Symposium On Geometry Processing 2010

Möbius Transformations For Global Intrinsic Symmetry Analysis

Vladimir G. Kim Yaron Lipman Xiaobai Chen Thomas Funkhouser

Princeton University

Goal

 Find a map *f* from surface onto itself that preserves geodesic distances

$$f: \mathcal{M} \to \mathcal{M}$$
 s.t. $d_g(p,q) = d_g(f(p), f(q))$

- Extrinsic Symmetry
- Intrinsic Symmetry
 - Symmetry Axis
 - Laplace-Beltrami Operator
 - Gromov-Hausdorff Distance
- Inter-Surface Correspondence
 - Möbius Voting

Mitra et al., 2006

- Extrinsic Symmetry
- Intrinsic Symmetry
 - Symmetry Axis
 - Laplace-Beltrami Operator
 - Gromov-Hausdorff Distance

- Inter-Surface Correspondence
 - Möbius Voting

- Extrinsic Symmetry
- Intrinsic Symmetry
 - Symmetry Axis
 - Laplace-Beltrami Operator
 - Gromov-Hausdorff Distance
- Inter-Surface Correspondence
 - Möbius Voting

- Gromov-Hausdorff Distance
- Inter-Surface Correspondence
 - Möbius Voting

- Extrinsic Symmetry
- Intrinsic Symmetry
 - Symmetry Axis
 - Laplace-Beltrami Operator
 - Gromov-Hausdorff Distance
- Inter-Surface Correspondence
 - Möbius Voting

Look for an isometry

- Conformal
- Area-preserving
- Conformal Maps
 - Mid-edge flattening
 - Möbius Transformation
 - Defined by 3 correspondences

- Look for an isometry
 - Conformal
 - Area-preserving

Conformal Maps

- Mid-edge flattening
- Möbius Transformation
- Defined by 3 correspondences

- Look for an isometry
 - Conformal
 - Area-preserving
- Conformal Maps
 - Mid-edge flattening
 - Möbius Transformation
 - Defined by 3 correspondences

- Look for an isometry
 - Conformal
 - Area-preserving
- Conformal Maps
 - Mid-edge flattening
 - Möbius Transformation
 - Defined by 3 correspondences

Our Approach

 Look for an Anti-Möbius Transformation that makes intrinsic symmetry extrinsic on complex plane

Pipeline

Pipeline

 Goal: need a set containing potential correspondences and stationary points
 e.g. Find a set S ⊂ M invariant under f : f(S) = S

- Approach: use critical points of symmetry invariant function Φ

Finding a Symmetric Point Set Example Symmetry Invariant Function

• Average Geodesic Distance $\Phi_{agd}(p) = \int_{d_g(p,q)} d_g(p,q) dq$

Finding a Symmetric Point Set Example Symmetry Invariant Function

• Average Geodesic Distance $\Phi_{agd}(p)$

$$p) = \int_{d_g(p,q)} d_g(p,q) dq$$

- Only few extrema
- Generating Set for Anti-Möbius Transformations

• Symmetry: $f: \mathcal{M} \to \mathcal{M}$ s.t. $d_g(p,q) = d_g(f(p), f(q))$

- Symmetry: $f: \mathcal{M} \to \mathcal{M}$ s.t. $d_g(p,q) = d_g(f(p), f(q))$
- Symmetry Invariant Function: $\Phi(p) = \Phi(f(p))$

- Symmetry: $f: \mathcal{M} \to \mathcal{M}$ s.t. $d_g(p,q) = d_g(f(p), f(q))$
- Symmetry Invariant Function: $\Phi(p) = \Phi(f(p))$
- Prop. 7.1: $\nabla|_p \Phi = 0 \Leftrightarrow \nabla|_{f(p)} \Phi = 0$

- Symmetry: $f: \mathcal{M} \to \mathcal{M}$ s.t. $d_g(p,q) = d_g(f(p), f(q))$
- Symmetry Invariant Function: $\Phi(p) = \Phi(f(p))$
- Prop. 7.1: $\nabla|_p \Phi = 0 \Leftrightarrow \nabla|_{f(p)} \Phi = 0$

Look for critical points

- Symmetry: $f: \mathcal{M} \to \mathcal{M}$ s.t. $d_g(p,q) = d_g(f(p), f(q))$
- Symmetry Invariant Function: $\Phi(p) = \Phi(f(p))$
- Prop. 7.1: $\nabla|_p \Phi = 0 \iff \nabla|_{f(p)} \Phi = 0$ Look for critical points
- Theorem 7.6:
 - If f is bilateral reflective, the gradient of Φ is parallel to the curve of stationary points of f

- Symmetry: $f: \mathcal{M} \to \mathcal{M}$ s.t. $d_g(p,q) = d_g(f(p), f(q))$
- Symmetry Invariant Function: $\Phi(p) = \Phi(f(p))$
- Prop. 7.1: $\nabla|_p \Phi = 0 \iff \nabla|_{f(p)} \Phi = 0$ Look for critical points
- Theorem 7.6:
 - If f is bilateral reflective, the gradient of Φ is parallel to the curve of stationary points of fAt least 2 stationary points will have $\bigtriangledown|_p \Phi = 0$

- Symmetry: $f: \mathcal{M} \to \mathcal{M}$ s.t. $d_g(p,q) = d_g(f(p), f(q))$
- Symmetry Invariant Function: $\Phi(p) = \Phi(f(p))$
- Prop. 7.1: $\nabla|_p \Phi = 0 \iff \nabla|_{f(p)} \Phi = 0$ Look for critical points
- Theorem 7.6:
 - If f is bilateral reflective, the gradient of Φ is parallel to the curve of stationary points of fAt least 2 stationary points will have $\nabla|_p \Phi = 0$
 - For any other symmetry if there is a stationary point it would be a critical point of $\,\Phi\,$

Pipeline

Pipeline

Searching for the Best Anti-Möbius Transformation

 Goal: find a conformal map that is as isometric as possible

Symmetry Invariant Point Set from AGD (21 points)

 Approach: use small symmetry invariant set to explore conformal mappings

Searching for the Best Anti-Möbius Transformation

• Explore all 3-plets: z_1 –

Symmetry Invariant Point Set from AGD (21 points)

- Explore all 4-plets: $z_1 \rightarrow z_2$ $z_2 \rightarrow z_1$ $z_3 \rightarrow z_4$
 - $z_4 \rightarrow z_3$

Searching for the Best Anti-Möbius Transformation

• Explore all 3-plets: $z_1 \rightarrow z_1$

 $z_2 \rightarrow z_3$

 $z_3 \rightarrow z_2$

 $z_4 \rightarrow z_3$

Symmetry Invariant Point Set from AGD (21 points) z_2

 z_3

• Explore all 4-plets: $z_1 \rightarrow z_2$ $z_2 \rightarrow z_1$ $z_3 \rightarrow z_4$

Best Anti-Mobius Transformation

Green Edges: Mutually Closest Neighbors under a conformal map defined by m

Best Anti-Mobius Transformation

Pruning

Ignore a-priory bad mappings

Different AGD values

- Too close correspondences
- Different geodesic distances

Pruning

- Ignore a-priory bad mappings
 - Different AGD values
 - Too close correspondences
 - Different geodesic distances

Pruning

- Ignore a-priory bad mappings
 - Different AGD values
 - Too close correspondences
 - Different geodesic distances

Pipeline

Final Correspondences

- Goal: Given sparse correspondences: (p_i, m(p_i) = q_i)
 find a correspondence q for every p
- Approach: For any p, find q so that their geodesic distances to sparse set are same

Similar to:

"Efficient computation of isometry-invariant distances between surfaces". Bronstein et al. 2006

Pipeline

 Goal: quantitatively evaluate performance of our method on 366 models

Scape: 71 Models Non-Rigid World: 75 Models SHREC, Watertight'07: 220 models

- Ground Truth
- Geodesic Error
- Correspondence Rate
- Mesh Rate
- Results

- Ground Truth
- Geodesic Error
- Correspondence Rate
- Mesh Rate
- Results

- Ground Truth
- Geodesic Error
- Correspondence Rate
- Mesh Rate
- Results

 $\sum d_g(f(s_{\rm true}), f_{\rm true}(s_{\rm true}))$ $s_{\text{true}} \in S_{\text{true}}$

- Ground Truth
- Geodesic Error
- Correspondence Rate
- Mesh Rate
- Results

 $d_g(f(s_{\text{true}}), f_{\text{true}}(s_{\text{true}})) < \tau$

- Ground Truth
- Geodesic Error
- Correspondence Rate
- Mesh Rate
- Results

Correspondence Rate > 75%

	Non-Rigid	SCAPE	SHREC	All
	World	Human	Watertight	Data Sets
Geodesic	3.3	4.2	1.93	2.65
Corr rate	85%	82%	83%	83%
Mesh rate	76%	72%	75%	75%

Results Watertight'07, Non-rigid world

Comparison

	Our	Mobius
	Proposed	Voting
	Method	(Lipman (09)
Geodesic	3.49	6.78
Corr rate $(\%)$	86%	70%
Mesh rate $(\%)$	72%	51%
Time (s)	25s	310s

Rotational Symmetry

Large-scale outliers

Second Best Mobius

Best Mobius

Conclusion

- Anti-Mobius Transformations can be used for analysis of intrinsic symmetries
- Method succeeded on 75% of 366 meshes
- Our method improves speed and performance significantly over Möbius Voting

Limitations

- General partial intrinsic symmetries
 - Alignment error for a conformal map is global
- Symmetry-invariant sets
 - Robustness to noise
 - Various functions (other than AGD)

Acknowledgements

- Funding
 - NSF (IIS-0612231, CNS-0831374, CCF-0702672, and CCF-0937139)
 - NSERC Graduate Scholarship (PGS-M, PGS-D)
 - Google
 - Rothschild Foundation
- Data
 - Daniela Giorgi and AIM@SHAPE (Watertight'07)
 - Drago Arguelov and Stanford University (SCAPE)
 - Project TOSCA (Non-Rigid World)

Online

• More data and results:

http://www.cs.princeton.edu/~vk/IntrinsicSymmetry/

Finding a Symmetric Point Set

• Minimal Geodesic Distance $\Phi_{mgd}(p; S_1) = \min_{q \in S_1} d_g(p, q)$

Finding a Symmetric Point Set

• Minimal Geodesic Distance $\Phi_{mgd}(p; S_1) = \min_{q \in S_1} d_g(p, q)$

- Can apply iteratively to construct set of arbitrary size
- Less robust
- Correspondence Set