
Modeling Artistic Workflows for Image
Generation and Editing

Hung-Yu Tseng?1, Matthew Fisher2, Jingwan Lu2, Yijun Li2, Vladimir Kim2,
Ming-Hsuan Yang1

1University of California, Merced 2Adobe Research

Artwork generation: anime drawing

Sketch Rough coloring Detail coloring Sketch Normal map ColoringInput image Lighting

Edit sketch

Artwork editing: chair design

Sketch Flat coloring Detail drawingInput image

Edit sketch

Edit
flat coloring

Artwork editing: face drawing

Edit sketch
and lighting

Fig. 1. We model the sequential creation stages for a given artistic workflow by learning
from examples. At test time, our framework can guide the user to create new artwork
by sampling different variations at each stage (left), and infer the creation stages of
existing artwork to enable the user to perform natural edits by exploring variations at
different stages (middle and right).

Abstract. People often create art by following an artistic workflow in-
volving multiple stages that inform the overall design. If an artist wishes
to modify an earlier decision, significant work may be required to prop-
agate this new decision forward to the final artwork. Motivated by the
above observations, we propose a generative model that follows a given
artistic workflow, enabling both multi-stage image generation as well as
multi-stage image editing of an existing piece of art. Furthermore, for
the editing scenario, we introduce an optimization process along with
learning-based regularization to ensure the edited image produced by
the model closely aligns with the originally provided image. Qualitative
and quantitative results on three different artistic datasets demonstrate
the effectiveness of the proposed framework on both image generation
and editing tasks.

1 Introduction

Creating artwork from scratch is a herculean task for people without years of
artistic experience. For novices to the world of art, it would be more feasible to

? Work done during HY’s internship at Adobe Research.

ar
X

iv
:2

00
7.

07
23

8v
1

 [
cs

.C
V

]
 1

4
Ju

l 2
02

0

2 H.-Y. Tseng et al.

accomplish this task if there are clear creation steps to follow. Take a watercolor
painting for example. One may be guided to first sketch the outline with pencils,
then fill out areas with large brushes, and finalize details such as the color gradi-
ent and shadow with small brushes. At each stage, some aspects (i.e., variations)
of the overall design are determined to carry forward to the final piece of art.

Inspired by these observations, we aim to model workflows for creating art,
targeting two relevant artistic applications: multi-stage artwork creation and
multi-stage artwork editing. As shown in Figure 1, multi-stage artwork genera-
tion guides the user through the creation process by starting from the first stage
then selecting the variation at each subsequent creation stage. In the multi-stage
artwork editing, we are given a final piece of artwork and infer all the interme-
diate creation stages, enabling the user to perform different types of editing on
various stages and propagate them forward to modify the final artwork.

Existing artwork creation approaches use conditional generative adversar-
ial networks (conditional GANs) [23,57,33] to produce the artwork according
to user-provided input signals. These methods can take user inputs such as a
sketch image [10] or segmentation mask [40,51] and perform a single-step genera-
tion to synthesize the final artwork. To make the creation process more tractable,
recent frameworks adopt a multi-step generation strategy to accomplish the gen-
eration tasks such as fashion simulation [46] and sketch-to-image [15]. However,
these approaches typically do not support editing existing artwork. To manipu-
late an existing artwork image without degrading the quality, numerous editing
schemes [6,37,43,54,55] have been proposed in the past decade. Nevertheless,
these methods either are designed for specific applications [37,43,54] or lack flex-
ible controls over the editing procedure because of the single-stage generation
strategy [6,55].

In this paper, we develop a conditional GAN-based framework that 1) syn-
thesizes novel artwork via multiple creation stages, and 2) edits existing artwork
at various creation stages. Our approach consists of an artwork generation mod-
ule and a workflow inference module. The artwork generation module learns to
emulate each artistic stage by a series of multi-modal (i.e., one-to-many) condi-
tional GAN [57] networks. Each network in the artwork generation module uses
a stage-specific latent representation to encode the variation presented at the
corresponding creation stage. At test time, the user can determine the latent
representation at each stage sequentially for the artwork generation module to
synthesize the desired artwork image.

To enable editing existing artwork, we also design an inference module that
learns to sequentially infer the corresponding images at all intermediate stages.
We assume a one-to-one mapping from the final to intermediate stages, and use a
series of uni-modal conditional GANs [23] to perform this inference. At test time,
we predict the stage-specific latent representations from the inferred images at
all intermediate stages. Depending on the desired type of edit, the user can edit
any stage to manipulate the stage-specific image or latent representation and
regenerate the final artwork from the manipulated representations.

Modeling Artistic Workflows for Image Generation and Editing 3

We observe that directly applying our workflow inference module can cause
the reconstructed image to differ slightly from the initially provided artwork.
Such a reconstruction problem is undesirable since the user expects the gen-
erated image to be unchanged when no edits are performed. To address this
problem, we design an optimization procedure along with learning-based regu-
larization to refine the reconstructed image. This optimization aims to minimize
the appearance difference between the reconstructed and the original artwork
image, while the learning-based regularization seeks to guide the optimization
process and alleviate overfitting.

We collect three datasets with different creation stages to demonstrate the
use cases of our approach: face drawing, anime drawing, and chair design. We
demonstrate the creation process guided by the proposed framework and present
editing results made by artists. For quantitative evaluations, we measure the re-
construction error and Fréchet inception distance (FID) [17] to validate the effec-
tiveness of the proposed optimization and learning-based regularization scheme.
We make the code and datasets public available to stimulate the future research.1

In this work, we make the following three contributions:
– We propose an image generation and editing framework which models the

creation workflow for a particular type of artwork.
– We design an optimization process and a learning-based regularization func-

tion for the reconstruction problem in the editing scenario.
– We collect three different datasets containing various design stages and use

them to evaluate the proposed approach.

2 Related Work

Generative adversarial networks (GANs). GANs [4,7,16,25,26] model the
real image distribution via adversarial learning schemes. Typically, these meth-
ods encode the distribution of real images into a latent space by learning the
mapping from latent representations to generated images. To make the latent
representation more interpretable, the InfoGAN [11] approach learns to disen-
tangle the latent representations by maximizing the mutual information. Similar
to the FineGAN [45] and VON [58] methods, our approach learns to synthesize
an image via multiple stages of generation, and encode different types of varia-
tion into separate latent spaces at various stages. Our framework extends these
approaches to also enables image editing of different types of artwork.

Conditional GANs. Conditional GANs learn to synthesize the output image
by referencing the input context such as text descriptions [52], scene graphs [50],
segmentation masks [18,40], and images [23]. According to the type of mapping
from the input context to the output image, conditional GANs can be categorized
as uni-modal (one-to-one) [23,56] or multi-modal (one-to-many) [20,34,38,57].
Since we assume there are many possible variations involved for the generation at
each stage of the artwork creation workflow, we use the multi-modal conditional

1 https://github.com/hytseng0509/ArtEditing

https://github.com/hytseng0509/ArtEditing

4 H.-Y. Tseng et al.

GANs to synthesize the next-stage image, and utilize the uni-modal conditional
GANs to inference the prior-stage image.

Image editing. Image editing frameworks enable user-guided manipulation
without degrading the realism of the edited images. Recently, deep-learning-
based approaches have made significant progress on various image editing tasks
such as colorization [22,30,53,54], image stylization [19,37], image blending [21],
image inpainting [39,42], layout editing [35], and face editing [9,12,43]. Unlike
these task-specific methods, the task-agnostic iGAN [55] and GANPaint [6] mod-
els map the variation in the training data onto a low-dimensional latent space
using GAN models. Editing can be conducted by manipulating the representa-
tion in the learned latent space. Different from iGAN and GANPaint, we develop
a multi-stage generation method to model different types of variation at various
stages.

Optimization for reconstruction. In order to embed an existing image to the
latent space learned by a GAN model, numerous approaches [13,29,57] propose
to train an encoder to learn the mapping from images to latent representations.
However, the generator sometimes fails to reconstruct the original image from the
embedded representations. To address this problem, optimization-based meth-
ods are proposed in recent studies. Abdal et al. [1] and Bau et al. [6] adopt the
gradient descent scheme to optimize the latent representations and modulations
for the feature activations, respectively. The goal is to minimize the appearance
distance between the generated and original images. We also utilize the optimiza-
tion strategy to reconstruct existing artwork images. In addition, we introduce
a learning-based regularization function to guide the optimization process.

Regularizations for deep learning. These approaches [14,28,31,47,48,49] aim
to prevent the learning function from overfitting to a specific solution. Partic-
ularly, the weight decay scheme [28] regularizes by constraining the magnitude
of learning parameters during the training phase. Nevertheless, regularization
methods typically involve hyper-parameters that require meticulous hand-tuning
to ensure the effectiveness. The MetaReg [5] method designs a learning-to-learn
algorithm to automatically find the hyper-parameters of the weight decay regu-
larization to address the domain generalization problem. Our proposed learning-
based regularization is trained with a similar strategy but different objectives to
alleviate the overfitting problem described in Section 3.2.

3 Method

Our approach is motivated by the sequential creation stages of artistic work-
flows. We build a model that enables a user to 1) follow the creation stages
to generate novel artwork and 2) conduct edits at different stages. Our frame-
work is composed of an artwork generation and a workflow inference module.
As shown in Figure 2(a), the artwork generation module learns to model the
creations stages of the artist workflow. To enable editing an existing piece of art,
the workflow inference module is trained to sequentially infer the corresponding
images at all creation stages. When editing existing artwork, it is important that

Modeling Artistic Workflows for Image Generation and Editing 5

Latent encoder 𝐸!"

𝑧!#$% ∈ 𝑅&×()

𝑧! ∈ 𝑅&×(

Workflow inference

Artwork generation

𝐸!" 𝐸#"

𝐿!" Eq (5) 𝐿#" Eq (5)

𝐿!$ Eq (3) 𝐿#$ Eq (3)

𝑥*&𝑥+,&𝑥&,

&𝑥&" &𝑥+" &𝑥*"𝑧!"#$ 𝑧%"#$

𝐺#$𝐺!$

𝐺!" 𝐺#"

&𝑥!.&,

(a) Artwork generation and workflow inference (b) Latent encoder (c) Cycle consistency

𝑥! 𝑧&"#$

𝐺%$

𝐺%"

𝐿%& Eq (2)
𝑧&

𝑁(0,1)

𝑁(0,1)

Fig. 2. Overview of the proposed framework. (a) Given N creation stages (N = 3
in this example), our approach consists of N−1 workflow inference networks and N−1
artwork generation networks. The workflow inference module produces the intermedi-
ate results of the input artwork at all creation stages. The artwork generation module
computes the latent representation z and transformation parameter zAda for each stage,
then reconstructs the input artwork images from these transformation parameters. (b)
The latent encoder EGi extracts the stage-specific latent representation z from the
example, and computes the transformation parameters zAda for the AdaIN normal-
ization layers (c channels). (c) We introduce a cycle consistency loss for each stage
to prevent the artwork generation model (which accounts for detail coloring in this
example) from memorizing the variation determined at the previous stages (sketching
and flat coloring).

the artwork remains as close as possible to the original artwork, and only desired
design decisions are altered. To enable this, we design an optimization process
together with a learning-based regularization that allows faithful reconstruction
of the input image. We provide the implementation and training details for each
component in the proposed framework as supplemental material.

3.1 Artwork Generation and Workflow Inference

Preliminaries. The proposed approach is driven by the number of stages in the
training dataset and operates in a supervised setting with aligned training data.
Denoting N as the number of stages, the training dataset is comprised of a set
of image groups {(x1, x2, · · · , xN)}, where xN denotes the artwork image at the
final stage. We construct the proposed framework with N −1 workflow inference
models {GI

i }Ni=1 as well as N − 1 artwork generation models {(EG
i , G

G
i)}Ni=1. We

show an example of 3 stages in Figure 2(a). Since the proposed method is based
on the observation that artists sequentially determine a design factor (i.e., vari-
ation) at each stage, we assume that the generation from the image in the prior
stage to the later one is multi-modal (i.e., one-to-many mapping), while the
inference from the final to the previous stages is uni-modal (i.e., one-to-one
mapping).

Artwork generation. The artwork generation module aims to mimic the se-
quential creation stages of the artistic workflow. Since we assume the generation

6 H.-Y. Tseng et al.

from the prior stages to the following ones is multi-modal, we construct a series
of artwork generation networks by adopting the multi-modal conditional GAN
approach in BicycleGAN [57] and the network architecture of MUNIT [20]. As
shown in Figure 2 (a) and (b), each artwork generation model contains two
components: latent encoder EG

i and generator GG
i . The latent encoder EG

i en-
codes the variation presented at the i-th stage in a stage-specific latent space.
Given an input image xi and the corresponding next-stage image xi+1, the latent
encoder EG

i extracts the stage-specific latent representation zi from the image
xi+1, and computes the transformation parameter zAda

i . The generator GG
i then

takes the current-stage image xi as input and modulates the activations through
the AdaIN normalization layers [57] with the transformation parameter zAda

i to
synthesize the next-stage image x̂Gi+1, namely

x̂Gi+1 = GG
i (xi, E

G
i (xi+1)) i ∈ {1, 2, · · · , N − 1}. (1)

We utilize the objective introduced in the BicycleGAN [57], denoted as Lbicycle
i ,

for training the generation model. The objective Lbicycle
i is detailed in the sup-

plementary material.
Ideally, the artwork generation networks corresponding to a given stage would

encode only new information (i.e., incremental variation), preserving prior de-
sign decisions from earlier stages. To encourage this property, we impose a cycle
consistency loss to enforce the generation network to encode the variation pre-
sented at the current stage only, as shown in Figure 2(c). Specifically, we use the
inference model GI

i to map the generated next-stage image back to the current
stage. The mapped image should be identical to the original image xi at the
current stage, namely

Lc
i = ‖GI

i (GG
i (xi, E

G
i (zi)))− xi‖1 zi ∼ N(0, 1). (2)

Therefore, the overall training objective for the artwork generation model at the
i-th stage is

LG
i = Lbicycle

i + λcLc
i , (3)

where λc controls the importance of the cycle consistency.

Workflow inference. To enable the user to edit the input artwork xN at differ-
ent creation stages, our inference module aims to hallucinate the corresponding
images at all previous stages. For the i-th stage, we use a unimodal conditional
GAN network [23] to generate the image at i-th stage from the image at (i+1)-th
stage, namely

x̂Ii = GI
i (xi+1) i ∈ {1, 2, · · · , N − 1}. (4)

During the training phase, we apply the hinge version of GAN loss [7] to ensure
the realism of the generated image x̂Ii . We also impose an `1 loss between the
synthesized image x̂Ii and the ground-truth image xi to stabilize and accelerate
the training. Hence the training objective for the inference network at the i-th
stage is

LI
i = LGAN

i (x̂Ii) + λ1‖x̂Ii − xi‖1, (5)

Modeling Artistic Workflows for Image Generation and Editing 7

input from
prior stage

before
AdaIN optimize Ground-truth

truth

after
AdaIN optimize

or
ig

in
al

ed
ite

d

Fig. 3. Motivation of the AdaIN optimization and learning-based regular-
ization. The proposed AdaIN optimization and the learning-based regularization are
motivated by the observations that 1) using the computed transformation parame-
ters zAda in Figure 2 cannot well reconstruct the original input image (red outline
in 1-st row)), and 2) the AdaIN optimization may degrade the quality of the editing
results (yellow outline in 2-nd row).

where λ1 controls the importance of the `1 loss.

Test-time inference. As shown in Figure 2(a), given an input artwork image
xN , we sequentially obtain the images at all previous stages {x̂Ii }Ni=1 using the
workflow inference module (blue block). We then use the artwork generation
module (green block) to extract the latent representations {zi}N−1

i=1 from the in-
ferred images {x̂Ii }Ni=1, and compute the transformation parameters {zAda

i }N−1
i=1 .

Combining the first-stage image xG1 = xI1 and the transformation parameters
{zAda

i }N−1
i=1 , the generation module consecutively generates the images {x̂Gi }Ni=2

at the following stages. The user can choose the stage to manipulate based on
the type of edit desired. Edits at the i-th stage can be performed by either ma-
nipulating the latent representation zi or directly modifying the image xGi . For
example, in Figure 2(a), the user can choose to augment the representation z1

to adjust the flat coloring. After editing, the generation module generates the
new artwork image at the final stage.

3.2 Optimization for Reconstruction

As illustrated in Section 3.1, the artwork generation module would ideally recon-
struct the input artwork image (i.e., x̂GN = xN) from the transformation param-
eters {zAda

i }N−1
i=1 before the user performs an edit. However, the reconstructed

image x̂GN may be slightly different from the input image xN , as shown in the
first row of Figure 3. Therefore, we adopt an AdaIN optimization algorithm to
optimize the transformation parameters {zAda

i }Ni=1 of the AdaIN normalization
layers in the artwork generation models. The goal of the AdaIN optimization
is to minimize the appearance distance between the reconstructed and input
image.

While this does improve the reconstruction of the input image, we observe
that the optimization procedure causes the generation module to memorize input
image details, which degrades the quality of some edited results, as shown in the

8 H.-Y. Tseng et al.

second row of Figure 3. To mitigate this memorization, we propose a learning-
based regularization to improve the AdaIN optimization.

AdaIN optimization. The AdaIN optimization approach aims to minimize the
appearance distance between the reconstructed image x̂GN and the input artwork
image xN . There are many choices for what to optimize to improve reconstruc-
tion: we could optimize the parameters in the generation models or the extracted
representations {zi}Ni=1. Optimizing model parameters is inefficient because of
the large number of parameters to be updated. On the other hand, we find that
optimizing the extracted representation is ineffective, as validated in Section 4.3.
As a result, we choose to optimize the transformation parameters {zAda

i }Ni=1 of
the AdaIN normalization layers in the generation models, namely the AdaIN
optimization. Note that a recent study [1] also adopts a similar strategy.

We conduct the AdaIN optimization for each stage sequentially. The trans-
formation parameter at the early stage is optimized and then fixed for the op-
timization at the later stages. Except for the last stage (i.e., i = N − 1) that
uses the input artwork image xN , the inferred image xIi+1 by the inference model
serves as the reference image xref for the optimization. For each stage, we first
use the latent encoder EG

i to compute the transformation parameter zAda
i from

the reference image for generating the image. Since there are four AdaIN normal-
ization layers with c channels in each artwork generation model, the dimension
of the transformation parameter is 1 × 8c (a scale and a bias term for each
channel). Then we follow the standard gradient descent procedure to optimize
the transformation parameters with the goal of minimizing the loss function
LAda which measures the appearance distance between the synthesized image
x̂Gi by the generator GG

i and the reference image xref . The loss function LAda is
a combination of the pixel-wise `1 loss and VGG-16 perceptual loss [24], namely

LAda(x̂Gi , x
ref) = ‖x̂Gi − xref‖1 + λpLp(x̂Gi , x

ref), (6)

where λp is the importance term. We summarize the AdaIN optimization in Al-
gorithm 1. Note that in practice, we optimize the incremental term δAda

i for the
transformation parameter zAda

i , instead of updating the parameter itself.

Learning-based regularization. Although the AdaIN optimization scheme
addresses the reconstruction problem, it often degrades the quality of editing
operations, as shown in the second row of Figure 3. This is because the AdaIN
optimization causes overfitting (memorization of the reference image xref). The
incremental term δAda

i for the transformation parameter zAda
i is updated to ex-

treme values to achieve better reconstruction, so the generator becomes sensitive
to the change (i.e., editing) on the input image and produces unrealistic results.

To address the overfitting problem, we use weight decay regularization [28]
to constrain the magnitude of the incremental term δAda

i , as shown in Line 6
in Algorithm 1. However, it is difficult to find a general hyper-parameter setting
wi ∈ R1×8c for different generation stages of various artistic workflows. There-
fore, we propose a learning algorithm to optimize the hyper-parameter wi. The
core idea is that updating the incremental term δAda

i with the regularization
wiδ

Ada
i should 1) improve the reconstruction and 2) maintain the realism of ed-

Modeling Artistic Workflows for Image Generation and Editing 9

𝑧"#$% + 𝛿"#$%

𝐺")

𝑧"#$% + *𝛿"#$%

𝐺")

*𝛿"#$% = 𝛿"#$% − 𝛼 ∇/0123𝐿
#$% + 𝒘𝟐𝜹𝟐𝐀𝐝𝐚

𝐿#$%
Eq (6)

𝐿;<=

𝐿#$%
Eq (6)

𝑥" 𝑥?

𝑥"

𝑥"′

𝑥?

𝑤" = 𝑤" − 𝜂∇C0𝐿D"E𝐿D"E Eq (7)

Fig. 4. Training process for learning-based regularization. For the i-th stage
(i = 2 in this example), we optimize the hyper-parameter wi for the weight decay reg-
ularization (orange text) by involving the AdaIN optimization in the training process:
after the incremental term δAda

i is updated via one step of AdaIN optimization and
the weight decay regularization (blue arrow), the generation model should achieve im-
proved reconstruction as well as maintain the quality of the editing result (green block).
Therefore, we use the losses LAda, LGAN computed from the updated parameter δ̃Ada

i

to optimize the hyper-parameter wi (red arrow).

its on an input image. We illustrate the proposed algorithm in Figure 4. In each
iteration of training at the i-th stage, we sample an image pair (xi, xi+1) and an
additional input image x′i from the training dataset. The image x′i serves as the
edited image of xi. We first use the latent encoder EG

i to extract the transforma-
tion parameter zAda

i from the next-stage image xi+1. As shown in the grey block
of Figure 4, we then update the incremental term from δAda

i to δ̃Ada
i via one

step of the AdaIN optimization and the weight decay regularization. With the
updated incremental term δ̃Ada

i , we use the loss function LAda to measure the
reconstruction quality, and use the GAN loss to evaluate the realism of editing
results, namely

LL2R = LAda(GG
i (xi, z

Ada
i + δ̃Ada

i), xi+1)

+ λGANLGAN(GG
i (x′i, z

Ada
i + δ̃Ada

i)).
(7)

Finally, since the loss LL2R indicates the efficacy of the weight decay regulariza-
tion, we optimize the hyper-parameter wi by

wi = wi − η5wi
LL2R, (8)

where η is the learning rate of the training algorithm for the proposed learning-
based regularization.

10 H.-Y. Tseng et al.

Algorithm 1: AdaIN optimization at i-th stage

1 Require: reference image xref = xN or xref = x̂Ii+1, input image x̂Gi , learning
rate α, iterations T , regularization parameter wi

2 zAda
i = EGi (xref), δAda

i = 0 ∈ R1×8c

3 while t = {1, . . . , T} do

4 x̂Gi+1 = GGi (x̂Gi , z
Ada
i + δAda

i)

5 LAda = ‖x̂Gi+1 − xref‖1 + λpLp(x̂Gi+1, x
ref)

6 δAda
i = δAda

i − α
(
5δAda

i
LAda + wiδ

Ada
i

)
7 end

8 Return: zAda
i + δAda

i

Table 1. Summarization of the datasets. Three datasets are processed for evalu-
ating the proposed framework.

Dataset Face drawing Anime drawing Chair design

Source CelebaHQ [32] EdgeConnect [39] ShapeNet [8]
Training images 29000 33323 12546
Testing images 1000 1000 1000

Stages
1. sketch
2. flat coloring
3. detail drawing

1. sketch
2. rough coloring
3. detail coloring

1. sketch
2. normal map
3. coloring
4. lighting

4 Experimental Results

4.1 Datasets

To evaluate our framework, we manually process face drawing, anime drawing,
and chair design datasets. Table 1 summarizes the generation stages, the number
of training images, the number of testing images, and the source of the images
for each dataset. We describe more details in the supplementary material.

4.2 Qualitative Evaluation

Generation. We present the generation results at all stages in Figure 5. In this
experiment, we use the testing images at the first stage as inputs, and randomly
sample various latent representation z ∈ {zi}N−1

i=1 at each stage of the proposed
artwork generation module. The generation module sequentially synthesizes the
final result via multiple stages. It successfully generates variations by sampling
different random latent codes at different stages. For example, when generating
anime drawings, manipulating the latent code at the final stage produces detailed
color variations, such as modifying the saturation or adding the highlights to the
hair regions.

Editing. Figure 6 shows the results of editing the artwork images at different
stages. Specifically, after the AdaIN optimization reconstructs the testing image
at the final stage (first row), we re-sample the representations z ∈ {zi}N−1

i=1 at

Modeling Artistic Workflows for Image Generation and Editing 11

Sketch Rough coloring Detail coloring Sketch Flat coloring Detail drawing Sketch Normal map Coloring Lighting

Fig. 5. Results of image generation from the first stage. We use the first-stage
testing images as input and randomly sample the latent representations to generate
the image at the final stage.

Sketch Normal map ColoringInput image

Resample lighting

(c) Chair design

Lighting

Resample 3D shape

Resample coloring

Sketch Rough coloring Detail coloringInput image

(a) Anime drawing

Resample rough coloring Resample detail coloring

Sketch Flat coloring Detail drawingInput image

Resample flat coloring Resample detail drawing

(b) Face drawing

Fig. 6. Re-sampling latent representation at each stage. After we use the AdaIN
optimization process to reconstruct the input image (1st row), we edit the reconstructed
image by re-sampling the latent representations at various stages.

various stages. Our framework is capable of synthesizing the final artwork such
that its appearance only changes with respect to the stage with re-sampled latent
code. For example, for editing face drawings, re-sampling representations at the
flat coloring stage only affects hair color, while maintaining the haircut style and
details.

To evaluate the interactivity of our system, we also asked professional artists
to edit some example sketches (Figure 7). First, we use the proposed framework
to infer the initial sketch from the input artwork image. Given the artwork image
and the corresponding sketch, we asked an artist to modify the sketch manually.
For the edited sketch (second row), we highlight the edits with the red outlines.
This experiment confirms that the proposed framework enables the artists to
adjust only some stages of the workflow, controlling only desired aspects of the
final synthesized image. Additional artistic edits are shown in Figure 1.

AdaIN optimization and learning-based regularization. Figure 8 presents
the results of the AdaIN optimization and the proposed learning-based regular-
ization. As shown in the first row, optimizing representations z fails to refine
the reconstructed images due to the limited capacity of the low-dimensional
latent representation. In contrast, the AdaIN optimization scheme minimizes
the perceptual difference between the input and reconstructed images. We also

12 H.-Y. Tseng et al.

Sketch Rough coloring Detail coloringInput image Sketch Flat coloringInput image Detail drawing

(a) Anime drawing (b) Face drawing

Fig. 7. Results of artistic editing. Given an input artwork image, we ask the artist
to edit the inferred sketch image. The synthesis model then produces the corresponding
edited artwork. The first row shows the input artwork and inferred images, and the red
outlines indicate the edited regions.

O
rig

in
Ed

ite
d

Input from
prior stage Extracted !

Ground
truthOptimize ! AdaIN optimize

AdaIN optimize
(LR)

Fig. 8. Results of different optimization approaches. We show both the recon-
struction and editing results of various optimization approaches at the final stage for
the face drawing dataset.

demonstrate how the optimization process influences the editing results in the
second row. Although the AdaIN optimization resolves the reconstruction prob-
lem, it leads to overfitting and results in unrealistic editing results synthesized by
the generation model. By utilizing the proposed learning-based regularization,
we address the overfitting problem and improve the quality of the edited images.

4.3 Quantitative Evaluation

Evaluation metrics. We use the following metrics in the quantitative evalua-
tion.
– Reconstruction error: Given the input artwork xN and the reconstructed

image x̂GN , we use the `1 distance ‖x̂GN − xN‖ to evaluate the reconstruction
quality.

Modeling Artistic Workflows for Image Generation and Editing 13

Table 2. Quantitative results of reconstruction. We use the `1 pixel-wise dis-
tance (↓) and the FID (↓) score to evaluate the reconstruction ability. w and LR
indicates the hyper-parameter for the weight regularization and applying the learned
regularization, respectively.

Optimization w
Face Anime Chair

`1 FID `1 FID `1 FID

None - 0.094 39.78 0.127 36.73 0.074 129.2
z 0 0.104 40.70 0.126 45.66 0.068 107.0
AdaIN 0 0.040 34.61 0.042 26.56 0.009 46.48
AdaIN 10−3 0.043 35.78 0.056 29.14 0.019 53.08
AdaIN 10−2 0.053 39.19 0.097 46.31 0.049 83.58

AdaIN LR 0.045 33.28 0.070 34.16 0.018 49.44

– FID: We use the Fréchet Inception Distance (FID) [17] score to measure the
realism of generated images x̂GN . A smaller FID score indicates better visual
quality.

Reconstruction. As shown in Section 3.2, we conduct the AdaIN optimiza-
tion for each stage sequentially to reconstruct the testing image at the final
stage. We use both the reconstruction error and FID score to evaluate several
baseline methods and the AdaIN optimization, and show the results in Table 2.
Results on the 2-nd and 3-rd rows demonstrate that the AdaIN optimization is
more effective than optimizing the latent representations {zi}N−1

i=1 . On the other
hand, applying stronger weight decay regularization (i.e., wi = 10−2) diminishes
the reconstruction ability of the AdaIN optimization. By applying the weight
decay regularization with learned hyper-parameter w (i.e., LR), we achieve com-
parable reconstruction performance in comparison to the optimization without
regularization.

Editing. In this experiment, we investigate how various optimization methods
influence the quality of edited images. For each testing final-stage image, we
first use different optimization approaches to refine the reconstructed images.
We then conduct the editing by re-sampling the latent representation zi at a
randomly chosen stage. We adopt the FID score to measure the quality of the
edited images and show the results in Table 3. As described in Section 3.2, ap-
plying the AdaIN optimization causes overfitting that degrades the quality of
the edited images. For instance, applying the AdaIN optimization increases the
FID score from 38.68 to 44.28 on the face drawing dataset. One straightfor-
ward solution to alleviate this issue is to apply strong weight decay regulariza-
tions (i.e., w = 10−2). However, according to the results in 5-th row of Table 2,
such strong regularizations reduce the reconstruction effectiveness of the AdaIN
optimization. Combining the results in Table 2 and Table 3, we conclude that
applying the regularization with the learned hyper-parameter w not only mit-
igates overfitting but also maintains the efficacy of the AdaIN optimization.
We conduct more analysis of the proposed learning-based regularization in the
supplementary materials.

14 H.-Y. Tseng et al.

Table 3. Quantitative results of editing. We use the FID (↓) score to evaluate
the quality of the edited images x̂GN synthesized by the proposed framework. w and LR
indicates the hyper-parameter for the weight regularization and applying the learned
regularization, respectively.

Optimization w Face Anime Chair

None - 38.68± 0.44 35.59± 0.12 128.4± 1.50
AdaIN 0 44.28± 0.45 37.40± 0.36 97.90± 1.20
AdaIN 10−3 41.75± 0.49 38.95± 0.59 91.68± 4.23
AdaIN 10−2 38.57± 0.94 38.07± 0.54 99.36± 7.23

AdaIN LR 39.40± 0.21 35.73± 0.26 95.25± 0.73

4.4 Limitations

The proposed framework has several limitations (see supplemental material for
visual examples). First, since the model learns the multi-stage generation from
a training dataset, it fails to produce appealing results if the style of the input
image is significantly different from images in the training set. Second, the uni-
modal inference assumption may not be correct. In practice, the mapping from
later stages to previous ones can also be multi-modal. For instance, the style of
the pencil sketches by various artists may be different. Finally, artists may not
follow a well-staged workflow to create artwork in practice. However, our main
goal is to provide an example workflow to make the artwork creation and editing
more feasible, especially for the users who may not be experts in that type of
artwork.

5 Conclusions

In this work, we introduce an image generation and editing framework that mod-
els the creation stages of an artistic workflow. We also propose a learning-based
regularization for the AdaIN optimization to address the reconstruction problem
for enabling non-destructive artwork editing. Qualitative results on three differ-
ent datasets show that the proposed framework 1) generates appealing artwork
images via multiple creation stages and 2) synthesizes the editing results made
by the artists. Furthermore, the quantitative results validate the effectiveness of
the AdaIN optimization and the learning-based regularization.

We believe there are many exciting areas for future research in this direction
that could make creating high-quality artwork both more accessible and faster.
We would like to study video sequences of artists as they create artwork to
automatically learn meaningful workflow stages that better align with the artistic
process. This could further enable the design of editing tools that more closely
align with the operations artists currently perform to iterate on their designs.

Acknowledgements

This work is supported in part by the NSF CAREER Grant #1149783.

Modeling Artistic Workflows for Image Generation and Editing 15

References

1. Abdal, R., Qin, Y., Wonka, P.: Image2stylegan: How to embed images into the
stylegan latent space? In: ICCV (2019) 4, 8

2. Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Süsstrunk, S.: Slic super-
pixels compared to state-of-the-art superpixel methods. TPAMI 34(11), 2274–2282
(2012) 19

3. Adobe: Adobe dimension. https://www.adobe.com/products/dimension.html

(2019) 20
4. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein gan. In: ICML (2017) 3
5. Balaji, Y., Sankaranarayanan, S., Chellappa, R.: Metareg: Towards domain gener-

alization using meta-regularization. In: NIPS (2018) 4
6. Bau, D., Strobelt, H., Peebles, W., Wulff, J., Zhou, B., Zhu, J.Y., Torralba, A.:

Semantic photo manipulation with a generative image prior. ACM TOG (Proc.
SIGGRAPH) 38(4), 59 (2019) 2, 4

7. Brock, A., Donahue, J., Simonyan, K.: Large scale gan training for high fidelity
natural image synthesis. In: ICLR (2019) 3, 6, 18

8. Chang, A.X., Funkhouser, T., Guibas, L., Hanrahan, P., Huang, Q., Li, Z.,
Savarese, S., Savva, M., Song, S., Su, H., Xiao, J., Yi, L., Yu, F.: Shapenet: An
information-rich 3d model repository. arXiv preprint arXiv:1512.03012 (2015) 10,
20

9. Chang, H., Lu, J., Yu, F., Finkelstein, A.: Pairedcyclegan: Asymmetric style trans-
fer for applying and removing makeup. In: CVPR (2018) 4

10. Chen, W., Hays, J.: Sketchygan: Towards diverse and realistic sketch to image
synthesis. In: CVPR (2018) 2

11. Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, I., Abbeel, P.: Info-
gan: Interpretable representation learning by information maximizing generative
adversarial nets. In: NIPS (2016) 3

12. Cheng, Y.C., Lee, H.Y., Sun, M., Yang, M.H.: Controllable image synthesis via
segvae. In: ECCV (2020) 4

13. Donahue, J., Simonyan, K.: Large scale adversarial representation learning. In:
NIPS (2019) 4

14. Ghiasi, G., Lin, T.Y., Le, Q.V.: Dropblock: A regularization method for convolu-
tional networks. In: NIPS (2018) 4

15. Ghosh, A., Zhang, R., Dokania, P.K., Wang, O., Efros, A.A., Torr, P.H., Shecht-
man, E.: Interactive sketch & fill: Multiclass sketch-to-image translation. In: CVPR
(2019) 2

16. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,
Courville, A., Bengio, Y.: Generative adversarial nets. In: NIPS (2014) 3

17. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained
by a two time-scale update rule converge to a local nash equilibrium. In: NIPS
(2017) 3, 13, 19, 20

18. Huang, H.P., Tseng, H.Y., Lee, H.Y., Huang, J.B.: Semantic view synthesis. In:
ECCV (2020) 3

19. Huang, X., Belongie, S.: Arbitrary style transfer in real-time with adaptive instance
normalization. In: ICCV (2017) 4, 18

20. Huang, X., Liu, M.Y., Belongie, S., Kautz, J.: Multimodal unsupervised image-to-
image translation. In: ECCV (2018) 3, 6, 18

21. Hung, W.C., Zhang, J., Shen, X., Lin, Z., Lee, J.Y., Yang, M.H.: Learning to blend
photos. In: ECCV (2018) 4

https://www.adobe.com/products/dimension.html

16 H.-Y. Tseng et al.

22. Iizuka, S., Simo-Serra, E., Ishikawa, H.: Let there be color!: joint end-to-end learn-
ing of global and local image priors for automatic image colorization with simul-
taneous classification. ACM TOG (Proc. SIGGRAPH) 35(4), 110 (2016) 4

23. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with condi-
tional adversarial networks. In: CVPR (2017) 2, 3, 6

24. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and
super-resolution. In: ECCV (2016) 8

25. Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of gans for im-
proved quality, stability, and variation. In: ICLR (2018) 3

26. Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative
adversarial networks. In: CVPR (2019) 3

27. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In: ICLR
(2015) 18

28. Krogh, A., Hertz, J.A.: A simple weight decay can improve generalization. In: NIPS
(1992) 4, 8

29. Larsen, A.B.L., Sønderby, S.K., Larochelle, H., Winther, O.: Autoencoding beyond
pixels using a learned similarity metric. arXiv preprint arXiv:1512.09300 (2015) 4

30. Larsson, G., Maire, M., Shakhnarovich, G.: Learning representations for automatic
colorization. In: ECCV (2016) 4

31. Larsson, G., Maire, M., Shakhnarovich, G.: Fractalnet: Ultra-deep neural networks
without residuals. In: ICML (2017) 4

32. Lee, C.H., Liu, Z., Wu, L., Luo, P.: Maskgan: Towards diverse and interactive facial
image manipulation. In: CVPR (2020) 10, 19

33. Lee, H.Y., Tseng, H.Y., Huang, J.B., Singh, M.K., Yang, M.H.: Diverse image-to-
image translation via disentangled representations. In: ECCV (2018) 2

34. Lee, H.Y., Tseng, H.Y., Mao, Q., Huang, J.B., Lu, Y.D., Singh, M., Yang,
M.H.: Drit++: Diverse image-to-image translation via disentangled representa-
tions. IJCV pp. 1–16 (2020) 3

35. Lee, H.Y., Yang, W., Jiang, L., Le, M., Essa, I., Gong, H., Yang, M.H.: Neural
design network: Graphic layout generation with constraints. In: ECCV (2020) 4

36. Li, Y., Fang, C., Hertzmann, A., Shechtman, E., Yang, M.H.: Im2pencil: Control-
lable pencil illustration from photographs. In: CVPR (2019) 19, 20

37. Li, Y., Liu, M.Y., Li, X., Yang, M.H., Kautz, J.: A closed-form solution to photo-
realistic image stylization. In: ECCV (2018) 2, 4

38. Mao, Q., Lee, H.Y., Tseng, H.Y., Ma, S., Yang, M.H.: Mode seeking generative
adversarial networks for diverse image synthesis. In: CVPR (2019) 3

39. Nazeri, K., Ng, E., Joseph, T., Qureshi, F., Ebrahimi, M.: Edgeconnect: Generative
image inpainting with adversarial edge learning. arXiv preprint arXiv:1901.00212
(2019) 4, 10, 19

40. Park, T., Liu, M.Y., Wang, T.C., Zhu, J.Y.: Semantic image synthesis with
spatially-adaptive normalization. In: CVPR (2019) 2, 3

41. Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z.,
Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in pytorch. In:
NIPS workshop (2017) 18

42. Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T., Efros, A.A.: Context en-
coders: Feature learning by inpainting. In: CVPR (2016) 4

43. Portenier, T., Hu, Q., Szabo, A., Bigdeli, S.A., Favaro, P., Zwicker, M.: Faceshop:
Deep sketch-based face image editing. ACM TOG (Proc. SIGGRAPH) 37(4), 99
(2018) 2, 4

44. Sangkloy, P., Lu, J., Fang, C., Yu, F., Hays, J.: Scribbler: Controlling deep image
synthesis with sketch and color. In: CVPR (2017) 21

Modeling Artistic Workflows for Image Generation and Editing 17

45. Singh, K.K., Ojha, U., Lee, Y.J.: Finegan: Unsupervised hierarchical disentangle-
ment for fine-grained object generation and discovery. In: CVPR (2019) 3

46. Song, S., Zhang, W., Liu, J., Mei, T.: Unsupervised person image generation with
semantic parsing transformation. In: CVPR (2019) 2

47. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:
Dropout: a simple way to prevent neural networks from overfitting. JMLR 15(1),
1929–1958 (2014) 4

48. Tseng, H.Y., Chen, Y.W., Tsai, Y.H., Liu, S., Lin, Y.Y., Yang, M.H.: Regularizing
meta-learning via gradient dropout. arXiv preprint arXiv:2004.05859 (2020) 4

49. Tseng, H.Y., Lee, H.Y., Huang, J.B., Yang, M.H.: Cross-domain few-shot classifi-
cation via learned feature-wise transformation. In: ICLR (2020) 4

50. Tseng, H.Y., Lee, H.Y., Jiang, L., Yang, W., Yang, M.H.: Retrievegan: Image
synthesis via differentiable patch retrieval. In: ECCV (2020) 3

51. Wang, T.C., Liu, M.Y., Zhu, J.Y., Tao, A., Kautz, J., Catanzaro, B.: High-
resolution image synthesis and semantic manipulation with conditional gans. In:
CVPR (2018) 2

52. Zhang, H., Xu, T., Li, H., Zhang, S., Wang, X., Huang, X., Metaxas, D.N.: Stack-
gan++: Realistic image synthesis with stacked generative adversarial networks.
TPAMI 41(8), 1947–1962 (2018) 3

53. Zhang, R., Isola, P., Efros, A.A.: Colorful image colorization. In: ECCV (2016) 4
54. Zhang, R., Zhu, J.Y., Isola, P., Geng, X., Lin, A.S., Yu, T., Efros, A.A.: Real-

time user-guided image colorization with learned deep priors. ACM TOG (Proc.
SIGGRAPH) 9(4) (2017) 2, 4

55. Zhu, J.Y., Krähenbühl, P., Shechtman, E., Efros, A.A.: Generative visual manip-
ulation on the natural image manifold. In: ECCV (2016) 2, 4

56. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation
using cycle-consistent adversarial networks. In: ICCV (2017) 3

57. Zhu, J.Y., Zhang, R., Pathak, D., Darrell, T., Efros, A.A., Wang, O., Shechtman,
E.: Toward multimodal image-to-image translation. In: NIPS (2017) 2, 3, 4, 6, 18

58. Zhu, J.Y., Zhang, Z., Zhang, C., Wu, J., Torralba, A., Tenenbaum, J., Freeman,
B.: Visual object networks: image generation with disentangled 3d representations.
In: NIPS (2018) 3

18 H.-Y. Tseng et al.

A Appendix

In this supplementary material, we first present the implementation details for
each component of the proposed framework. Second, we complement the ex-
periment details. Third, we visualize the learning-based regularization. Fourth,
we show visual examples illustrating the failure cases of the proposed method.
Finally, we present more qualitative results to complement the paper.

A.1 Implementation Details

We implement our framework with PyTorch [41]. The details for each component
are described as follows.

Workflow inference. The hyper-parameter λ1 in Equation 5 of the paper is
assigned to be 10. We use the Adam optimizer [27] with the learning rate of
2×10−4 and batch size of 8 for optimizing the model. We first train each network
separately with 450, 000 iterations, then jointly train all the networks in the
workflow inference module with 450, 000 iterations.

Artwork generation. We set the hyper-parameter λc in Equation 3 of the
paper to be 1. Similar to the training for the workflow inference module, we use
the Adam optimizer [27] with the learning rate of 2× 10−4 and batch size of 8.
We train each network separately with 1, 200, 000 iterations, then jointly train
all the networks in the artwork generation module with 600, 000 iterations. We
adopt the objectives in the BicycleGAN [57] approach for training the artwork
generation module, as described in Equation 3 in the paper. More specifically,
the loss Lbicycle

i in Equation 3 is formulated as

Lbicycle
i = LGAN

i + λ1L1 + λlatentLlatent + λKLLKL, (9)

where LGAN
i is the hinge version of GAN loss [7], L1 is the `1 loss between the

generated and ground-truth images, Llatent is the latent regression loss between
the predicted and input latent representations, and LKL is the KL divergence loss
on the latent representations. Following the setting in the BicycleGAN scheme,
we respectively assign the hyper-parameters λ1, λlatent, and λKL to be 10, 0.5,
and 0.01. We use the network architecture proposed in the MUNIT [20] frame-
work (involving AdaIN normalization layers [19]) rather than the U-Net structure
in the BicycleGAN framework.

AdaIN optimization. In the editing scenario during the testing phase, we
conduct the AdaIN optimization from the first to the last stages sequentially to
refine the reconstructed image. For each stage, we set the hyper-parameters λp,
α, T in Algorithm 1 in the paper to be 10, 0.1 and 150, respectively.

Learning-based regularization. We summarize the training of the proposed
learning-based regularization in Figure 4 of the paper and Algorithm 2. The reg-
ularization function is trained separately for each creation stage. We respectively
set the hyper-parameters η, T reg, and λGAN to be 10−3, 40000, and 1. We use
the Adam optimizer [27] and the batch size of 1 for the training.

Modeling Artistic Workflows for Image Generation and Editing 19

Algorithm 2: Training overview of the learning-based regularization at
i-th stage

1 Require: pre-trained generation model {EGi , GGi }, learning rate η, iterations

T reg, importance factor λGAN

2 wi = 0.001 ∈ R1×8c

3 while t = {1, . . . , T reg} do

4 Sample (xi, xi+1) and x′i from the dataset

5 zAda
i = EGi (xi), δ

Ada
i = 0 ∈ R1×8c

6 // Get reconstructed image before the AdaIN optimization

7 x̂Gi+1 = GGi (xi, z
Ada
i + δAda

i)

8 // Optimize incremental term with the regularization function
(AdaIN optimization)

9 δ̃Ada
i = δAda

i − α
(
5δAda

i
LAda(x̂Gi+1, xi+1) + wiδ

Ada
i

)
10 // Get the reconstructed image and editing results after the

optimization

11 x̃Gi+1 = GGi (xi, z
Ada
i + δ̃Ada

i)

12 x̃′
G
i+1 = GGi (x′i, z

Ada
i + δ̃Ada

i)

13 // Update the regularization function based on the reconstruction
and editing results after the optimization

14 LL2R = LAda(x̃Gi+1, xi+1) + λGANLGAN(x̃′
G
i+1)

15 wi = wi − η5wi L
L2R

16 end
17 Return: wi

A.2 Experiment Details

We illustrate how we process each dataset for evaluating the proposed framework.
Example training images in each dataset are shown in Figure 9. In addition, we
also describe how we compute FID [17] score.

Face drawing dataset. We collect the photo-realistic face images from the
CelebAMask-HQ dataset [32]. We prepare three design stages for the face draw-
ing dataset: sketch, flat coloring, and detail drawing. We use the ground-truth
attribute segmentation mask to remove the background of the cropped RGB
images in the CelebAMask-HQ dataset as the final-stage images. For the flat
coloring, we assign pixels with the median color computed from the correspond-
ing region according to the ground-truth attribute segmentation mask. Finally,
we use the pencil sketch [36] model to generate simple sketch images from the
flat coloring images.

Anime drawing dataset. We construct the dataset from the anime images
in the EdgeConnect [39] dataset. Three stages are used in this dataset: sketch,
rough coloring, detail coloring. For rough coloring, we first apply the SLIC [2]

20 H.-Y. Tseng et al.

Table 4. FID scores of real images. We show the FID (↓) scores of the real images
in the test set to supplement the results in Table 2 and Table 3 of the paper.

Datasets Face Anime Chair

Real images 12.8 16.5 25.3

Sketch Rough coloring Detail coloring Sketch Flat coloring Detail drawing Sketch Normal map Coloring Lighting

(a) Anime drawing (b) Face drawing (c) Chair design

Fig. 9. Training examples in each dataset. For each dataset, we show the example
training images at each creation stage.

super-pixel approach to cluster the pixels in each anime image. For each cluster,
We then compute the median color and assign to the pixels in that cluster.
Finally, we adopt the median filter to smooth the rough coloring images. As for
the sketch, we use the pencil sketch [36] scheme to extract the sketch image from
the original anime image.

Chair design. We render the chair models in the ShapeNet dataset [8] via
the photo-realistic renderer [3] for building the dataset. There are four stages
presented in this dataset: sketch, normal map, coloring, and lighting. We sample
two different camera viewpoints for each chair model. For each viewpoint, we
randomly sample from 300 spherical environment maps of diverse indoor and
outdoor scenes to render the last-stage image. For the coloring image, we use a
default white lighting environment for the rendering. We configure the rendering
tools to produce the corresponding depth map for each viewpoint and infer the
normal map image from the depth map. Finally, we extract the sketch image
from the normal map image using the pencil sketch model [36].

FID scores. We use the official implementation to compute the FID [17] scores.2

For all experiments, we use the generated images from the whole test set as well
as the real images in the training set. Since we need to re-sample the latent
representations for the editing experiments presented in Table 3 in the paper,
we conduct 5 trials for each experiment and report the average results. We show
the FID scores of real images in the test set in Table 4. The scores reported in
this table can be considered as the lower-bound scores for each task.

A.3 Additional Experimental Results

Visualizing learning-based regularization. To understand our learning-
based regularization function, we visualize the learned hyper-parameter wi of

2 https://github.com/bioinf-jku/TTUR

https://github.com/bioinf-jku/TTUR

Modeling Artistic Workflows for Image Generation and Editing 21

0.00E+00

5.00E-04

1.00E-03

1.50E-03

2.00E-03

2.50E-03

3.00E-03

3.50E-03

0.00E+00

1.00E-02

2.00E-02

3.00E-02

4.00E-02

5.00E-02

6.00E-02

𝑤" 𝑤#

scale_1 bias_1 scale_2 bias_2 scale_3 bias_3 scale_4 bias_4

Fig. 10. Visualization of the proposed learning-based regularization. We show
the quartile visualization of the hyper-parameter wi for our learning-based regulariza-
tion approach trained on the face drawing dataset. The learned function tends to have
stronger regularization on the bias terms.

sketch Flat coloring Detail drawing

Fig. 11. Failure cases. Our framework fails to generate appealing results (top) if the
style of the input sketch image is significantly different from that of training images, and
(bottom) if we use extreme latent representations which are out of the prior distributions
we sampled from during the training phase.

the weight decay regularization described in Section 3.3 in the paper and Algo-
rithm 2. The value of the hyper-parameter indicates the strength of the regular-
ization for the AdaIN optimization process. Figure 10 shows the visualization of
the hyper-parameters trained on the face drawing dataset. In general, The reg-
ularization on the bias terms is stronger than that on the scaling terms. Since
the goal is to minimize the appearance distance between the reconstructed and
original input image, the AdaIN optimization tends to complement such dis-
crepancy with the bias terms. However, as shown in Figure 8 in the paper, such
optimization may lead the bias terms to extreme values and make the generation
model sensitive to the change (i.e., editing) of the input image. The proposed
learning-based regularization mitigates the problem by applying stronger regu-
larization on the bias terms, thus encourage the optimization process to modify
the scaling terms. Quantitative results shown in Section 4.3 in the paper vali-
date that the proposed learning-based regularization improves the quality of the
editing results.

Failure cases. We observe several failure cases of the proposed framework,
which are presented in Figure 11. First, if the style of the input image is sig-
nificantly different from the training data, the artwork generation module fails
to produce appealing results. Similar to the Scribbler [44] approach, we argue

22 H.-Y. Tseng et al.

Sketch Rough coloring Detail coloringInput image Sketch Flat coloringInput image Detail drawing

(a) Anime drawing (b) Face drawing

Fig. 12. Results of artistic editing. Given an input artwork image, we ask the artist
to edit the inferred sketch image. The synthesis model then produces the corresponding
edited artwork. The first row shows the input artwork and inferred images, and the red
outlines indicate the edited regions.

that such a problem may be alleviated by diversifying the style of the training
images. Second, during the creation process, the generation module synthesizes
results with artifacts if we use extreme latent representations that are out of the
prior distributions we sampled from during the training phase.

Qualitative results. We show more editing results conducted by the artists
in Figure 12.

