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Previous Work

Ovsjanikov et al., SIGGRAPH 2011
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Approach

Compute correspondences between similar points on 

all models in the collection
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Related Work

Previous Methods
 Pairwise alignment

 Map optimization

 Template fitting

Allen et al., SIGGRAPH 2003.



Problem: Representing Correspondences

Point-to-point correspondences are not well-

defined for all pairs of models
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Concurrent work 

Solomon et al., SGP’ 12
Ovsjanikov et al., SIGGRAPH’12



Problem: Matching Dissimilar Shapes

Geometric alignment algorithms work well only for 

similar pairs of shapes



Solution: Transitivity

Leverage correspondences between similar 

shapes to reason about correspondences in 

dissimilar shapes



Problem: Handling N2 Complexity

Computing pairwise alignments for all pairs is too 

expensive for large collections: O(N2) alignments

Typical: N=100
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Computing Fuzzy Correspondences

1. Sample points on each model

2. Select pairs of models to align

3. Estimate correspondences for selected pairs

4. Diffuse point correspondences

5. Re-align pairs to improve consistency

Go to 4



Example Collection



Step 1: Sample Points

Input Model K Points
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Step 5: Improve Consistency 

Sparse Correspondence
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Sparse Correspondence
Matrix C(pi,pj)

misalignment
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Iteratively adjust alignments in C(pi,pj) to improve 
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Iteratively adjust alignments in C(pi,pj) to improve 

consistency with f(pi,pj) 

Step 5: Improve Consistency 

Diffusion

misalignment

Re-align
C0(pi,pj) -> C1(pi,pj) 
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Iteratively adjust alignments in C(pi,pj) to improve 

consistency with f(pi,pj) 

Step 5: Improve Consistency 

New f1(pi,◦)

Diffusion

misalignment

Re-align
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Quantitative Evaluation – refer to paper

Experiments:
 Diffusion and optimization improve correspondences

 Far less than N2 alignments are necessary

 Larger collections yield better correspondences

 Our method compare favorably on benchmarks

Chairs, Bikes, & Airplanes
from Google 3D Warehouse

[Kim et al. 2012]

Nonrigid Surface Alignment Benchmarks 
[Kim et al, 2011]

[Nguyen et al., 2011]

http://www.cs.princeton.edu/~vk/CorrsCode/Benchmark/Fig/truth.jpg
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Exploration Tool

Key features enabled by fuzzy correspondences
 Find variations

 Align viewpoints

 Sort by similarity
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Distance to Xth closest fuzzy correspondence

can reveal amount of shape variation in data set

More Variation
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Finding Variations

Distance to Xth closest fuzzy correspondence

can reveal amount of shape variation in data set

Collection 1:

Collection 2:



Aligning Models

Find best alignment weighted by fuzzy corrs.



Sorting by Similarity

Sort based on similarity in aligned regions



Sorting by Similarity: Intrinsic Matching

Sort based on similarity in aligned regions



Sorting with Multiple Facets

Provide several similarity objectives
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Fuzzy Correspondences for 111 chairs
 Pairwise alignments   ≈ 100s    (602 / 6105 alignments)

 Iterative Optimization ≈ 800s    (11 iterations)

Fuzzy Correspondences for 71 SCAPE models
 Pairwise alignments   ≈ 1775s   (355 / 2485 alignments)

 Iterative Optimization ≈ 250s     (5 iterations)

Exploration tool 
 Real time interaction
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Summary

Fuzzy Correspondences via Diffusion
 Represent ambiguity in mapping

 More robust: easier to compare similar shapes

 Far less than N2 pairwise alignments are required

Exploration with Fuzzy Correspondences
 Allows navigating in shape space by interactively 

selecting regions of interest
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Future Work

Short-term
 Consistent bias in misalignments not always 

resolved by diffusion

 More diverse datasets (e.g. all classes jointly)

 Larger collections

Long-term: 
 Higher-level understanding of collections of shapes

 Data-driven Analysis: segmentation, labeling

 Data-driven Synthesis: assembly-based modeling
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Results

A small subset of pairwise alignments suffices

500 Alignments

350 Alignments

250 Alignments

150 Alignments

Manual Affine  



Results

Diffusion & optimization improve correspondences



Results

Larger collections yield better correspondences



Results

Best results on examples in [Nguyen et al., 2011]
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