Symposium On Geometry Processing 2010

Möbius Transformations For Global Intrinsic Symmetry Analysis

Vladimir G. Kim
Yaron Lipman
Xiaobai Chen
Thomas Funkhouser

Princeton University

Goal

- Find a map f from surface onto itself that preserves geodesic distances

$$
f: \mathcal{M} \rightarrow \mathcal{M} \text { s.t. } d_{g}(p, q)=d_{g}(f(p), f(q))
$$

Previous Work

- Extrinsic Symmetry
- Intrinsic Symmetry
- Symmetry Axis
- Laplace-Beltrami Operator
- Gromov-Hausdorff Distance
- Inter-Surface Correspondence
- Möbius Voting

Mitra et al., 2006

Previous Work

- Extrinsic Symmetry
- Intrinsic Symmetry
- Symmetry Axis
- Laplace-Beltrami Operator
- Gromov-Hausdorff Distance

- Inter-Surface Correspondence
- Möbius Voting

Previous Work

- Extrinsic Symmetry
- Intrinsic Symmetry
- Symmetry Axis
- Laplace-Beltrami Operator

Ovsjanikov et al. '08

- Gromov-Hausdorff Distance
- Inter-Surface Correspondence
- Möbius Voting

Previous Work

- Gromov-Hausdorff Distance
- Inter-Surface Correspondence
- Möbius Voting

Previous Work

- Extrinsic Symmetry
- Intrinsic Symmetry
- Symmetry Axis
- Laplace-Beltrami Operator
- Gromov-Hausdorff Distance
- Inter-Surface Correspondence

- Möbius Voting

Previous Work Möbius Voting

- Look for an isometry
- Conformal
- Area-preserving
- Conformal Maps
- Mid-edge flattening
- Möbius Transformation

- Defined by 3 correspondences

Previous Work Möbius Voting

- Look for an isometry
- Conformal
- Area-preserving

- Conformal Maps
- Mid-edge flattening
- Möbius Transformation
- Defined by 3 correspondences

Previous Work Möbius Voting

- Look for an isometry
- Conformal
- Area-preserving
- Conformal Maps
- Mid-edge flattening
- Möbius Transformation
- Defined by 3 correspondences

Previous Work Möbius Voting

- Look for an isometry
- Conformal
- Area-preserving
- Conformal Maps
- Mid-edge flattening
- Möbius Transformation
- Defined by 3 correspondences

unique m

Our Approach

- Look for an Anti-Möbius Transformation that makes intrinsic symmetry extrinsic on complex plane

Pipeline

Pipeline

Finding a Symmetric Point Set

Finding a Symmetric Point Set

- Goal: need a set containing potential correspondences and stationary points e.g. Find a set $S \subset \mathcal{M}$ invariant under $f: f(S)=S$
- Approach: use critical points of symmetry invariant function Φ

Finding a Symmetric Point Set

Example Symmetry Invariant Function

- Average Geodesic Distance $\Phi_{\operatorname{agd}}(p)=\int_{d_{g}(p, q)} d_{g}(p, q) d q$

Finding a Symmetric Point Set

Example Symmetry Invariant Function

- Average Geodesic Distance $\Phi_{\operatorname{agd}}(p)=\int_{d_{g}(p, q)} d_{g}(p, q) d q$

- Only few extrema
- Generating Set for Anti-Möbius Transformations

Finding a Symmetric Point Set Theory

- Symmetry: $f: \mathcal{M} \rightarrow \mathcal{M}$ s.t. $d_{g}(p, q)=d_{g}(f(p), f(q))$

Finding a Symmetric Point Set Theory

- Symmetry: $f: \mathcal{M} \rightarrow \mathcal{M}$ s.t. $d_{g}(p, q)=d_{g}(f(p), f(q))$
- Symmetry Invariant Function: $\Phi(p)=\Phi(f(p))$

Finding a Symmetric Point Set Theory

- Symmetry: $f: \mathcal{M} \rightarrow \mathcal{M}$ s.t. $d_{g}(p, q)=d_{g}(f(p), f(q))$
- Symmetry Invariant Function: $\Phi(p)=\Phi(f(p))$
- Prop. 7.1: $\left.\nabla\right|_{p} \Phi=\left.0 \Leftrightarrow \nabla\right|_{f(p)} \Phi=0$

Finding a Symmetric Point Set Theory

- Symmetry: $f: \mathcal{M} \rightarrow \mathcal{M}$ s.t. $d_{g}(p, q)=d_{g}(f(p), f(q))$
- Symmetry Invariant Function: $\Phi(p)=\Phi(f(p))$
- Prop. 7.1: $\left.\nabla\right|_{p} \Phi=\left.0 \Leftrightarrow \nabla\right|_{f(p)} \Phi=0$

Look for critical points

Finding a Symmetric Point Set Theory

- Symmetry: $f: \mathcal{M} \rightarrow \mathcal{M}$ s.t. $d_{g}(p, q)=d_{g}(f(p), f(q))$
- Symmetry Invariant Function: $\Phi(p)=\Phi(f(p))$
- Prop. 7.1: $\left.\nabla\right|_{p} \Phi=\left.0 \Leftrightarrow \nabla\right|_{f(p)} \Phi=0$

Look for critical points

- Theorem 7.6:
- If f is bilateral reflective, the gradient of Φ is parallel to the curve of stationary points of f

Finding a Symmetric Point Set Theory

- Symmetry: $f: \mathcal{M} \rightarrow \mathcal{M}$ s.t. $d_{g}(p, q)=d_{g}(f(p), f(q))$
- Symmetry Invariant Function: $\Phi(p)=\Phi(f(p))$
- Prop. 7.1: $\left.\nabla\right|_{p} \Phi=\left.0 \Leftrightarrow \nabla\right|_{f(p)} \Phi=0$

Look for critical points

- Theorem 7.6:
- If f is bilateral reflective, the gradient of Φ is parallel to the curve of stationary points of f At least 2 stationary points will have $\left.\nabla\right|_{p} \Phi=0$

Finding a Symmetric Point Set Theory

- Symmetry: $f: \mathcal{M} \rightarrow \mathcal{M}$ s.t. $d_{g}(p, q)=d_{g}(f(p), f(q))$
- Symmetry Invariant Function: $\Phi(p)=\Phi(f(p))$
- Prop. 7.1: $\left.\nabla\right|_{p} \Phi=\left.0 \Leftrightarrow \nabla\right|_{f(p)} \Phi=0$

Look for critical points

- Theorem 7.6:
- If f is bilateral reflective, the gradient of Φ is parallel to the curve of stationary points of f At least 2 stationary points will have $\left.\nabla\right|_{p} \Phi=0$
- For any other symmetry if there is a stationary point it would be a critical point of Φ

Pipeline

Pipeline

Searching for the Best
 Anti-Möbius Transformation

- Goal: find a conformal map that is as isometric as possible

Symmetry Invariant
Point Set from AGD
(21 points)

- Approach: use small symmetry invariant set to explore conformal mappings

Searching for the Best

Anti-Möbius Transformation

- Explore all 3-plets:

$$
\begin{aligned}
& z_{1} \rightarrow z_{1} \\
& z_{2} \rightarrow z_{3} \\
& z_{3} \rightarrow z_{2}
\end{aligned}
$$

- Explore all 4-plets:

$$
\begin{aligned}
& z_{1} \rightarrow z_{2} \\
& z_{2} \rightarrow z_{1} \\
& z_{3} \rightarrow z_{4} \\
& z_{4} \rightarrow z_{3}
\end{aligned}
$$

Searching for the Best

Anti-Möbius Transformation

- Explore all 3-plets:

$$
\begin{aligned}
& z_{1} \rightarrow z_{1} \\
& z_{2} \rightarrow z_{3} \\
& z_{3} \rightarrow z_{2}
\end{aligned}
$$

Symmetry Invariant Point Set from AGD
(21 points)

Best Anti-Mobius Transformation

Best Anti-Mobius Transformation

Pruning

- Ignore a-priory bad mappings
- Different AGD values
- Too close correspondences
- Different geodesic distances

Bad correspondence

Pruning

- Ignore a-priory bad mappings
- Different AGD values
- Too close correspondences
- Different geodesic distances

Pruning

- Ignore a-priory bad mappings
- Different AGD values
- Too close correspondences
- Different geodesic distances

Pipeline

Final Correspondences

- Goal: Given sparse correspondences: $\left(p_{i}, m\left(p_{i}\right)=q_{i}\right)$ find a correspondence q for every p
- Approach: For any p, find q so that their geodesic distances to sparse set are same
Similar to:
"Efficient computation of isometry-invariant distances between surfaces". Bronstein et al. 2006

Pipeline

Results
 Benchmark

- Goal: quantitatively evaluate performance of our method on 366 models

Scape:
71 Models

Non-Rigid World:
75 Models

SHREC, Watertight'07: 220 models

Results
 Benchmark

- Ground Truth

- Geodesic Error
- Correspondence Rate
- Mesh Rate
- Results

Results
 Benchmark

- Ground Truth
- Geodesic Error
- Correspondence Rate
- Mesh Rate
- Results

Results
 Benchmark

- Ground Truth
- Geodesic Error
- Correspondence Rate
- Mesh Rate
- Results

$$
\sum_{s_{\text {true }} \in S_{\text {true }}} d_{g}\left(f\left(s_{\text {true }}\right), f_{\text {true }}\left(s_{\text {true }}\right)\right)
$$

Results
 Benchmark

- Ground Truth
- Geodesic Error
- Correspondence Rate
- Mesh Rate
- Results

$$
d_{g}\left(f\left(s_{\text {true }}\right), f_{\text {true }}\left(s_{\text {true }}\right)\right)<\tau
$$

Results
 Benchmark

- Ground Truth
- Geodesic Error
- Correspondence Rate
- Mesh Rate
- Results

Correspondence Rate > 75\%

Results

Benchmark

	Non-Rigid World	SCAPE Human	SHREC Watertight	All Data Sets
Geodesic	3.3	4.2	1.93	2.65
Corr rate	85%	82%	83%	83%
Mesh rate	76%	72%	75%	75%

Results
 Scape

Results

Watertight'07, Non-rigid world

Comparison

	Our Proposed Method	Mobius Voting (Lipman '09)
Geodesic	3.49	6.78
Corr rate (\%)	86%	70%
Mesh rate (\%)	72%	51%
Time (s)	25 s	310 s

Rotational Symmetry

Large-scale outliers

Best Mobius

Second Best Mobius

Conclusion

- Anti-Mobius Transformations can be used for analysis of intrinsic symmetries
- Method succeeded on 75% of 366 meshes
- Our method improves speed and performance significantly over Möbius Voting

Limitations

- General partial intrinsic symmetries
- Alignment error for a conformal map is global
- Symmetry-invariant sets
- Robustness to noise
- Various functions (other than AGD)

Acknowledgements

- Funding
- NSF (IIS-0612231, CNS-0831374, CCF-0702672, and CCF-0937139)
- NSERC Graduate Scholarship (PGS-M, PGS-D)
- Google
- Rothschild Foundation
- Data
- Daniela Giorgi and AIM@SHAPE (Watertight'07)
- Drago Arguelov and Stanford University (SCAPE)
- Project TOSCA (Non-Rigid World)

Online

- More data and results:
http://www.cs.princeton.edu/~vk/IntrinsicSymmetry/

Finding a Symmetric Point Set

- Minimal Geodesic Distance $\Phi_{\mathrm{mgd}}\left(p ; S_{1}\right)=\min _{q \in S_{1}} d_{g}(p, q)$

Finding a Symmetric Point Set

- Minimal Geodesic Distance $\Phi_{\text {mgd }}\left(p ; S_{1}\right)=\min _{q \in S_{1}} d_{g}(p, q)$

- Can apply iteratively to construct set of arbitrary size
- Less robust
- Correspondence Set

