding, followed by
32× 32 random cropping after horizontal flipping, following [8].



VOC07 Ablation F-RCNN [25] RelNet [9] smooth L1 L2 γ = 0 γ = 2 γ = 5
mAP@all (%) 47.0 47.7 ± 0.1 48.0 ± 0.1 47.7 ± 0.2 47.9 ± 0.2 48.2 ± 0.1 48.6 ± 0.1
mAP@0.5 (%) 78.2 79.3 ± 0.2 79.6 ± 0.2 79.7 ± 0.2 79.4 ± 0.1 79.9 ± 0.2 80.0 ± 0.2
recall@5k (%) - 43.5 60.3 ± 0.3 64.6 ± 0.5 62.1 ± 0.3 69.9 ± 0.3 66.8 ± 0.2

Table 1: An ablation study on loss functions comparing against the baseline faster RCNN [25] and Relation Networks [9],
using the VOC07 database. The results are reported as percentages (%) averaged over 3 runs. The relationship recall metric
is also reported with ground truth relation labels constructed as described in Section 4.1, using only object class labels.

MIT67 CNN CNN CNN + ROIs CNN + Attn CNN + Attn + LG
Pretraining Imgnet Imgnet+COCO Imgnet+COCO Imgnet+COCO Imgnet+COCO
Features FS FS FS ,max(Fin) FS ,FC FS ,FC
Accuracy (%) 75.1 76.8 78.0 ± 0.3 77.1 ± 0.2 80.2 ± 0.3

Table 2: MIT67 Scene Categorization Results, averaged over 3 runs. A visual attention network with affinity supervision
gives the best result (the boldfaced entry), with an improvement over a non-affinity supervised version (4-th column) and the
baseline methods (columns 1 to 3). See the text in Section 6.6 for details. Fs, Fc and Fin are described in Section 4.3.

tion task. The results in Table 1 serve solely to determine
the best loss configuration. Here we do not claim improve-
ment on detection tasks. The results of additional tests using
ablated models will be updated in the supplementary mate-
rial.

6.5. Relationship Proposal Task

Figure 4 compares the relationships recovered on the Vi-
sual Genome dataset, by a default visual attention network
“baseline” model (similar to [9]), our affinity supervised
network with affinity targets built using only object class
labels “aff-sup-obj” (see Section 4.1), and an affinity tar-
get built from human annotated ground truth relation labels
“aff-sup-rel”. We also include the reported recall metric
from Relationship Proposal Networks [32], which is a state-
of-the-art level one-stage relationship learning network with
strong supervision, using ground truth relationship annota-
tions. Notably, our proposed affinity mass loss does not
require potentially costly human annotated relationship la-
bels for learning (only object class labels were used) and
yet it achieves the same level of performance as the present
state-of-the-art [32] (the blue curve in Figure 4). When su-
pervised with a target built from the ground truth relation
labels instead of the object labels, we considerably outper-
form relation proposal networks (by 25% in relative terms
for all K thresholds) with this recall metric (the red curve).

6.6. Scene Categorization Task

For scene categorization we adopt the base visual atten-
tion network (Figure 2, part A), and add an additional scene
task branch (Figure 2, part C) to fine tune it on MIT67, as
discussed in Section 4.3. Table 2 shows the results of ap-
plying this model to the MIT67 dataset. We refer to the
baseline CNN as “CNN” (first column), which is an Ima-
geNet pretrained ResNet101 model directly applied to an

Figure 4: We show the percentage of the true relations that
are in the top K retrieved relations, with varying K, in
a relation proposal task. We compare a baseline network
(black), Relation Proposal Networks [32] (blue), our affin-
ity supervision using object class labels (but no explicit re-
lations) (orange) and our affinity supervision with ground
truth relation labels (red). We match the state of the art with
no ground truth relation labels used (the overlapping blue
and orange curves). We out perform the state of the art by
a large margin (25% in relative terms) when ground truth
relations are used.

image classification task. In the second column, we first
acquire a COCO pretrained visual attention network (Fig-
ure 2, part A), and fine tune it using only the scene level
feature FS (Figure 2, part C). In the third column, for the
same COCO pretrained visual attention network, we con-
catenate object proposals’ ROI pooling features with FS to
serve as meta scene level descriptor. In the fourth and fifth
columns, we apply the full scene architecture in Figure 2



Figure 5: An ablation study on mini-batch affinity supervision, with the evaluation metric on a test set over epochs (horizontal
axis), with the best result highlighted with a red dashed box. Left Plots: classification error rates and target mass with varying
focal loss’ γ parameter. Right Plots: error rates and target mass with varying loss balancing factor λ (defined in section 3.4).

Figure 6: Left: t-SNE plot of learned feature representa-
tions for a baseline ResNet20 network on CIFAR10 dataset.
Right: t-SNE plot for affinity supervised ResNet20 network.

CIFAR-10 ResNet 20 ResNet 56 ResNet 110
base CNN 91.34 ± 0.27 92.24 ± 0.48 92.64 ± 0.59
Affinity Sup 92.03 ± 0.21 92.90 ± 0.35 93.42 ± 0.38
CIFAR-100 ResNet 20 ResNet 56 ResNet 110
base CNN 66.51 ± 0.46 68.36 ± 0.68 69.12 ± 0.63
Affinity Sup 67.27 ± 0.31 69.79 ± 0.59 70.5 ± 0.60
Tiny Imagenet ResNet 18 ResNet 50 ResNet 101
base CNN 48.35 ± 0.27 49.86 ± 0.80 50.72 ± 0.82
Affinity Sup 49.30 ± 0.21 51.04 ± 0.68 51.82 ± 0.71

Table 3: Batch Affinity Supervision results. Numbers are
classification accuracy in percentages. CIFAR results are
reported over 10 runs and tiny ImageNet over 5 runs.

part C, but with a visual attention network that is pretrained
without and with (supervised) target affinity loss, respec-
tively. The affinity supervised case (fifth column) demon-
strates a non-trivial improvement over the baseline (first to
third columns) and also significantly outperforms the unsu-
pervised case (fourth column). This demonstrates that the
attention weights learned solely by minimizing detection
loss do not generalize well to a scene task, whereas those
learned by affinity supervision can.

6.7. Mini-Batch Affinity Supervision

We conducted model ablation study on γ and λ parame-
ters, introduced in section 3, as summarized in Figure 5. In
the subsequent experiments we chose γ = 4 and λ = 0.1
based on the ablation plots for error rates in Figure 5.

Convergence of Target Mass. We plot results showing
convergence of the target affinity mass during learning in
Figure 5. There is a drastic improvement over the base-
line target mass convergence, when affinity supervision is
enabled. The chosen λ = 0.1 empirically gives sufficient
convergence on Target mass (right-most in Figure 5).

Per-class feature separation. A comparison of t-SNE
[21] plots on learned feature representations from 1) base-
line CNN and 2) CNN supervised with affinity mass loss

is presented in Figure 6. Note that the feature separation
between different classes is better in our case.

Results. We now summarize the results for mini-batch
affinity learning on CIFAR10, CIFAR100 and TinyIma-
geNet in Table 3. Overall, we have a consistent improve-
ment over the baseline, when using the affinity supervision
in mini-batch training. In particular, for datasets with a large
number of categories, such as CIFAR100 (100-classes) and
tiny ImageNet (200-classes), the performance gain is above
1%. Another advantage of affinity supervision is that we do
not introduce any additional network layers or parameters,
except for the need for computing theN×N affinity matrix
and its loss. Therefore, the we found the training run-time
of affinity supervision very close to the baseline CNN.

7. Conclusion
In this paper we have addressed an overlooked problem

in the computer vision literature, which is the direct super-
vision of affinity graphs applied in deep models. Our main
methodological contribution is the introduction of a novel
target affinity mass, and its optimization using an affinity
mass loss. These novel components lead to demonstrable
improvements in relationship retrieval. In turn, we have
shown that the improved recovery of relationships between
objects boosts scene categorization performance. We have
also explored a more general problem, which is the super-



vision of affinity in mini-batches. Here, in diverse visual
recognition problems, we see improvements once again.
Given that our affinity supervision approach introduces no
additional parameters or layers in the neural network, it
adds little computational overhead to the baseline architec-
ture. Hence it can be adopted by the community for affinity
based training in other computer vision applications as well.

Acknowledgments
We thank the Natural Sciences and Engineering Re-

search Council of Canada (NSERC) and Adobe Research,
for research funding.

References
[1] RMSprop optimizer. http://www.cs.toronto.edu/

~tijmen/csc321/slides/lecture_slides_
lec6.pdf. Accessed: 2019-11-11. 2

[2] Tiny imagenet visual recognition challenge. https://
tiny-imagenet.herokuapp.com/. Accessed: 2019-
11-11. 6

[3] Michaël Defferrard, Xavier Bresson, and Pierre Van-
dergheynst. Convolutional neural networks on graphs with
fast localized spectral filtering. NIPS, 2016. 1, 2

[4] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. CVPR, 2009. 6

[5] John Duchi, Elad Hazan, and Yoram Singer. Adaptive sub-
gradient methods for online learning and stochastic opti-
mization. Journal of Machine Learning Research, 2011. 2

[6] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn,
and A. Zisserman. The pascal visual object classes (voc)
challenge. IJCV, 2010. 6

[7] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive
representation learning on large graphs. pages 1025–1035,
2017. 2

[8] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. 2016. 6, 10

[9] Han Hu, Jiayuan Gu, Zheng Zhang, Jifeng Dai, and Yichen
Wei. Relation networks for object detection. CVPR, 2018.
1, 2, 3, 4, 6, 7, 10, 11, 12, 13

[10] Jie Hu, Li Shen, Samuel Albanie, Gang Sun, and Andrea
Vedaldi. Gather-excite: Exploiting feature context in convo-
lutional neural networks. NIPS, 2018. 1, 2

[11] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation net-
works. CVPR, 2018. 1, 2

[12] Sergey Ioffe and Christian Szegedy. Batch normalization:
Accelerating deep network training by reducing internal co-
variate shift. arXiv preprint arXiv:1502.03167, 2015. 2

[13] Bo Jiang, Ziyan Zhang, Doudou Lin, Jin Tang, and Bin Luo.
Semi-supervised learning with graph learning-convolutional
networks. CVPR, 2019. 1, 13

[14] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. ICLR, 2015. 2

[15] Thomas N Kipf and Max Welling. Semi-supervised classifi-
cation with graph convolutional networks. ICLR, 2017. 1

[16] Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin Johnson,
Kenji Hata, Joshua Kravitz, Stephanie Chen, Yannis Kalan-
tidis, Li-Jia Li, David A Shamma, et al. Visual genome:
Connecting language and vision using crowdsourced dense
image annotations. IJCV, 2017. 6

[17] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple
layers of features from tiny images. Technical report, Cite-
seer, 2009. 6

[18] Ruoyu Li, Sheng Wang, Feiyun Zhu, and Junzhou Huang.
Adaptive graph convolutional neural networks. AAAI, 2018.
1

[19] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and
Piotr Dollár. Focal loss for dense object detection. CVPR,
2017. 3

[20] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. ECCV,
2014. 6

[21] Laurens van der Maaten and Geoffrey Hinton. Visualiz-
ing data using t-sne. Journal of machine learning research,
2008. 8

[22] Federico Monti, Davide Boscaini, Jonathan Masci,
Emanuele Rodolà, Jan Svoboda, and Michael M Bronstein.
Geometric deep learning on graphs and manifolds using
mixture model cnns. CVPR, 2017. 1, 2

[23] Ning Qian. On the momentum term in gradient descent
learning algorithms. Neural networks, 1999. 2

[24] Ariadna Quattoni and Antonio Torralba. Recognizing indoor
scenes. CVPR, 2009. 6

[25] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
Faster r-cnn: Towards real-time object detection with region
proposal networks. NIPS, 2015. 2, 4, 7, 12

[26] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. NIPS, 2017. 1, 2, 3,
4, 13
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Supplementary Material

A. Runtime Comparisons

VOC07-Res101 1-epoch Runtime GPU Memory

Baseline 79.7 minutes 3137 MB
Baseline + LG 82.3 minutes 3141 MB

CIFAR10-Res110 1-epoch Runtime GPU Memory

Baseline 34.7 seconds 2117 MB
Baseline + LG 35.9 seconds 2139 MB

Table 4: Training time (runtime) versus GPU memory con-
sumption between the baseline and our affinity supervised
network (denoted as “Baseline + LG”). For VOC07 we ap-
ply RelNet [9] as the baseline. Its affinity supervised ver-
sion is discussed in Section 4.2 of our article. For CIFAR-
10, the baseline is a ResNet-110 network [8] and its affinity
supervised version is discussed in Section 5.3 of our article.

We provide efficiency analysis for visual attention net-
works as well as mini-batch training, with and without the
affinity loss. The results are summarized in Table (4), with a
ResNet101 structure trained on VOC07 dataset for attention
networks and a ResNet110 structure trained on CIFAR10
for mini-batch training. For all experiments reported in Ta-
ble (4), we used a machine configuration of a single Titan
XP GPU, an Intel Core i9 CPU and 64GBs of RAM. The
affinity supervision did introduce a small percentage incre-
ment to runtime and GPU memory, but the benefits are ap-
preciable, as reflected in the multiple experiments reported
in our article.

B. Object Detection Results
As promised in our article, we present the object detec-

tion results of affinity supervised attention networks in Ta-
ble 5. We report results on VOC07 and the COCO split
we applied in our article. In both cases we improve upon
the baseline and slightly outperform the unsupervised case
(similar to Relation Networks [9]). This suggests that rela-
tion weights learned using affinity supervision are at least
as good as those from the unsupervised case [9], in terms of
object detection performance.

Convergence of Target Mass We also provide results
showing the convergence of target mass in the context of
visual attention networks, in Table (6). It is evident that the
affinity mass loss succeeds in optimizing the target mass,
when compared with a baseline Relation Network model
[9]. This is also indirectly supported by the dramatic im-
provement in the recall metric, reported in Table 1 of the

main article and Table (8), when comparing between the
baseline visual attention network and its affinity supervised
version.

C. Additional Illustrations
Additional examples of visual relationships, recovered

using baseline Relation Networks [9] and its affinity super-
vised version (discussed in Section 4.2 of our article), are
provided in Figure 7. Here we allow all regions with dif-
ferent object class labels to have a potential relation with
one another. No human annotated relationship labels are
used during training. We include both examples showing
improvement and ones where the results are comparable.
Whereas the baseline method can be effective at times (Fig-
ure (7) right half), the affinity supervision improves its con-
sistency. This claim is also supported by the relationship
proposal results on Visual Genome reported in Section 6.5
of the main article.

D. Structure inside Attention Module
A structural overview of the visual attention module used

throughout the main article is presented in Figure (8).

E. Supervision Targets
The proposed loss requires a task specific design of a

supervision target T . The flexibility in choosing this tar-
get is one of the core advantages of our affinity supervision,
that is, it can be any user designed matrix target. In fact,
in the experiments reported in the main article, we con-
struct this matrix automatically using only object class la-
bels, i.e., no labeled relations are required. In the context
of mini-batch training, the target design is straightforward.
Here we aim to reduce the within-class feature distances
between batch images. Thus, a same-category target T is
adopted. This target increases the similarity metric between
same-class connections in the weight matrix W̃ and because
of the matrix-wise softmax activation, connections between
instances from different classes are suppressed.

For the case of visual attention networks, various super-
vision targets can be applied to adapt the method for dif-
ferent downstream applications. In the main draft, our goal
is to improve visual recognition using contextual features
aggregated by the attention module, with improved object-
wise relationship recovery. Thus, the supervision target
emphasizes relationships between instances from different
categories. However, given a distinct vision task, such as
learning human-to-human interaction or human-to-X inter-
action, the target T could also be constructed by only select-
ing human-to-human or human-to-X instance connections,
while suppressing other possibilities.

To support the idea that the target T is adaptive, we
provide an exemplar ablation study on VOC07 detection



Cases with improved results Cases with similar results
RelNet [9] with Affinity-Sup RelNet [9] with Affinity-Sup

Figure 7: Additional comparisons of recovered relationships on test images, including cases with a clear improvement over
the baseline (left) and cases where the results are comparable). The affinity supervision applied to acquire these results do
not use human annotated relationship labels. See the text in Figure 1 of the main article for details about the representation.
Zoom in on the PDF file to see the attention weight values.

task. We first consider the supervision target proposed in
the main draft as different-category supervision. We now

consider the case where attention between distinct objects
belonging to the same category is also of interest, leading
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Figure 8: A detailed illustration of the structure inside the “attention module” shown in Figure 2 of the main article. An
explanation of each step in this figure is provided at the beginning of Section 4 in the article.

VOC07 base F-RCNN RelNet [9] RelNet + LG
avg mAP (%) 47.0 47.7 ± 0.1 48.2 ± 0.1
mAP@0.5 (%) 78.2 79.3 ± 0.2 79.9 ± 0.2
mini COCO base F-RCNN RelNet [9] RelNet + LG
avg mAP (%) 26.8 27.5 27.9
mAP@0.5 (%) 46.6 47.4 47.8

Table 5: Object Detection Results. mAP@0.5: average pre-
cision over a bounding box overlap threshold set to IOU =
0.5. avg mAP: averaged mAP over multiple bounding box
overlap thresholds. VOC07 experiments are reported over 3
runs, demonstrating stability. Ldet stands for detection task
loss as defined in [25] and LG for the target affinity mass
loss defined in Section 3.3 of the main article.

COCOM Training Testing

RelNet [9] 0.020 0.013
RelNet + LG 0.747 0.459

Table 6: We compare target mass values for a visual atten-
tion network supervised with (RelNet + LG) and without
(RelNet) the affinity mass loss, using the target constructed
in Section 4.1 of our main article. The values reported are
evaluated on the COCO split, that is described in the exper-
iment section.

to same-category connections in the target matrix T . We re-
fer to this as different-instance supervision. We provide a
visual example of the above mentioned supervision targets
in Figure 9. In Table 7, we provide object detection results
on VOC07 when supervising the affinity graph using differ-
ent targets.

In summary, the affinity supervision can be adapted to
different targets, to achieve various goals or to handle dis-
tinct downstream tasks. However, the successful construc-

Different-Category Different-Instance

Figure 9: The visualization of supervision targets for at-
tention networks. The blue box indicates a fixed reference
object a and the orange boxes indicate the objects b that
have a ground truth relationship with a, for which we assign
T [a, b] = 1. Left: different category supervision. Note that
the sheep in the blue box is not related to the other sheep in
the image. Right: different instance supervision.

VOC07 varying T Diff-Instance Diff-Category
avg mAP (%) 47.6 ± 0.1 48.2 ± 0.2
mAP@0.5 (%) 79.5 ± 0.2 79.9 ± 0.2

Table 7: Detection results on the VOC07 dataset when vary-
ing supervision targets, where we show mean accuracy over
3 runs.

tion of such a target is task dependent.

F. Target Mass Definition

The definition of target mass, as in Section 3.2 of the
main article, could have slightly different variations. We
defined it as a summation over selected entries, in a matrix-
scale. However, it is entirely possible to define such a sum-
mation over a row of matrixW , when the softmax activation
applied is a row-wise operation. That is we only consider a



1k 2k 5k 8k 10k
unsup 21.9 29 43.5 52.2 56.3
row 23.8 34.7 50.7 61.2 66.5
mat 43 50.3 62.1 68.8 71.8
mat-focal 48.6 56.1 69.9 76.6 79.3
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Table 8: Evaluating different target mass definitions. Re-
sults reported are relationship recall metric with varying top
K, using the VOC07 test set. The supervision target T is
constructed following Section 4.1 of main draft.

row of matrixW during the softmax:

ω̃ij =
expωij∑
x expωix

(12)

We would build the target as we originally proposed, but
compute the target mass in a row-wise manner and apply
the affinity mass loss over the row-aggregated mass. For a
given row i, we define its target mass asMi, and thus the
affinity mass loss LG can be written as

LG = −
∑
i

(1−Mi)
γ logMi. (13)

To justify the selected matrix-wise formulation that we
proposed in the main draft, we provide the following abla-
tion study, on relationship recovery recall metric using the
VOC07 dataset. In the reported results here, we define the
aforementioned row-wise target mass formulation as “row”
and the matrix-wise version used in the main draft as “mat”,
but supervised with only the log-loss of LG = − logM.
Lastly, to demonstrate the benefit of focal terms in the final
loss form, which is

LG = −(1−M)γ logM, (14)

we define the matrix-wise supervision with focal term as
“mat-focal”. The recall measurement results are summa-
rized in Table (8). We emphasize that recall@k reported
here is always based on ranking the affinity weights post the
matrix-wise softmax, ensuring fairness of the comparisons.

The results suggest that the affinity weights, when super-
vised using the affinity mass loss regardless of its form, are
better than the unsupervised case (similar to Relation Net-
works [9]). Between different variations of target mass and

loss forms, the choice of matrix-wise formulation with focal
term gives the best results.

One can further simplify the definition of target mass
to a single entry in matrix W , and use a binary cross en-
tropy loss over the Sigmoid activation of ωij , which is
pij =

1
1+exp−ωij

. The loss can be written as

LG = −
∑
ij

[Tij log pij + (1− Tij) log (1− pij)] , (15)

where Tij simply stands for the i, j-th entry of target matrix
T . Within multiple trials of a wide range of choices for
the λ defined in Section 3.4 of the main article, we found
that this single entry based formulation does not converge
to a sufficiently large target mass value and the recall metric
is very close to the baseline unsupervised case, thus these
results are inferior to the earlier formulations.

In our loss design, the distinction between matrix soft-
max in affinity loss and row softmax in feature aggregation
is essential, see Figure 8. In affinity learning we care about
accurately representing the strength of node-to-node con-
nection. For instance, if a node has weak connection to all
its neighbors, its edges should have relatively small weights.
Following related work [13, 27, 26], a row-wise softmax is
applied in feature aggregation. This ensures a unified scal-
ing of the aggregation result, so that a node with low affinity
weights is not suppressed, and one with high weights is not
dominant.


