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Previous Work

Ovsjanikov et al., SIGGRAPH 2011
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Goal

Exploration tool for understanding shape variations

for arbitrary regions of models in collections

o Find variations
» Sort by similarity
o Align viewpoints
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Goal

Exploration tool for understanding shape variations
for arbitrary regions of models in collections

o Find variations
o Sort by similarity
» Align viewpoints
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Approach

Compute correspondences between similar points on
all models in the collection
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Related Work

Previous Methods
o Pairwise alignment
o Map optimization
» Template fitting

Allen et al.,
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SIGGRAPH 2008.



Problem: Representing Correspondences

Point-to-point correspondences are not well-
defined for all pairs of models




Solution: Fuzzy Correspondences

Continuous function measuring "how well” two
points correspond




Solution: Fuzzy Correspondences

Continuous function measuring "how well” two
points correspond

Concurrent work

Solomon et al., SGP’ 12 i
Ovsjanikov et al., SIGGRAPH’12




Problem: Matching Dissimilar Shapes

Geometric alignment algorithms work well only for
similar pairs of shapes




Solution: Transitivity

Leverage correspondences between similar
shapes to reason about correspondences In
dissimilar shapes




Problem: Handling N? Complexity

Computing pairwise alignments for all pairs Is too
expensive for large collections: O(N?) alignments

Typical: N=100



Solution: Diffusion

Compute alignments for small number of pairs (M)
and diffuse correspondences to other pairs: O(MN))

A small amount
of redundancy
provides robustness to
poor alignments

Typical: N=100, M=5
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Computing Fuzzy Correspondences

1. Sample points on each model

2. Select pairs of models to align

3. Estimate correspondences for selected pairs

4. Diffuse point correspondences

5. Re-align pairs to improve consistency
Goto4
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Step 1: Sample Points

Input Model

K Points



Step 2: Select Models To Align

Find pairs of models that can be aligned robustly
and form a well-connected graph
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Step 2: Select Models To Align

Find pairs of models that can be aligned robustly
and form a well-connected graph

Compute minimum spanning
tree based on shape similarity



Step 2: Select Models To Align

Find pairs of models that can be aligned robustly
and form a well-connected graph

Augment graph to increase
connectivity based on edge rank
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Step 3: Estimate Correspondence

Align selected pairs of models to estimate
correspondence C(p,,p;) between points

Rigid Alignment
PCA+ ICP
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Computing Fuzzy Correspondences

1. Sample points on each model

2. Select pairs of models to align

3. Estimate correspondences for selected pairs

4. Diffuse point correspondences

5. Re-align pairs to improve consistency
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Step 4: Diffuse Correspondence

Compute fuzzy correspondence f(p;p;) based on
diffusion distance in graph represented by C(p;,p;)
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Step 4: Diffuse Correspondence

Compute fuzzy correspondence f(p;p;) based on
diffusion distance in graph represented by C(p;,p;)
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Computing Fuzzy Correspondences

1. Sample points on each model
2. Select pairs of models to align
3. Estimate correspondences for selected pairs
4. Diffuse point correspondences
5. Re-align pairs to improve consistency
Goto 4



Step 5: Improve Consistency

Sparse Correspondence
Matrix C(p;,p;)
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Step 5: Improve Consistency

Sparse Correspondence
Matrix C(p;,p;)

misalignment



Step 5: Improve Consistency

Iteratively adjust alignments in C(p;,p;) to improve
consistency with f(p;,p;)
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Iteratively adjust alignments in C(p;,p;) to improve
consistency with f(p;,p;)
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Step 5: Improve Consistency

Iteratively adjust alignments in C(p;,p;) to improve
consistency with f(p;,p;)
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Computing Fuzzy Correspondences

1. Sample points on each model

2. Select pairs of models to align

3. Estimate correspondences for selected pairs

4. Diffuse point correspondences

5. Re-align pairs to improve consistency
Goto4



Quantitative Evaluation — refer to paper

Experiments:
o Diffusion and optimization improve correspondences
o Far less than N? alignments are necessary
o Larger collections yield better correspondences
o Our method compare favorably on benchmarks

H&t’ K

‘aL

Chairs, Bikes, &Alrplanes Nonrlgld Surface Allgnment Benchmarks
from Google 3D Warehouse [Kim et al, 2011]

[Kim et al. 2012] [Nguyen et aI 2011]


http://www.cs.princeton.edu/~vk/CorrsCode/Benchmark/Fig/truth.jpg
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Exploration Tool

Key features enabled by fuzzy correspondences
o Find variations
o Align viewpoints
o Sort by similarity



Finding Variations




Finding Variations

Distance to Xth closest fuzzy correspondence
can reveal amount of shape variation in data set
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Finding Variations

Distance to Xth closest fuzzy correspondence
can reveal amount of shape variation in data set
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Finding Variations

Distance to Xth closest fuzzy correspondence
can reveal amount of shape variation in data set

Collection 1:

Collection 2:




Aligning Models

Find best alignment weighted by fuzzy corrs.
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Sorting by Similarity

Sort based on similarity in aligned regions

7 | 3D Database Exploration: select ing(0), rmode(l)
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Sorting by Similarity: Intrinsic Matching

Sort based on similarity in aligned regions

| 30 Database Exploration: selecting(0), mode(0) = | |
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Sorting with Multiple Facets

Provide several similarity objectives

% '| 3D Database Exploration: selecting(0), mode(2)




Timing
Fuzzy Correspondences for 111 chairs

o Pairwise alignments = 100s (602 /6105 alignments)
o lterative Optimization = 800s (11 iterations)
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Timing
Fuzzy Correspondences for 111 chairs

o Pairwise alignments = 100s (602 /6105 alignments)
o lterative Optimization = 800s (11 iterations)

Fuzzy Correspondences for 71 SCAPE models
o Pairwise alignments = 1775s (355 /2485 alignments)
o lterative Optimization = 250s (5 iterations)

Exploration tool
o Real time interaction



Summary

Fuzzy Correspondences via Diffusion
o Represent ambiguity in mapping
o More robust: easier to compare similar shapes
o Far less than N2 pairwise alignments are required



Summary

Fuzzy Correspondences via Diffusion
o Represent ambiguity in mapping
o More robust: easier to compare similar shapes
o Far less than N2 pairwise alignments are required

Exploration with Fuzzy Correspondences

o Allows navigating in shape space by interactively
selecting regions of interest



Future Work

Short-term

o Consistent bias in misalignments not always
resolved by diffusion

o More diverse datasets (e.g. all classes jointly)
o Larger collections



Future Work

Short-term

o Consistent bias in misalignments not always
resolved by diffusion

o More diverse datasets (e.g. all classes jointly)
o Larger collections

Long-term:
o Higher-level understanding of collections of shapes
o Data-driven Analysis: segmentation, labeling
o Data-driven Synthesis: assembly-based modeling
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Results

A small subset of pairwise alignments suffices

100— O @ D@ —
AL |
90 o —
e -
Eﬂ-g . J i~
1] - =
o N’ \r/ e
E 70 14§ . ..r#
3 6o} ,,]a ' ¢ -
E “ 9] £
&, S0 Example models 7 1
@ with manually ~#~
i 200 selected ‘ .
S oints - - = = Manual Affine
. 3orP 4 —— 500 Alignments
20t . —— 350 Alignments
LoL” | —— 250 Alignments
[ == —— 150 Alignments
D | | || |
0 0.05 0.1 0.15 0.2

Euclidean Error

0.25



Results

Diffusion & optimization improve correspondences
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Results

Larger collections yield better correspondences

100

20t
80t

701
60}
S0

40+ A

% Correspondences

First 5 models
30f 111
20} — 111 Models
— 25 Models
101 Example corrs for A:
P : —— 5 Models
u ] ] i T T
(] 0.05 0.1 0.15 0.2 0.25

Euclidean Error



Results

Best results on examples in [Nguyen et al., 2011]
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Results

Best results on benchmark in [Kim et al. 2011]
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Future Work
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o More diverse datasets (e.g. all classes jointly)
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o (Near-)Symmetry
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