April 7, 2003
SO(3): Definitions, Conventions, and Code

Definitions, normalizations ete etc are all taken from [1].

1. Euler angle decomposition: Let
cosA —sinAd 0 cosB 0 sinB
u(A)=[sinA cosA 0 a(B) = 0 1 0 (1)
0 0 1 —sinB 0 cosB

Then g € SO(3) can be written as g = u(a) a(8) u(y) where for 0 < o,y < 27 and 0 < 8 < 7.

2. Wigner d-function:

d;@M’(B) = CJVIM’ S'(S—FIH_V)'(SIH ﬂ>H<COS ﬁ>u

(s + w)(s+v)! 2 2
x PY)(cos) (2)
where n
p=|M—M| v=|M+M| s:J—“2 v
and

1 it M >M

gJV[M’ = { (_1)1LI'—1\/I it M < M.

and P (cos 3) is a Jacobi polynomial. Note that unless J > max(|M|, |[M’|), we have d,,, (3) = 0.

e orthogonality condition:

| @i (afap (9) sing a8 = 7=, 3
e three-term recurrence:
\/[(J +1)" = M| (T + 1) = M2 [
0= (J+1)(2J+1) dafrr (B) + (J(J T1) cosﬂ) dygar (B)
V2 -z - a?y
J(2T +1) diyrar (B) (4)

e C code uses normalized versions of Wigner d-functions:

Ci}]wM/(ﬁ) =1/ 2J2+ ! dJJMM/ (ﬂ) (5)

¢ normalized version of three-term recurrence; used in the C code:

SI+1]2 +3 (J+1)(2J+1)) MM’ -
dﬁM'(ﬂ) = 27 11 \/[(J+ 1)2 _Mz} {(J—’_ 1)2 _M,z} (cosﬂ 7J(J+ 1)> e ()

e IR sl - b T o), (6)
\/[(J +1)" = M) [(T+1)* = M7

e initialization definitions - C code uses normalized versions

A (B) = \/(J - M(?'{()]' — ()J+M (_ . > J—M
d? () = \/(J+M(§!{L)]!_M)! (cos)J M<Sln§>J+M
as() = \/ T)HM o 2)

a0 = L) L A ™)
T (o5) (-m5)

3. Wigner D-functions:the collection of functions form a complete set of orthogonal functions with respect
to integration over SO(3):

D]{4]W’ (Oé, ﬁa ’Y) = e_iMOé d]{/[M’(ﬁ) e_iM,’Ya J7 M7 M’ integers (8)

e orthogonality:

27 T 2 2
. - 87

/ da/ dﬁsmﬁ/ dy Dy, (a, B,7) Dt (0, 3,7) = 37 51000 Oaunty Oaranery- (9)
0 0 0 1+

The C code uses a normalized version of the D-functions:

12J +1
DMM’(a ﬁV) by T+D1{4M/(a75,’7) (10)

2 T 27
/ da / dfsin 3 / dy DE% (0 Bo) DI v (00 8.7) = 6500y Sataaty Srrarrs. (1)
0 0 0

e decomposition: f € L?(SO(3)):

J J
’Y)ZZ Z Z ff\JJM'D&MI(ayﬂﬁ) (12)
J>0 M=—J M'=—J
where
fir = {f. Dirarr)
2J 1 27 T) 27 .
= 87:; /0 da/o dﬂsmﬁ/o dvy f(mﬁ,v)Dj\ZM,(a,ﬁ,'y). (13)

4. Band-limit definition: (Band-limited functions on SO(3)). A continuous function f on SO(3) is band-
limited with band-limit (or bandwidth) B if f.,,,, = 0 for all [> B.

5. quadrature weights:

wB(j)Zéﬁn((2 + 1) >BZ sm<2]+1)(2k+1)4B> (14)
k=0

6.

10.

Discrete Wigner-d transform: For given integers (M, M), define the Discrete Wigner Transform
(DWT) of a data vector s to be the collection of sums of the form

2B-1
S(LM M) = 3 wp(k) dy e (B)ls), max(IM],|M) <1< B (15)
k=0
- 2k+1
where dlM’M, is a Wigner d-function of degree [and orders M, M’, and 0, = %

Discrete SO(3) transform at bandwidth B: the discrete version of (13), but using normalized Wigner-
D’s:

2B—-12B-12B-1

Z Z Z wB(k)f(ajNﬁh’sz)Eé\j[AI’(ajnﬁk/yjz) (16)

J1=0 j2=0 k=0

1
l —
fvamr = (23)2

2wy 2k +1 2mj
where the function is sampled on the 2B x 2B x 2B grid «a;, = 27%1, By = m(4;—), Yis = 27%2

C code user routines, in no particular order:

(a) test_FST_S03: does an inverse-forward SO(3) transforms, to test code stability

(b) test_FST_S03_For: does a normalized forward SO(3) transform, that is, computes (16) for all legal
I, M, M’; needs input data from the user

(c) test_FST_S03_Inv: does a normalized inverse SO(3) transform; needs input data from the user

(d) test_Wigner_ Analysis: does a normalized forward Discrete Wigner-d transform, i.e. eqn. (15);
needs user input

(e) test_Wigner Synthesis: does a normalized inverse Discrete Wigner-d transform; needs user input

(f) test_genWig: routine to generate all the normalized Wigner-d functions, eqn. (5), at a particular
bandwidth B, and orders M, M’.

(g) test_wigSpec: for a particular bandwidth B, and orders M, M’, generates the appropriate normal-
ized Wigner-d function (to start the recurrence), i.e. eqn. (7).

Data files provided with source code: Included are samples of functions, at various orders, degrees
and bandwidths. The files are in real-imaginary pairs, e.g. D101real bw4.dat, D101imag bw4.dat contain
the real and imaginary parts, resp., of the normalized Wigner-D function Dél (ie. J=1,M =0,M'=1)
sampled on appropriate bandwidth = 4 grid (which has dimension 8 x 8 x 8, so there are 512 values in
each of these files).

Filenames are of the form DIJMM’real bw?.dat, DJMM’imag bw?.dat, so, as another example, the files
D3-11real bw4.dat, D3-11imag bw4.dat contain the 8 values of D3, (ie. J =3,M = —1,M' = 1)
sampled on the proper bandwidth = 4 grid.

Note: one exception to this rule. The files
D10lreal_bw4.dat, D10limag bw4.dat
actually contain samples of (2 +1)D};. I wanted to get something slightly non-trivial in there.
One more set of data files. These occur in groups of four:
randlR_bwX.dat randlI_bwX.dat randlRcoeff bwX.dat randlIcoeff bwX.dat
contain the real and imaginary parts of sample values of a random (and bandlimited) function on SO(3),

as the real and imaginary parts of its coeflicients.

file formats: samples and coefficients: For all that follows, we’re dealing with a fixed bandwidth

27y 2k+1 2y
B. First, let’s deal with the samples. Recall from above that o, = ﬂ-Jl, e = M’ Yjp = 71727

where 0 < k, j1,j2 < 2B — 1. This is where the function is sampled for a bandwidth B transform. The C

code expects the two files, containing the real and imaginary parts of the sample values, to be ordered as
follows:

f(o, Bosv0)
f(a0760u71)

f(ao, Bo,v2B-1)
fou, Bosv0)
f(alvﬁoulyl)

floaB—1,00,72B-1)
f(eo, B1,70)
f(CVo,ﬁh%)

flaap—1,B2B-1,7%2B-1)
So, of the three indeces, jy iterates the fastest, and k the slowest. Think of it as sampling at all legal
longitudes for each latitude. That’s how the S2 transform works.

Now for the coefficients. As with the sample values, there will be two files, one each for real and imaginary
parts, and there will be one number per line. As for the rest, it might seem a little weird, but bear with
me. Recall how the spherical coefficients are indexed from (16): fi,,/-

Consider a matrix A whose rows are indexed by M as follows:
M=012..,B-1,—-(B-1),-(B—-2),....,—1

This is the order they occur, e.g. if B = 4, then the fifth row corresponds to M = —3. Similarly for the
columns, indexed by M':

M =0,1,2,..,B—1,—(B—1),—(B-2),...,—1

E.g. the seventh column corresponds to M’ = —1. Ok, now I reveal that the element at A(i, 7) is actually
an array which contains the SO(3) coefficients

{fi; =< f.Dij > | max(lil,|j)) <1< B -1}

Now, finally, write down this matrix A in row-major format. E.g. First write down the set of coefficients
for M =0, M’ = 0, then for M = 0, M’ = 1, then for ... , then for M = 0, M’ = —(B — 1), then for ...,
then for M = 0, M’ = —1, then for M = 1, M’ = 0, and then M = 1, M’ = 1, and so on. You get the
idea. Believe me, in some sense, this is natural.

To make things easier, here are four formulae which will tell you where in the list the SO(3) coefficient

f, 140 occurs. There are four functions, depending on the signs of M, M’. These formulae can be simplified,
but then they might seem a little more mysterious.

Let B denote the bandwidth, h(M, M’, B) = B —max(|M|,|M’|). Then the location of f},,, in the file is

M-—1

k=0

k=0

WJ—Z(BQ—

|M|-1

4B3 - B
X

k=1

If you program this in C, you don’t have to do that “+1”. Il.e.

> (-

M
TS

M’'—1
k) + Y h(M,k,B)+ (I —max(M,M')) +1 if M,M' >0
k=0

—1

k)= > h(M,k,B)+ (I — max(M,[M'])) +1 if M >0, M’ <0

k=M’

M'—1

k) + Y h(M,k,B) + (I — max(|M|,M")) +1 if M <0, M’ >0
k=0

-1
k)= Y h(M,k,B)+ (I —max(|M[,|M'))) +1 if M,M' <0

k=M’

M = M’ = 0 will tell you that the location of fJ is 1.

References

(17)
(18)
(19)
(20)
(21)
(22)

(23)

as it’s written now, the formula for

[1] D. A. Varshalovich, A. N. Moskalev and V. K. Khersonskii, Quantum Theory of Angular Momentum, World
Scientific Publishing, Singapore, 1988.

