
April 7, 2003

SO(3): Definitions, Conventions, and Code

Definitions, normalizations ete etc are all taken from [1].

1. Euler angle decomposition: Let

u(A) =

cos A − sinA 0
sinA cos A 0

0 0 1

 a(B) =

 cos B 0 sinB
0 1 0

− sinB 0 cos B

 (1)

Then g ∈ SO(3) can be written as g = u(α) a(β)u(γ) where for 0 ≤ α, γ < 2π and 0 ≤ β ≤ π.

2. Wigner d-function:

dJ
MM ′(β) = ζMM ′

√
s!(s + µ + ν)!

(s + µ)!(s + ν)!

(
sin

β

2

)µ(
cos

β

2

)ν

× P (µ,ν)
s (cos β) (2)

where
µ = |M −M ′| ν = |M + M ′| s = J − µ + ν

2
and

ζMM ′ =
{

1 if M ′ ≥ M

(−1)M ′−M if M ′ < M.

and P
(µ,ν)
s (cos β) is a Jacobi polynomial. Note that unless J ≥ max(|M |, |M ′|), we have dJ

MM ′(β) = 0.

• orthogonality condition:

∫ π

0

dJ
MM ′(β)dJ′

MM ′(β) sinβ dβ =
2

2J + 1
δJJ ′ , (3)

• three-term recurrence:

0 =

√[
(J + 1)2 −M2

] [
(J + 1)2 −M ′2

]
(J + 1)(2J + 1)

dJ+1
MM ′(β) +

(
MM ′

J(J + 1)
− cos β

)
dJ

MM ′(β)

+

√
(J2 −M2)(J2 −M ′2)

J(2J + 1)
dJ−1

MM ′(β) (4)

• C code uses normalized versions of Wigner d-functions:

d̃J
MM ′(β) =

√
2J + 1

2
dJ

MM ′(β). (5)

• normalized version of three-term recurrence; used in the C code:

d̃J+1
MM ′(β) =

√
2J + 3
2J + 1

(J + 1)(2J + 1)√[
(J + 1)2 −M2

] [
(J + 1)2 −M ′2

] (
cos β − MM ′

J(J + 1)

)
d̃J

MM ′(β)

−
√

2J + 3
2J − 1

√
[J2 −M2]

[
J2 −M ′2

]√[
(J + 1)2 −M2

] [
(J + 1)2 −M ′2

] J + 1
J

d̃J−1
MM ′(β). (6)

1

• initialization definitions - C code uses normalized versions

dJ
JM (β) =

√
(2J)!

(J + M)!(J −M)!

(
cos

β

2

)J+M(
− sin

β

2

)J−M

dJ
−JM (β) =

√
(2J)!

(J + M)!(J −M)!

(
cos

β

2

)J−M(
sin

β

2

)J+M

dJ
MJ(β) =

√
(2J)!

(J + M)!(J −M)!

(
cos

β

2

)J+M(
sin

β

2

)J−M

dJ
M−J(β) =

√
(2J)!

(J + M)!(J −M)!

(
cos

β

2

)J−M(
− sin

β

2

)J+M

. (7)

3. Wigner D-functions:the collection of functions form a complete set of orthogonal functions with respect
to integration over SO(3):

DJ
MM ′(α, β, γ) = e−iMα dJ

MM ′(β) e−iM ′γ , J, M, M ′ integers (8)

• orthogonality:

∫ 2π

0

dα

∫ π

0

dβ sinβ

∫ 2π

0

dγ DJ2∗
M2M ′2

(α, β, γ)DJ1
M1M ′1

(α, β, γ) =
8π2

2J1 + 1
δJ1J2 δM1M2 δM ′1M ′2 . (9)

The C code uses a normalized version of the D-functions:

D̃J
MM ′(α, β, γ) =

1
2π

√
2J + 1

2
DJ

MM ′(α, β, γ) (10)

∫ 2π

0

dα

∫ π

0

dβ sinβ

∫ 2π

0

dγ D̃J2∗
M2M ′2

(α, β, γ)D̃J1
M1M ′1

(α, β, γ) = δJ1J2 δM1M2 δM ′1M ′2 . (11)

• decomposition: f ∈ L2(SO(3)):

f(α, β, γ) =
∑
J≥0

J∑
M=−J

J∑
M ′=−J

f̂J
MM ′DJ

MM ′(α, β, γ) (12)

where

f̂J
MM ′ =

〈
f,DJ

MM ′

〉
=

2J + 1
8π2

∫ 2π

0

dα

∫ π

0

dβ sinβ

∫ 2π

0

dγ f(α, β, γ)DJ∗
MM ′(α, β, γ). (13)

4. Band-limit definition: (Band-limited functions on SO(3)). A continuous function f on SO(3) is band-
limited with band-limit (or bandwidth) B if f̂ l

MM ′ = 0 for all l ≥ B.

5. quadrature weights:

wB(j) =
2
B

sin
(

π(2j + 1)
4B

) B−1∑
k=0

1
2k + 1

sin
(
(2j + 1)(2k + 1)

π

4B

)
. (14)

2

6. Discrete Wigner-d transform: For given integers (M,M ′), define the Discrete Wigner Transform
(DWT) of a data vector s to be the collection of sums of the form

ŝ(l,M,M ′) =
2B−1∑
k=0

wB(k) d̃l
M,M ′(βk)[s]k max(|M |, |M ′|) ≤ l < B (15)

where d̃l
M,M ′ is a Wigner d-function of degree l and orders M , M ′, and βk =

π(2k + 1)
4B

.

7. Discrete SO(3) transform at bandwidth B: the discrete version of (13), but using normalized Wigner-
D’s:

f l
MM ′ =

1
(2B)2

2B−1∑
j1=0

2B−1∑
j2=0

2B−1∑
k=0

wB(k)f(αj1 , βk, γj2)D̃
l∗
MM ′(αj1 , βk, γj2) (16)

where the function is sampled on the 2B × 2B × 2B grid αj1 =
2πj1
2B

, βk =
π(2k + 1)

4B
, γj2 =

2πj2
2B

.

8. C code user routines, in no particular order:

(a) test FST SO3: does an inverse-forward SO(3) transforms, to test code stability

(b) test FST SO3 For: does a normalized forward SO(3) transform, that is, computes (16) for all legal
l,M,M ′; needs input data from the user

(c) test FST SO3 Inv: does a normalized inverse SO(3) transform; needs input data from the user

(d) test Wigner Analysis: does a normalized forward Discrete Wigner-d transform, i.e. eqn. (15);
needs user input

(e) test Wigner Synthesis: does a normalized inverse Discrete Wigner-d transform; needs user input

(f) test genWig: routine to generate all the normalized Wigner-d functions, eqn. (5), at a particular
bandwidth B, and orders M , M ′.

(g) test wigSpec: for a particular bandwidth B, and orders M , M ′, generates the appropriate normal-
ized Wigner-d function (to start the recurrence), i.e. eqn. (7).

9. Data files provided with source code: Included are samples of functions, at various orders, degrees
and bandwidths. The files are in real-imaginary pairs, e.g. D101real bw4.dat, D101imag bw4.dat contain
the real and imaginary parts, resp., of the normalized Wigner-D function D̃1

01 (i.e. J = 1,M = 0,M ′ = 1)
sampled on appropriate bandwidth = 4 grid (which has dimension 8 × 8 × 8, so there are 512 values in
each of these files).

Filenames are of the form DJMM’real bw?.dat, DJMM’imag bw?.dat, so, as another example, the files
D3-11real bw4.dat, D3-11imag bw4.dat contain the 83 values of D̃3

−11 (i.e. J = 3,M = −1,M ′ = 1)
sampled on the proper bandwidth = 4 grid.

Note: one exception to this rule. The files

D101real bw4.dat, D101imag bw4.dat

actually contain samples of (2 + ı)D1
01. I wanted to get something slightly non-trivial in there.

One more set of data files. These occur in groups of four:

rand1R bwX.dat rand1I bwX.dat rand1Rcoeff bwX.dat rand1Icoeff bwX.dat

contain the real and imaginary parts of sample values of a random (and bandlimited) function on SO(3),
as the real and imaginary parts of its coefficients.

10. file formats: samples and coefficients: For all that follows, we’re dealing with a fixed bandwidth

B. First, let’s deal with the samples. Recall from above that αj1 =
2πj1
2B

, βk =
π(2k + 1)

4B
, γj2 =

2πj2
2B

,
where 0 ≤ k, j1, j2 ≤ 2B − 1. This is where the function is sampled for a bandwidth B transform. The C

3

code expects the two files, containing the real and imaginary parts of the sample values, to be ordered as
follows:

f(α0, β0, γ0)
f(α0, β0, γ1)

...

f(α0, β0, γ2B−1)
f(α1, β0, γ0)
f(α1, β0, γ1)

...

f(α2B−1, β0, γ2B−1)
f(α0, β1, γ0)
f(α0, β1, γ1)

...

f(α2B−1, β2B−1, γ2B−1)

So, of the three indeces, j2 iterates the fastest, and k the slowest. Think of it as sampling at all legal
longitudes for each latitude. That’s how the S2 transform works.

Now for the coefficients. As with the sample values, there will be two files, one each for real and imaginary
parts, and there will be one number per line. As for the rest, it might seem a little weird, but bear with
me. Recall how the spherical coefficients are indexed from (16): f̂ l

MM ′ .

Consider a matrix A whose rows are indexed by M as follows:

M = 0, 1, 2, ..., B − 1,−(B − 1),−(B − 2), ...,−1

This is the order they occur, e.g. if B = 4, then the fifth row corresponds to M = −3. Similarly for the
columns, indexed by M ′:

M ′ = 0, 1, 2, ..., B − 1,−(B − 1),−(B − 2), ...,−1

E.g. the seventh column corresponds to M ′ = −1. Ok, now I reveal that the element at A(i, j) is actually
an array which contains the SO(3) coefficients

{f l
ij =< f, D̃l

ij > | max(|i|, |j|) ≤ l ≤ B − 1}

Now, finally, write down this matrix A in row-major format. E.g. First write down the set of coefficients
for M = 0,M ′ = 0, then for M = 0,M ′ = 1, then for ... , then for M = 0,M ′ = −(B − 1), then for ...,
then for M = 0,M ′ = −1, then for M = 1,M ′ = 0, and then M = 1,M ′ = 1, and so on. You get the
idea. Believe me, in some sense, this is natural.

To make things easier, here are four formulae which will tell you where in the list the SO(3) coefficient
f l

MM ′ occurs. There are four functions, depending on the signs of M,M ′. These formulae can be simplified,
but then they might seem a little more mysterious.

4

Let B denote the bandwidth, h(M,M ′, B) = B−max(|M |, |M ′|). Then the location of f l
MM ′ in the file is

M−1∑
k=0

(B2 − k2) +
M ′−1∑
k=0

h(M,k,B) + (l −max(M,M ′)) + 1 if M,M ′ ≥ 0 (17)

(18)
M∑

k=0

(B2 − k2)−
−1∑

k=M ′

h(M,k,B) + (l −max(M, |M ′|)) + 1 if M ≥ 0, M ′ < 0 (19)

(20)

4B3 −B

3
−

|M |∑
k=1

(B2 − k2) +
M ′−1∑
k=0

h(M,k, B) + (l −max(|M |,M ′)) + 1 if M < 0, M ′ ≥ 0 (21)

(22)

4B3 −B

3
−

|M |−1∑
k=1

(B2 − k2)−
−1∑

k=M ′

h(M,k,B) + (l −max(|M |, |M ′|)) + 1 if M,M ′ < 0 (23)

If you program this in C, you don’t have to do that “+1”. I.e. as it’s written now, the formula for
M = M ′ = 0 will tell you that the location of f0

00 is 1.

References

[1] D. A. Varshalovich, A. N. Moskalev and V. K. Khersonskii, Quantum Theory of Angular Momentum, World
Scientific Publishing, Singapore, 1988.

5

