
Neural Surface Maps

Luca Morreale1 Noam Aigerman2 Vladimir Kim2 Niloy J. Mitra1,2

1University College London 2Adobe Research

Abstract

Maps are arguably one of the most fundamental con-
cepts used to define and operate on manifold surfaces in
differentiable geometry. Accordingly, in geometry process-
ing, maps are ubiquitous and are used in many core appli-
cations, such as paramterization, shape analysis, remesh-
ing, and deformation. Unfortunately, most computational
representations of surface maps do not lend themselves to
manipulation and optimization, usually entailing hard, dis-
crete problems. While algorithms exist to solve these prob-
lems, they are problem-specific, and a general framework
for surface maps is still in need.

In this paper, we advocate considering neural networks
as encoding surface maps. Since neural networks can be
composed on one another and are differentiable, we show it
is easy to use them to define surfaces via atlases, compose
them for surface-to-surface mappings, and optimize differ-
entiable objectives relating to them, such as any notion of
distortion, in a trivial manner. In our experiments, we repre-
sent surfaces by generating a neural map that approximates
a UV parameterization of a 3D model. Then, we compose
this map with other neural maps which we optimize with re-
spect to distortion measures. We show that our formulation
enables trivial optimization of rather elusive mapping tasks,
such as maps between a collection of surfaces.

1. Introduction
Maps are one of the most fundamental concepts in sur-

face geometry: in differential geometry, a surface, i.e., a
2-manifold, is usually (locally) defined as the image of a
(non-degenerate) map

f : R2 → Rn.

Not surprisingly, maps are also used to define correspon-
dences between different parts of surfaces in an atlas, to
evaluate similarity between surface pairs, or across surface
collections.

Accordingly, computing maps is central in most geome-
try processing tasks operating on surfaces. The ubiquitous

f

φ ψ

h

Figure 1. Two surfaces are respectively represented by two neu-
ral maps, φ and ψ, each mapping the unit square to 3D. A
distortion-minimizing surface-to-surface map f is visualized by
texture transfer. This surface map is achieved by a third neural map
h between the square to itself, which yields the surface map by an
implicit composition of the three neural maps. The distortion of
the composed map f is trivially optimized by defining it as a loss
in pytorch and optimizing with respect to h. Inset shows the initial
random map of the hippo to the cow is a poor initialization, cover-
ing only a very tiny region of the cow model. Optimization results
in a final map that covers the whole target surface, and reducing
isometric distortion, resulting in an average Symmetric Dirichlet
energy of 11 between these highly-nonisometric surfaces. As in-
put, 4 keypoint constraints were used, each on one leg.

concept of a UV map [54], mapping a surface into the plane,
provides a local coordinate system on surfaces, and hence
enables downstream tasks such as texturing, surface corre-
spondence, remeshing, quad-meshing [11] to name only a
few. Similarly, surface-to-surface maps [53] enable defining
correspondences between surfaces, which are at the heart
of shape analysis, transfer of properties, deformations, or
defining morph sequences. Indeed, almost all shape pro-
cessing tasks, including parameterization, surface corre-
spondence, remeshing, and deep learning on surfaces, heav-
ily rely on access to such surface maps.

1

However, many of the tasks related to maps and their
computation become extremely hard to handle when the tar-
get domain is a surface, i.e., a 3D mesh (n = 3). This is due
mostly to the fact that meshes are combinatorial representa-
tions, which in turn leads to a combinatorial representation
of the surface maps, and taints the optimization task with a
combinatorial nature as well. Although elegant solutions in
the form of discrete differential geometry [50, 52], meshing
invariant spectral analysis [42, 40], functional maps [45, 35]
have been proposed to work around the combinatorial rep-
resentation, the diverse choices and different data represen-
tations inhibit easy end-to-end optimization and adaptation
outside the specialized geometry processing community.

As an example, consider the problem of computing a
mesh-to-mesh mapping in which a continuous map from
one surface to the other is computed: one needs to account
for the image of each source vertex, which lands on a tri-
angle of the other mesh, and the image of a source edge
may span several triangles of the target; this leads to ex-
tensive bookkeeping, and any attempt to optimize, e.g., the
map’s inter-surface distortion leads to combinatorial opti-
mization of the choice of target triangle for each source
vertex as in [53, 31]. An alternative is to optimize proxy
maps into a common base domain [4] in the hope that the re-
sulting surface-to-surface map will be optimized by proxy.
Such an approach, however, does not yield surface maps
that are even a local minimizer of the energy they set to
minimize. This is particularly problematic when optimiz-
ing inter-surface maps across shape collections.

In this work, we consider neural networks as a para-
metric representation of both individual surfaces as well
as inter-surface maps. Specifically, we consider networks
with parameters θ that receive 2D points as input and out-
put points either in 2D or 3D, φθ : R2 → Rn. While this
definition is similar to, e.g., AtlasNet [25], we do not aim
to perform any learning task, and our network does nothing
more than map 2D points with the aim of performing one
task: approximate a single surface map φθ ∼ f : R2 → Rn,
so we can work with neural networks instead of with, e.g.,
mappings of triangular meshes.

Specifically, we use a map φθ ∼ f : R2 → R3 to di-
rectly characterize a given manifold shape (restricted to sur-
face patches homeomorphic to a disc), and use another map
ψβ ∼ g : R2 → R2 to update the surface map by restrict-
ing movements on the underlying 2-manifold. These neural
networks are, by construction, differentiable and compos-
able with one another, hence they lend us a simple model
for defining a differentiable algebra of surface maps, en-
abling us to compose maps with one another and optimize
objectives directly over their composition, rather than pro-
pose approximations via intermediate proxy domains.

We employ this concept in two ways that build on top
of one another: first, we revisit the differential-geometry

definition of a surface as a map from 2D to 3D, by over-
fitting a neural network to a given UV parameterization
computed via a standard parameterization algorithm, such
as Tutte’s embedding [59] or SLIM [51]. Two such maps,
φ,ψ, are shown in Figure 1. This gives us a parametric,
differentiable representation of the surface, from a canoni-
cal domain. Second, we compose the overfitted map with
other maps, either to optimize the distortion of the map,
or to compute distortion-minimizing maps between two or
more surfaces. Figure 1 shows an example of a distortion-
minimizing map f defined by composing h with φ,ψ.

We evaluate our method on a variety of triangular meshes
with varying complexity and show their efficacy in com-
putation of parameterizations, surface-to-surface distortion-
minimizing mapping, and also for mapping across collec-
tions of shapes. We also provide comparison to baseline
methods. In summary, our main contribution is introducing
neural surface map as a novel representation and utilizing
it towards addressing a variety of geometry processing ap-
plications. We particularly stress the modular nature of the
representation that enables harnessing the power of current
deep learning frameworks to solve many (classical) shape
analysis tasks in a uniform framework. Code available from
the project page http://geometry.cs.ucl.ac.
uk/projects/2021/neuralmaps/.

2. Related Works

2.1. Surface maps

Mappings of surfaces (mostly, meshes) is an active re-
search area. Usually, algorithms compute surface maps by
striving for a specific type of map, such as a harmonic one
[59, 48, 20, 23, 2]. In other cases the goal is to compute
a map that minimizes or bounds some notion of distortion
such as conformality - preservation of angles - [33, 30, 34],
or isometry - preservation of local distances - [57, 4, 51, 61].
Many surface mapping algorithms focus specifically on pa-
rameterizations, see [21, 54] for a more detailed review. On
the other hand, the task of computing mappings between
two surfaces is a long-studied and notoriously hard prob-
lem. Our work uses the popular concept of a common base
domain to which two surfaces are mapped, to define the sur-
face map via the overlay of the two maps in the base do-
main, which can either be a coarse mesh [32, 53, 31, 12] or
a planar domain [5, 61, 6, 3]. The resulting surface map can
be optimized via direct mesh-mesh intersection at the price
of yielding an optimization problem with a significant com-
binatorial part [53], due to the discreteness of the triangles.
Otherwise, the properties of the resulting map are ignored at
the hope that optimizing the maps into the common domain
will be sufficient [4].

Soft notions of maps such as Functional Maps [46] en-
able a parametric definition of fuzzy maps which can be

2

Figure 2. Parameterizations of the Bimba (a), rhino (b), Tosca hand (c) and FAUST (d) models represented via overfitted neural maps. The
models are colored based on deviation from source models. Distortions, if any, introduced by the mappings are not considered at this stage.

used in a deep learning context [35, 19], however they de-
fine fuzzy correspondences and not a continuous surface
map from one surface to another.

Cycle-consistency [44, 29] is a trait of maps between a
collection of surfaces, that ensures that the set of surfaces
are in global correspondence by ensuring that mapping a
point across random shapes until reaching the source shape
maps the point back to itself. We present the first method to
minimize the distortion of a cycle-consistent collection of
maps.

2.2. Neural surface representation

Atlas-based representations have been prevalent in geo-
metrical deep learning, mostly focusing on generative and
analysis tasks (e.g. segmentation), but not on raw represen-
tation of surface mapping.

Many works consider UV-mapping a 3D surface, render-
ing surface functions as a 2D image, and applying a neural
network to the images [55, 41, 10, 27]. Representing sur-
faces as regularly-sampled image grids suffers from high
distortions in the mapping, where large surface areas can
be mapped to sub-pixel regions. Some works apply neu-
ral networks directly on meshes [28, 37]. Generative tech-
niques, such as FoldingNet [63] and AtlasNet [25] propose
to alleviate this issue by using a neural network to approxi-
mate the atlas map from 2D to 3D as a continuous function
conditioned on a latent shape code. Many extensions have
been proposed including regularizing differential properties
of the mapping [9], optimizing for elementary shape of the
atlas [18], and forcing surfaces to align with the level set of
shape’s implicit function [49].

While our network architectures are inspired by these
prior techniques, as we also train a neural module that maps
2D points to mesh surfaces, they have very different under-
lying objectives. The aforementioned methods aim at train-
ing a network to reconstruct shapes, conditioned on a latent
code. Our work is distinct from them, in that it focuses on
considering each neural network as a unique, single surface

map, and using this representation to solve classic geometry
processing problems in surface mapping.

2.3. Neural shape representation

In addition to surface-based representations many alter-
natives have been used, such as voxels [38, 22, 13, 16], point
clouds [1, 58], meshes [15], and implicit functions [47].
From these techniques only the neural implicit represen-
tations do not suffer from discretization artifacts, since
they use neural modules to represent continuous functions,
mapping a point in 3D to an occupancy value. Simi-
larly to surface-based methods they aim to create a shared
latent space for all shapes, and various extensions have
been proposed, such as enforcing unit gradient to satisfy
the Eikonal equation [24], and sign-agnostic version of
this normalization [8, 7]. Littwin and Wolf in [36] intro-
duce a meta-learning approach closely related to HyperNet-
works [26] for implicit representations. A meta-model f
regress weights θg for the implicit function g, which de-
scribes the signed distance field for a specific shape. Al-
though the approaches introduced above are very success-
ful, they focus on generalizing over a plethora of models
rather than represent a single one. Hence, they all present
artefacts and thus can only be used as a rough proxy to the
actual geometry and cannot be regarded as neural maps in a
strict sense.

Davies et al. [17] overfit neural networks to implicit
fields of individual shapes, as a compact representation for
their geometry. Implicit fields have also been used for
multi-view reconstruction, where Sitzmann et al. [56] op-
timize a neural network that represents a single shape, with
the loss that favors this representation to be consistent with
observed views of the object. Following the trends from
[60, 43], the proposed network learns to project the input
into high-frequency features, hence learning in such do-
main. Although these techniques are similar to ours in that
they use overfit networks to represent geometry, they focus
on implicit surfaces and do not provide any mechanisms

3

for inter-surface mapping. In contrast, we encode explicit
surfaces via neural maps, and demonstrate that these maps
can be composited and used for inter-surface mapping prob-
lems.

Lastly, a work related to our data generation method,
[62] suggest overfitting an atlas to a point cloud as a method
for surface reconstruction. They however focus on the task
of inferring the surface topology via overfitting, while we
simply estimate a given map which already inholds the
topological data with a neural network, and instead focus
on the differentiability and composability properties of it,
for geometry representation and for optimizing other maps
composed with the parameterization.

3. Method

We now define neural surface maps and how to compute
and optimize them.

3.1. Neural Maps

We use the term neural surface map to refer to any neural
network considered as a function φ : R2 → Rn, where the
output dimension is 2 or 3. Indeed, this ensures the map’s
image is always a 3D surface, and, assuming the map is
non-singular, also a 2-manifold.

Neural surface maps can be seen as an alternative method
to represent a surface map that holds two main advantages:
differentiability and ability to be composed with other neu-
ral maps. In short, this enables us to easily compose neu-
ral maps φ ◦ ψ, and define an objective over the compo-
sition o (φ ◦ ψ) which can be differentiated and optimized
via standard (deep learning) libraries and optimizers with-
out the need to write tailor-made code to handle new objec-
tive, work with combinatorial mesh representations, or deal
with the notoriously-hard map composition problem.

Furthermore, we can choose any size, architecture and
activation functions for our networks, and, thanks to the
universal approximation theorem [14], know there always
exists a network capable of approximating a given surface
function.

We obtain and manipulate neural surface maps via two
processes – overfitting and optimization, which we detail
next.

3.2. Overfitting Neural Surface Maps

Let Ω ⊂ R2 be the unit circle. All our neural maps
will make use of Ω as a canonical domain. Given any map
f : Ω → Rn, we can approximate it via a neural surface
map φ by using black-box methods to train the neural net-
work and overfit it to replicate f . Namely, we optimize the
least-square deviation of φ from f and the surface normal

Figure 3. Free-boundary isometric (b) and conformal (c)
parametrization of Stanford Bunny (a) model. Independently of
the size of the model, our neural maps can parametrize the input
mesh, represented as neural surface map, with very few param-
eters. Adding a constraint over the boundary shape is as simple
as regularize the mesh boundary. Initial median Dirichlet energy
Diso = 7.24 is reduced to Diso = 6.03; initial median conformal
energy Dconf = 1.29 is reduced to Dconf = 1.04.

deviation, by minimizing the integrated error

Loverfit =

�

p∈Ω

�f (p)− φ (p)�2 +

λn

�

p∈Ω

�nφp − nfp�2 ,
(1)

where nφp is the estimated normal at p, and nfp is the
ground truth normal. In case f is indeed a continuous map,
such as a piecewise-linear map mapping triangles to trian-
gles, we can optimize this objective by approximating the
integral in Monte-Carlo fashion by summing the integrand
over a random set of sample points. Namely, to use neu-
ral surface maps to represent surfaces, we first compute a
ground truth map f by overfiting to a UV parameterization
of the mesh into 2D, computed via any bijective parameter-
ization algorithm of our choosing – in this paper, we show
results with SLIM [51], by which we achieve an injective
map of the mesh into Ω ⊂ R2. We consider the inverse of
this map, which maps Ω back into the 3D mesh S, as our
input f : Ω → S , and overfit φ to it by minimizing Equa-
tion 1. Thus, we obtain a neural representation of the sur-
face. More specifically, this is a mapping into the surface,
endowed with specific UV coordinates, with point φ (x, y)

4

Figure 4. Evolution of surface to surface optimization between Igea and David. Final median Dirichlet energy Diso = 18.25.

having UV coordinates x, y. Fig. 2 shows several exam-
ples of such overfitted neural maps and their faithfulness to
the original geometry. Our method can faithfully represent
smooth shapes as well as those having sharp edges. Note
that we assume that the objects are or have been cut open to
be homeomorphic to a disc.

Before progressing to discussing how can we compose
maps and optimize them, we define the distortion measures
we wish to optimize.

3.3. Surface Map Distortion

We wish to optimize several energies related to neural
surface maps. Similarly to [9], for a neural map φ : Ω →
Rn, we denote by Jpφ ∈ Rn×2 the matrix of partial deriva-
tives at point p ∈ Ω, called the Jacobian of φ. The Jacobian
essentially quantifies the local deformation at a point. Let-
ting Mp = JT

p Jp, we subsequently can quantify the sym-
metric Dirichlet energy [51],

Diso =

�

Ω

trace (Mp) + trace
�
(Mp + εI)

−1
�

(2)

where I is the identity matrix, added with a small constant
�, set to 0.01, to regularize the inverse.

Likewise, we can define a measure of conformal distor-
tion via

Dconf =

�

Ω

�����
trace (Mp)

�Mp�2
Mp − I

�����

2

. (3)

We evaluate the integrals by random sampling of the func-
tion in the domain.

Next, we show how to define surface-to-surface maps via
various compositions of the maps and optimize their distor-
tion, in the pairwise and in the shape collection setting.

3.4. Geometry-preserving optimization via compo-
sition

Our basic representation of 3D geometries is, as dis-
cussed above, via an overfitted neural surface map φ : Ω →
R3 that approximates a given map f . We now treat φ as our

de-facto representation of the geometry. Our goal is to opti-
mize various properties relating to the surface map, without
affecting the geometry. However, optimization of the map
is not trivial since it will immediately change our 3D geom-
etry. We propose a solution to completely avoid this issue,
next.

Assume we are given a neural surface map representing
some surface φ : Ω → S; we wish to optimize the distortion
D (φ) of the map. It is immediate to optimize φ itself with
respect to our differentiable notion of distortion, however
that will cause the map to change, and thus its image, the
3D surface, will change and could, for instance, flatten to
the plane. To overcome this, we suggest introducing another
neural surface map h : Ω → Ω. We can now define a new
map, φh = φ ◦ h. As long as we solely optimize h and
ensure it is onto Ω, we are guaranteed that the image of
φh is still the original image of φ, i.e., respects the original
surface.

We can now optimize the distortion of φh, by optimiz-
ing h and keeping φ fixed, thereby finding a map from Ω
to S which is (at least a local) minimizer of the distortion
measure of our choice:

min
h

D
�
φh

�
.

The distortion is a differentiable property of the map and
hence is readily available, e.g., via automatic differentia-
tion. In fact, composition, and minimization of distortion
can be achieved in a mere few lines of code in Pytorch.

We can now consider composing more than two of these
maps, to enable maps into more intricate domains.

3.5. Compositing Neural Maps

Map composition via common domains. One of the
many advantages of our representation’s composability is
to enable representing maps between a pair of surfaces, us-
ing the classic method of a common domain, as depicted
in Figure 1: we posses two overfitted neural maps, φ,ψ :
Ω → R3, respectively representing two surfaces S, T , and
we wish to define and optimize an inter-surface mapping
between these two 3D surfaces, f : T → S.

5

To address the above
problem, we define as be-
fore a map h : Ω → Ω and
the composition ψh = ψ ◦
h. At first glance, it would
seem that in this case, to
map a point from T to S,
we will need to consider the map ψh ◦ φ−1, which includes
an inverse of the entire map, that is of course not readily
tractable.

However, we can define the map f via the following sim-
ple definition: for any point p ∈ Ω, f is implicitly defined as
the map satisfying f ◦ φ � ψh, or in simple words: for any
point p ∈ Ω, f matches the image of p under φh with the
image of p, mapped through h and then through ψ (refer to
Figure 1 for an illustration). This definition is known as the
common domain definition of a map and has been used in
many works [32, 53, 31, 12, 5, 61, 6, 3]. It is easy to verify
that this definition is identical to the one using the inverse,
as long as the inverse exists, and can still provide a bijective
map between the surfaces even in cases where it does not
exist (cf., [61, 4]).

Computing distortion in the common domain. Even
though f itself is not tangible for optimization, as it is im-
plicitly defined by h, luckily the only differential quantity
we need from f to compute the distortion, is the Jacobian
of f , denoted Jqf at point q = φ (p). Using basic differen-
tial calculus arithmetic, Jqf can be derived to be exactly

Jqf = Jpψ
h (Jpφ)

−1
, (4)

which is composed of the Jacobian of ψ and the inverted
Jacobian of φ at point p, both readily available. Hence to
optimize the distortion of f , we can take (4), and plug it
as the Jacobian used to define M in one of the distortion
measures (2),(3), which we denote as D (f).

Optimizing h for bijectivity. In order for h to indeed
be a well-define surface map, it needs to map exactly bi-
jectively (i.e., 1-to-1 and onto) to the source domain of ψ,
which is Ω. To ensure that, we only need to ensure that h
has a positive-determinant Jacobian everywhere, and maps
to the target boundary injectively. We optimize h to map the
boundary onto itself, via the energy

B (h) =

�

p∈∂Ω

σ (h (p)) , (5)

where σ is the squared signed distance function to the
boundary of Ω. Note that the boundary map is free to slide
along the boundary of Ω during optimization, enabling the
boundary map to change. This is true for all points on the
boundary, except those mapped to the four corners which

are fixed to place and are essentially keypoint constraints
between the two models.

Further, we also optimize h to encourage its Jacobian’s
determinant to be positive, via

G = λinv

�
max (−sign (|Jh|) exp (− |Jh|) , 0) . (6)

Keypoint constraints. Lastly, in many cases, a sparse set
of corresponding key points on the two surfaces are given,
and it is required that the surface map f maps those points
to one another. Given keypoints on S, we can, in a pre-
process before optimization, find their preimages in Ω, to
get a set of points P s.t. φ (Pi) maps to the ith keypoint.
We likewise can find the preimages of the keypoints from
T and their preimages Q under ψ. If these key points are
required to be mapped to one another between the two sur-
faces by f , we can achieve that by requiring h (Pi) = Qi,
which guarantees the induced f maps the points correctly.
We optimize for that equality by reducing its least-squares
error:

C (h) = λC

�

i

�h (Pi)−Qi�22 . (7)

To facilitate the optimization, we apply a rotation, R, to the
input of h. R is pre-computed from the landmarks.

Optimization for surface-to-surface maps. To compute
the surface map, we optimize the distortion of f with re-
spect to h, while ensuring h respects the mapping con-
straints

min
h

D (f) + C (h) +B (h) +G (h) . (8)

This yields a map h that maps onto the domain square,
and represents a distortion-minimizing surface map f that
maps the given sets of corresponding keypoints correctly,
as shown for instance in Figure 1.

Cycle-consistent surface mapping. We also extend our
method to discover inter-surface mapping among a collec-
tion of k surfaces S1,S2, ...,Sk represented respectively via
neural maps φ1,φ2, ...,φk, we can define a cycle consis-
tent [44, 29] set of surface maps by considering k addi-
tional neural maps, hi : Ω → Ω, define the composition
φh
i = φi ◦ hi, and then define the surface-to-surface maps

Fi→j : Si → Sj via Fi→j ◦ φh
i � φh

j . This naturally allows
extracting a set of mutually consistent maps while addition-
ally optimizing for (all pairs) surface-to-surface maps, see
Figure 6. Note that achieving similar qualities via classic
methods is significantly challenging, and to the best of our
knowledge, while previous methods could compute cycle
consistency, none could optimize for true surface-surface
distortion minimization over the entire collection.

6

Figure 5. Surface maps between a neural surface mapping repre-
senting the Bimba model, into several surfaces represented directly
via analytic functions. Colors are based on the normals of Bimba
model. Please refer tot he supplemental for further visualizations.

4. Experiments

We use our neural-mapping representation in the context
of various mapping problems, such as surface parameteri-
zation, inter-surface mapping, and mapping a collection of
shapes. See the supplementary material for more examples.

Neural Mapping. For all surfaces shown in this paper, we
render the reconstructions obtained with our neural map-
ping representation. Note how our overfitting procedure is
able to capture even very detailed features of the original
shape with a high fidelity. Figure 2 illustrates the differ-
ence between our reconstruction and the input mesh (high-
lighted in red). There are minor discrepancies between
the models in regions like hairs of the bust and paws of
the rhino. We observe that our reconstructions tend to be
slightly smoother than the original shapes due to the use of
softplus.

Surface Parameterization. The main advantage of neural
mapping is not in representing the surfaces, but in represent-
ing the mapping. We now take the map φ : Ω → R3 from
Figure 2, and introduce another map h : Ω → R2, where we
don’t constrain its output domain. Similarly to the discus-
sion in Subsection 3.5, we can define the map f from the 3D
model implicitly via as f (φ (p)) = h (p) for all p ∈ Ω. We

then minimize the isometry distortion of f (Eq. 2), using
the method to extract the Jacobian discussed in Subsection
3.5. Note that this objective is different from the one that
was used to produce φ, hence we undo the original param-
eterization’s distortion by compositing the neural map with
a newly optimized map in Figure 3. See the supplementary
for more results.

In contrast to UV parameterizations of meshes, the
complexity of our optimization for this composition is
completely independent of the resolution of the geometry.

Surface-to-surface Maps. We can obtain a surface-to-
surface map by compositing neural maps with a map
between two atlases, as discussed in Subsection 3.5.
In Figure 4, we show the evolution of the map during
optimization. Note how despite significant geometric
differences between surfaces, the result is a bijective,
low-distortion mapping. Please see more such maps in the
supplementary.

Composition with Analytical Maps. Our method can
optimize an inter-surface map f from φ,ψ just as well when
ψ is not a neural map, but rather an analytical mapping
defining some surface. Indeed, only h itself is required to
be neural in our formulation of surface-to-surface maps.
In Figure 5, we show mappings of Bimba into three such
analytical surfaces. In this case, we optimize the conformal
distortion (3) of f . Please refer to the supplementary for
further visualizations.

Cycle-consistent Mapping for Collections of Surfaces.
Finally, we show that thanks to the compose-ability of neu-
ral surface maps, our method can be efficiently applied
to cycle-consistent mapping problem for a collection of
shapes. Furthermore, since we use a common domain, the
maps are guaranteed to be cycle-consistent, as in [44, 29].
We minimize the isometric distortion of the surface-to-
surface maps between all pairs of surfaces in a collection
of three models, following the method discussed in Subsec-
tion 3.5. Figure 6 illustrates that we were able to obtain
cycle-consistent low distortion maps between all shapes in
the collection. We used one keypoint on the nose and shoul-
ders of each model to ensure correct alignment. See the
supplementary for more collection-maps.
Baseline comparison. To validate neural surface maps,
we offer visual comparisons with the classic inter-surface
method [53] and Mandad et al. [40]. Schreiner et al. fails to
produce smooth maps while matching landmarks: respec-
tively for the bust and animal shown in Fig. 7, [53] presents
8.58% and 8.54% triangles flips with a median Diso = 4.90
and Diso = 7.00. Similarly, Mandad et al. achieve a me-
dian Diso = 7146, with 49.91% of flips, and Diso = 10669
with 49.86% of flips, see Fig. 8. Note, [40] introduces dis-

7

Figure 6. Collection mapping. We map from one model to the
other through a neural map. We then minimize the distortion be-
tween each different model. Cycle consistency is ensured by con-
struction.

(a) source (b) [53] (c) ours
Figure 7. Comparison with inter-surface mapping [53].

continuities in the map, resulting in large distortion and mis-
alignment. On the other hand, our method offer a continu-
ous, properly aligned, map. Numerically, our map for busts
exhibit Diso = 7.00 with no triangle flips, Diso = 8.56 and
0.03% flips for animal.

4.1. Implementation Details

In all our experiments, we use a neural network consist-
ing of ten-layer residual fully-connected network, with 256
hidden units per layer, with a Softplus activation function.
We use λn = 0.01, λB = 106, λinv = 102, λC = 103

in all experiments. We sample the initial mesh uniformly
with 500k points. Since our goal is to fully-optimize the
networks, they are trained until the gradient’s norm drops
below a threshold of 0.1. In all cases, we optimize the
network with and RMSProp, and initialize the optimization

(a) source (b) [40] (c) ours
Figure 8. Comparison with state of art shape correspondence [40].

procedure with a learning rate of 10−4 and momentum 0.9,
the step size is modulated with [39]. Similarly, maps used
for surface mapping are four-layer fully-connected network
of 128 hidden units, with Softplus. In general, overfitted
networks converge in 3-7h based on the complexity of the
model, while, surface-map and collection-map optimization
take around 3h to reach a stable configuration.

5. Conclusions and Future Works
We introduced neural surface maps as a core representa-

tion for surfaces that is easily differentiable and compose-
able. Using the common domain approach, we can easily
use these traits to optimize for different properties. Over-
fit to individual meshes allows encoding shapes as network
weights, and subsequently optimize maps while keeping
the surface approximation quality fixed. We demonstrated
the universality of neural maps addressing a wide range
of challenging classical tasks including parameterization,
surface-to-surface distortion minimization, and extracting
maps across a collection of shapes.

Our work has several limitations. For one, we only dis-
cussed representing disk-topology surfaces. Other topolo-
gies can be approached with cuts. Second, we relied on the
assumption of h being bijective and mapping the keypoints
correctly; in theory, we cannot guarantee that this require-
ment is upheld, however, in our experiments, it is rare for
this condition to be violated.

We see many immediate uses to the differentiability and
composability of our representation, such as applying dif-
ferential geometry operators to the models as well as solv-
ing PDEs on them. Resorting to neural network general-
ization capabilities can bring large high-resolution dataset
within our reach, exposing neural surface maps to applica-
tions like segmentation and classification.

Acknowledgements
LM thanks Manish Mandad for helping comparing with

[40]. LM was partially supported by the UCL Centre for AI
and the UCL Adobe PhD program.

8

References
[1] Panos Achlioptas, Olga Diamanti, Ioannis Mitliagkas, and

Leonidas J Guibas. Learning representations and generative
models for 3d point clouds. ICML, 2018. 3

[2] Noam Aigerman and Yaron Lipman. Orbifold Tutte embed-
dings. ACM Transactions on Graphics, 34(6):1–12, Nov.
2015. 2

[3] Noam Aigerman and Yaron Lipman. Hyperbolic orbifold
tutte embeddings. ACM Transactions on Graphics, 35(6):1–
14, Nov. 2016. 2, 6

[4] Noam Aigerman, Roi Poranne, and Yaron Lipman. Lifted
bijections for low distortion surface mappings. ACM Trans-
actions on Graphics, 33(4):1–12, July 2014. 2, 6

[5] Noam Aigerman, Roi Poranne, and Yaron Lipman. Lifted
bijections for low distortion surface mappings. ACM Trans.
Graph., 33(4):69:1–69:12, July 2014. 2, 6

[6] Noam Aigerman, Roi Poranne, and Yaron Lipman. Seamless
surface mappings. ACM Transactions on Graphics (TOG),
34(4):72, 2015. 2, 6

[7] Matan Atzmon and Yaron Lipman. SAL: Sign agnos-
tic learning of shapes from raw data. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 2565–2574, 2020. 3

[8] Matan Atzmon and Yaron Lipman. SAL++: Sign agnostic
learning with derivatives. arXiv preprint arXiv:2006.05400,
2020. 3

[9] Jan Bednarik, Shaifali Parashar, Erhan Gundogdu, Mathieu
Salzmann, and Pascal Fua. Shape reconstruction by learn-
ing differentiable surface representations. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 4716–4725, 2020. 3, 5

[10] Heli Ben-Hamu, Haggai Maron, Itay Kezurer, Gal Avineri,
and Yaron Lipman. Multi-chart generative surface modeling.
SIGGRAPH Asia, 2018. 3

[11] David Bommes, Bruno Lévy, Nico Pietroni, Enrico Puppo,
Claudio Silva, Marco Tarini, and Denis Zorin. Quad-mesh
generation and processing: A survey. Comput. Graph. Fo-
rum, 32(6):51–76, 2013. 1

[12] Derek Bradley, Tiberiu Popa, Alla Sheffer, Wolfgang Hei-
drich, and Tamy Boubekeur. Markerless garment capture.
ACM Trans. Graph., 27(3):99:1–99:9, Aug. 2008. 2, 6

[13] André Brock, Theodore Lim, James M. Ritchie, and Nick
Weston. Generative and discriminative voxel modeling
with convolutional neural networks. CoRR, abs/1608.04236,
2016. 3

[14] George Cybenko. Approximation by superpositions of a sig-
moidal function. Mathematics of control, signals and sys-
tems, 2(4):303–314, 1989. 4

[15] Angela Dai and Matthias Nießner. Scan2mesh: From un-
structured range scans to 3d meshes. In Proc. Computer Vi-
sion and Pattern Recognition (CVPR), IEEE, 2019. 3

[16] Angela Dai, Charles Ruizhongtai Qi, and Matthias Nießner.
Shape completion using 3d-encoder-predictor cnns and
shape synthesis. Proc. Computer Vision and Pattern Recog-
nition (CVPR), IEEE, 2017. 3

[17] Thomas Davies, Derek Nowrouzezahrai, and Alec Jacobson.
Overfit neural networks as a compact shape representation,
2020. 3

[18] Theo Deprelle, Thibault Groueix, Matthew Fisher,
Vladimir G Kim, Bryan C Russell, and Mathieu Aubry.
Learning elementary structures for 3d shape generation and
matching. arXiv preprint arXiv:1908.04725, 2019. 3

[19] Nicolas Donati, Abhishek Sharma, and Maks Ovsjanikov.
Deep geometric functional maps: Robust feature learning
for shape correspondence. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 8592–8601, 2020. 3

[20] Michael Floater. One-to-one piecewise linear mappings over
triangulations. Mathematics of Computation, 72(242):685–
696, 2003. 2

[21] Michael S Floater and Kai Hormann. Surface parameteriza-
tion: a tutorial and survey. Advances in multiresolution for
geometric modelling, pages 157–186, 2005. 2

[22] Rohit Girdhar, David F. Fouhey, Mikel Rodriguez, and Ab-
hinav Gupta. Learning a predictable and generative vector
representation for objects. CoRR, abs/1603.08637, 2016. 3

[23] Steven Gortler, Craig Gotsman, and Dylan Thurston. Dis-
crete one-forms on meshes and applications to 3d mesh pa-
rameterization. Computer Aided Geometric Design, 2006.
2

[24] Amos Gropp, Lior Yariv, Niv Haim, Matan Atzmon, and
Yaron Lipman. Implicit geometric regularization for learning
shapes. arXiv preprint arXiv:2002.10099, 2020. 3

[25] Thibault Groueix, Matthew Fisher, Vladimir G Kim,
Bryan C Russell, and Mathieu Aubry. A papier-mâché ap-
proach to learning 3d surface generation. In Proceedings of
the IEEE conference on computer vision and pattern recog-
nition, pages 216–224, 2018. 2, 3

[26] David Ha, Andrew Dai, and Quoc V Le. HyperNetworks.
arXiv preprint arXiv:1609.09106, 2016. 3

[27] Niv Haim, Nimrod Segol, Heli Ben-Hamu, Haggai Maron,
and Yaron Lipman. Surface networks via general covers. In
Proceedings of the IEEE International Conference on Com-
puter Vision, pages 632–641, 2019. 3

[28] Rana Hanocka, Amir Hertz, Noa Fish, Raja Giryes, Shachar
Fleishman, and Daniel Cohen-Or. MeshCNN: A network
with an edge. ACM Transactions on Graphics (TOG),
38(4):1–12, 2019. 3

[29] Qi-Xing Huang and Leonidas Guibas. Consistent shape
maps via semidefinite programming. In Computer Graphics
Forum, volume 32, pages 177–186. Wiley Online Library,
2013. 3, 6, 7

[30] Michael Kazhdan, Jake Solomon, and Mirela Ben-Chen.
Can mean-curvature flow be modified to be non-singular? In
Computer Graphics Forum, volume 31, pages 1745–1754.
Wiley Online Library, 2012. 2

[31] Vladislav Kraevoy and Alla Sheffer. Cross-parameterization
and compatible remeshing of 3d models. ACM Trans.
Graph., 23(3):861–869, Aug. 2004. 2, 6

[32] Aaron W. F. Lee, David Dobkin, Wim Sweldens, and Peter
Schröder. Multiresolution mesh morphing. In Proceedings of
the 26th Annual Conference on Computer Graphics and In-
teractive Techniques, SIGGRAPH ’99, pages 343–350, New

9

York, NY, USA, 1999. ACM Press/Addison-Wesley Publish-
ing Co. 2, 6

[33] Bruno Lévy, Sylvain Petitjean, Nicolas Ray, and Jérome
Maillot. Least squares conformal maps for automatic tex-
ture atlas generation. ACM transactions on graphics (TOG),
21(3):362–371, 2002. 2

[34] Yaron Lipman. Bounded distortion mapping spaces for tri-
angular meshes. ACM Trans. Graph., 31(4):108:1–108:13,
July 2012. 2

[35] Or Litany, Tal Remez, Emanuele Rodola, Alex Bronstein,
and Michael Bronstein. Deep functional maps: Structured
prediction for dense shape correspondence. In Proceedings
of the IEEE international conference on computer vision,
pages 5659–5667, 2017. 2, 3

[36] Gidi Littwin and Lior Wolf. Deep meta functionals for shape
representation. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pages 1824–1833,
2019. 3

[37] Hsueh-Ti Derek Liu, Vladimir G Kim, Siddhartha Chaud-
huri, Noam Aigerman, and Alec Jacobson. Neural subdivi-
sion. arXiv preprint arXiv:2005.01819, 2020. 3

[38] Jerry Liu, Fisher Yu, and Thomas Funkhouser. Interactive
3d modeling with a generative adversarial network. Interna-
tional Conference on 3D Vision (3DV), 2017. 3

[39] Ilya Loshchilov and Frank Hutter. Sgdr: Stochas-
tic gradient descent with warm restarts. arXiv preprint
arXiv:1608.03983, 2016. 8

[40] Manish Mandad, David Cohen-Steiner, Leif Kobbelt, Pierre
Alliez, and Mathieu Desbrun. Variance-minimizing trans-
port plans for inter-surface mapping. ACM Transactions on
Graphics (TOG), 36(4):1–14, 2017. 2, 7, 8

[41] Haggai Maron, Meirav Galun, Noam Aigerman, Miri Trope,
Nadav Dym, Ersin Yumer, Vladimir G. Kim, and Yaron Lip-
man. Convolutional neural networks on surfaces via seam-
less toric covers. SIGGRAPH, 2017. 3

[42] Simone Melzi, Jing Ren, Emanuele Rodolà, Abhishek
Sharma, Peter Wonka, and Maks Ovsjanikov. ZoomOut:
Spectral upsampling for efficient shape correspondence. 2

[43] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,
Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. NeRF:
Representing scenes as neural radiance fields for view syn-
thesis. In European Conference on Computer Vision, pages
405–421. Springer, 2020. 3

[44] Andy Nguyen, Mirela Ben-Chen, Katarzyna Welnicka,
Yinyu Ye, and Leonidas Guibas. An optimization approach
to improving collections of shape maps. Computer Graphics
Forum, 30(5):1481–1491, 2011. 3, 6, 7

[45] Maks Ovsjanikov, Mirela Ben-Chen, Justin Solomon, Adrian
Butscher, and Leonidas Guibas. Functional maps: A flexible
representation of maps between shapes. 31(4):30:1–30:11. 2

[46] Maks Ovsjanikov, Mirela Ben-Chen, Justin Solomon, Adrian
Butscher, and Leonidas Guibas. Functional maps: a flexible
representation of maps between shapes. ACM Transactions
on Graphics (TOG), 31(4):1–11, 2012. 2

[47] Jeong Joon Park, Peter Florence, Julian Straub, Richard
Newcombe, and Steven Lovegrove. DeepSDF: Learning
continuous signed distance functions for shape representa-
tion. In Proc. CVPR, pages 165–174, 2019. 3

[48] Ulrich Pinkall and Konrad Polthier. Computing discrete min-
imal surfaces and their conjugates. Experimental Mathemat-
ics, 2:15–36, 1993. 2

[49] Omid Poursaeed, Matthew Fisher, Noam Aigerman, and
Vladimir G. Kim. Coupling explicit and implicit surface rep-
resentations for generative 3d modeling. ECCV, 2020. 3

[50] Emil Praun, Wim Sweldens, and Peter Schröder. Consis-
tent mesh parameterizations. In Proceedings of the 28th an-
nual conference on Computer graphics and interactive tech-
niques, pages 179–184. ACM, 2001. 2

[51] Michael Rabinovich, Roi Poranne, Daniele Panozzo, and
Olga Sorkine-Hornung. Scalable locally injective mappings.
ACM Transactions on Graphics (TOG), 36(4):1, 2017. 2, 4,
5

[52] Patrick Schmidt, Marcel Campen, Janis Born, and Leif
Kobbelt. Inter-surface maps via constant-curvature metrics.
ACM Transactions on Graphics (TOG), 39(4):119–1, 2020.
2

[53] John Schreiner, Arul Asirvatham, Emil Praun, and Hugues
Hoppe. Inter-surface mapping. ACM Trans. Graph.,
23(3):870–877, Aug. 2004. 1, 2, 6, 7, 8

[54] Alla Sheffer, Emil Praun, and Kenneth Rose. Mesh param-
eterization methods and their applications. Foundations and
Trends® in Computer Graphics and Vision, 2(2):105–171,
2006. 1, 2

[55] Ayan Sinha, Jing Bai, and Karthik Ramani. Deep learning 3d
shape surfaces using geometry images. In European Confer-
ence on Computer Vision, pages 223–240. Springer, 2016.
3

[56] Vincent Sitzmann, Julien NP Martel, Alexander W Bergman,
David B Lindell, and Gordon Wetzstein. Implicit neural
representations with periodic activation functions. arXiv
preprint arXiv:2006.09661, 2020. 3

[57] Olga Sorkine and Marc Alexa. As-rigid-as-possible surface
modeling. In Symposium on Geometry processing, volume 4,
pages 109–116, 2007. 2

[58] Hao Su, Haoqiang Fan, and Leonidas Guibas. A point set
generation network for 3d object reconstruction from a single
image. CVPR, 2017. 3

[59] William Thomas Tutte. How to draw a graph. Proceedings
of the London Mathematical Society, 3(1):743–767, 1963. 2

[60] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Il-
lia Polosukhin. Attention is all you need. arXiv preprint
arXiv:1706.03762, 2017. 3

[61] Ofir Weber and Denis Zorin. Locally injective parametriza-
tion with arbitrary fixed boundaries. ACM Transactions on
Graphics (TOG), 33(4):75, 2014. 2, 6

[62] Francis Williams, Teseo Schneider, Claudio Silva, Denis
Zorin, Joan Bruna, and Daniele Panozzo. Deep geomet-
ric prior for surface reconstruction. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 10130–10139, 2019. 4

[63] Yaoqing Yang, Chen Feng, Yiru Shen, and Dong Tian. Fold-
ingNet: Point cloud auto-encoder via deep grid deformation.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 206–215, 2018. 3

10

