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  Correspondence
S := {S1, S2, . . . , SN}To sample fuzzy correspondences, f (pi, p j), we utilize pairwise ge-

ometric matching methods. Although these methods are computa-
tionally expensive and often produce noisy alignments, we observe
that for collections of shapes from the same class a correspondence
matrix that stores high values for corresponding pairs of points
is (i) sparse, (ii) low-rank, and (iii) its rank does not depend on
the number of models. We propose a method based on diffusion
maps [Nadler et al. 2006] to reconstruct f from sparse and noisy
samples (pairwise alignments) and an iterative procedure to adap-
tively guide sampling based on the current estimate of f .

We test the accuracy of our estimate of f using the correspondence
benchmark for intrinsically-similar shapes [Kim et al. 2011]. We
also introduce a new correspondence benchmark of 111 chairs and
86 commercial airplanes using data obtained from the Google 3D
Warehouse. Our method successfully utilizes the collection to im-
prove alignments of shapes in comparison to existing methods (see
Figures 11, 12, and supplementary material).

Contributions. In summary, we
• use fuzzy correspondences to understand similarity relations

across point pairs in a collection of 3D models,
• propose a robust and efficient algorithm to compute fuzzy cor-

respondences from sparse and noisy pairwise alignments,
• evaluate our algorithm on correspondence benchmarks and re-

port substantial improvement over existing alternatives, and
• demonstrate interactive tools for browsing large model collec-

tions including view alignment, partial similarity search, and
faceted exploration.

2 Related Work

Model pairs. Various algorithms have been proposed to align
model pairs under different conditions, e.g., rigid or isometric
deformations, partial overlap, missing data, etc. (see [Besl and
McKay 1992; Mitra et al. 2004; Li et al. 2008] and references
therein). In absence of good initial alignment, researchers have
used manual correspondence for initial placement [Kraevoy and
Sheffer 2004; Schreiner et al. 2004], or proposed purely automatic
methods to search for rigid [Aiger et al. 2008] and as-isometric-
as-possible maps [Bronstein et al. 2006; Lipman and Funkhouser
2009; Ovsjanikov et al. 2010; Sun et al. 2010; Kim et al. 2011].
Such methods, however, make various assumptions about the model
quality and geometric similarity across the models (e.g., near isom-
etry, same topology, etc.). Hence, most existing point-to-point
methods (see [van Kaick et al. 2011]) focus on databases of hu-
man bodies, body parts, and quadruped animals, rather than hetero-
geneous collections with diverse shape variations (e.g., in Google
3D Warehouse). For example, even manually prescribing point-to-
point correspondences among the chairs in Figure 2 is ambiguous
and difficult.

Model collections. Desirable alignment across models often relates
to model semantics and can be difficult to infer purely based on ge-
ometric reasoning of isolated model pairs. Hence, researchers have
collectively analyzed multiple models from the same class to ex-
tract corresponding deformation models and consistent alignments.
In the context of images, Heath et al. [2010] collectively analyze
collections of (segmented) images to identify interesting relation-
ship pathways. In the context of scene graphs, Fisher et al. [2011]
extract placement relationship across various models in a scene.

For certain applications (e.g., annotation transfer among segmented
models), even a coarse part-level correspondence can be sufficient.
In the context of single models, Kalogerakis et al. [2010] propose

Figure 2: Fuzzy correspondence values for two points selected in
different places on a chair. The points shown in dark blue have
largest fuzzy correspondence to the selected points. todo

a data-driven approach to simultaneously segment and label parts
in 3D meshes using a combination of geometric features and con-
textual labels. The segmented parts can be co-analyzed to estab-
lish consistent part-to-part correspondences across multiple mod-
els [Golovinskiy and Funkhouser 2009; Huang et al. 2011; Sidi
et al. 2011]. Extracting parts a priori (i.e., before the user explores
the database), however, limits the types of possible applications,
e.g., in faceted browsing where the user prescribes part boundaries
at runtime. Further, geometrically establishing even part-level cor-
respondence maps can be ambiguous in cases of collections with
large topological variations and is widely considered to be very
challenging (see also [van Kaick et al. 2011]).

In a related attempt, Nguyen et al. [2011] propose an interesting
algorithm to improve point-to-point mappings between model pairs
belonging to collections of shapes. Their method is based on the
assumption that all cycles of consistent maps must return to iden-
tity (and hence implicitly assumes that point-to-point maps can be
consistently established across diverse models). They formulate
the condition using an optimization to iteratively improve 3-cycles,
thus leveraging information from the whole model collection. The
method, however, has three important limitations: (i) it computes
point-to-point correspondences and thus is not applicable to hetero-
geneous quality models, (ii) it propagates information only across
3-cycles and thus converges slowly, and (iii) it only aligns pairs of
models by concatenating full maps, which limits applicability of
this method to heterogeneous datasets where most pairs of models
might not have a bijective map between them. In contrast, using
fuzzy correspondences we align all the models in a single step (see
Figure 11 and supplementary material) and use consistency of per-
point paths to efficiently handle large and diverse datasets.

Diffusion maps. Introduced by Nadler et al. [2006], diffusion maps
provide a probabilistic interpretation of spectral clustering and di-
mension reduction algorithms. Specifically, when correspondences
are represented by real values, diffusion maps allow all points to be
embedded into a Euclidean space with distances induced by con-
sistency of all direct and indirect correspondences. Diffusion maps
have been used for analyzing image collections [Heath et al. 2010],
establishing symmetric correspondences [Lipman et al. 2010], or
clustering similar segments for consistent segmentation [Sidi et al.
2011]. Note that unlike spectral clustering applications, our goal
is to find a low-dimensional manifold to describe in-class deforma-
tions rather than constructing disjoint clusters.

In a related attempt, Sidi et al. [2011] pre-segment each model in-
dividually, map the segments to a suitable descriptor space, and

[Kim et al., Siggraph 2012]
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To sample fuzzy correspondences, f (pi, p j), we utilize pairwise ge-
ometric matching methods. Although these methods are computa-
tionally expensive and often produce noisy alignments, we observe
that for collections of shapes from the same class a correspondence
matrix that stores high values for corresponding pairs of points
is (i) sparse, (ii) low-rank, and (iii) its rank does not depend on
the number of models. We propose a method based on diffusion
maps [Nadler et al. 2006] to reconstruct f from sparse and noisy
samples (pairwise alignments) and an iterative procedure to adap-
tively guide sampling based on the current estimate of f .

We test the accuracy of our estimate of f using the correspondence
benchmark for intrinsically-similar shapes [Kim et al. 2011]. We
also introduce a new correspondence benchmark of 111 chairs and
86 commercial airplanes using data obtained from the Google 3D
Warehouse. Our method successfully utilizes the collection to im-
prove alignments of shapes in comparison to existing methods (see
Figures 11, 12, and supplementary material).

Contributions. In summary, we
• use fuzzy correspondences to understand similarity relations

across point pairs in a collection of 3D models,
• propose a robust and efficient algorithm to compute fuzzy cor-

respondences from sparse and noisy pairwise alignments,
• evaluate our algorithm on correspondence benchmarks and re-

port substantial improvement over existing alternatives, and
• demonstrate interactive tools for browsing large model collec-

tions including view alignment, partial similarity search, and
faceted exploration.

2 Related Work

Model pairs. Various algorithms have been proposed to align
model pairs under different conditions, e.g., rigid or isometric
deformations, partial overlap, missing data, etc. (see [Besl and
McKay 1992; Mitra et al. 2004; Li et al. 2008] and references
therein). In absence of good initial alignment, researchers have
used manual correspondence for initial placement [Kraevoy and
Sheffer 2004; Schreiner et al. 2004], or proposed purely automatic
methods to search for rigid [Aiger et al. 2008] and as-isometric-
as-possible maps [Bronstein et al. 2006; Lipman and Funkhouser
2009; Ovsjanikov et al. 2010; Sun et al. 2010; Kim et al. 2011].
Such methods, however, make various assumptions about the model
quality and geometric similarity across the models (e.g., near isom-
etry, same topology, etc.). Hence, most existing point-to-point
methods (see [van Kaick et al. 2011]) focus on databases of hu-
man bodies, body parts, and quadruped animals, rather than hetero-
geneous collections with diverse shape variations (e.g., in Google
3D Warehouse). For example, even manually prescribing point-to-
point correspondences among the chairs in Figure 2 is ambiguous
and difficult.

Model collections. Desirable alignment across models often relates
to model semantics and can be difficult to infer purely based on ge-
ometric reasoning of isolated model pairs. Hence, researchers have
collectively analyzed multiple models from the same class to ex-
tract corresponding deformation models and consistent alignments.
In the context of images, Heath et al. [2010] collectively analyze
collections of (segmented) images to identify interesting relation-
ship pathways. In the context of scene graphs, Fisher et al. [2011]
extract placement relationship across various models in a scene.

For certain applications (e.g., annotation transfer among segmented
models), even a coarse part-level correspondence can be sufficient.
In the context of single models, Kalogerakis et al. [2010] propose

Figure 2: Fuzzy correspondence values for two points selected in
different places on a chair. The points shown in dark blue have
largest fuzzy correspondence to the selected points. todo

a data-driven approach to simultaneously segment and label parts
in 3D meshes using a combination of geometric features and con-
textual labels. The segmented parts can be co-analyzed to estab-
lish consistent part-to-part correspondences across multiple mod-
els [Golovinskiy and Funkhouser 2009; Huang et al. 2011; Sidi
et al. 2011]. Extracting parts a priori (i.e., before the user explores
the database), however, limits the types of possible applications,
e.g., in faceted browsing where the user prescribes part boundaries
at runtime. Further, geometrically establishing even part-level cor-
respondence maps can be ambiguous in cases of collections with
large topological variations and is widely considered to be very
challenging (see also [van Kaick et al. 2011]).

In a related attempt, Nguyen et al. [2011] propose an interesting
algorithm to improve point-to-point mappings between model pairs
belonging to collections of shapes. Their method is based on the
assumption that all cycles of consistent maps must return to iden-
tity (and hence implicitly assumes that point-to-point maps can be
consistently established across diverse models). They formulate
the condition using an optimization to iteratively improve 3-cycles,
thus leveraging information from the whole model collection. The
method, however, has three important limitations: (i) it computes
point-to-point correspondences and thus is not applicable to hetero-
geneous quality models, (ii) it propagates information only across
3-cycles and thus converges slowly, and (iii) it only aligns pairs of
models by concatenating full maps, which limits applicability of
this method to heterogeneous datasets where most pairs of models
might not have a bijective map between them. In contrast, using
fuzzy correspondences we align all the models in a single step (see
Figure 11 and supplementary material) and use consistency of per-
point paths to efficiently handle large and diverse datasets.

Diffusion maps. Introduced by Nadler et al. [2006], diffusion maps
provide a probabilistic interpretation of spectral clustering and di-
mension reduction algorithms. Specifically, when correspondences
are represented by real values, diffusion maps allow all points to be
embedded into a Euclidean space with distances induced by con-
sistency of all direct and indirect correspondences. Diffusion maps
have been used for analyzing image collections [Heath et al. 2010],
establishing symmetric correspondences [Lipman et al. 2010], or
clustering similar segments for consistent segmentation [Sidi et al.
2011]. Note that unlike spectral clustering applications, our goal
is to find a low-dimensional manifold to describe in-class deforma-
tions rather than constructing disjoint clusters.

In a related attempt, Sidi et al. [2011] pre-segment each model in-
dividually, map the segments to a suitable descriptor space, and
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then perform spectral clustering to identify consistent segments,
which are finally refined using a graph cut optimization. In con-
trast, we only make use of a sparse set of alignment information
between geometrically similar model pairs and diffuse the infor-
mation to the other model pairs. Intuitively, we use the manifold
induced by spectral embedding to understand the correspondences
across geometrically distant shapes. We formulate an optimization
procedure to iteratively improve the embedding by pruning out
inconsistent or weak pairwise alignments, and adding alignments
that are consistent across all the models in the collection. Further, a
pre-segmented part-based method cannot easily support interactive
exploration over diverse datasets (see Figure 7).

Exploring model collections. Early efforts in 3D model database
search primarily extract clusters in various descriptor spaces to
group models into similar categories (see [Shilane et al. 2004] and
references therein), while some interactive systems allow provid-
ing relevance feedback for search tasks [Giorgi et al. 2010]. Our
focus, however, is to explore and understand model intra-category
variations, which are often subtle.

For few classes of shapes, such as human bodies, one can explicitly
build a generative model that can be used for exploration, analy-
sis, and synthesis [Allen et al. 2003; Anguelov et al. 2005]. Such
methods, however, assume access to a template shape or availability
of consistent point-to-point correspondence across all the models.
Only recently, Ovsjanikov et al. [2011] present an algorithm to ex-
plore global variations in model collections that be explained as low
complexity deformations of part-based template models. They ex-
tract such variations using a coupled spatial-descriptor space analy-
sis. In contrast, we enable region-based exploration allowing users
to interactively add and adapt navigation criteria. Such guided
browsing is particularly useful for diverse collections where the
different regions of individual shapes vary differently.

We draw inspiration from previous research on searching and navi-
gating collections of text-based documents, such as Web pages. In
this domain, most traditional interfaces support hierarchical navi-
gation based on a predefined item categories along with text search
using a bag-of-words approach. More recently faceted brows-
ing [Hearst 2006] allow users to dynamically prescribe multiple
filters or facets to narrow the exploration space. As a key contri-
bution, we enable a form of faceted browsing for large 3D model
collections and demonstrate its potential for interactive exploration.

3 Overview

We have designed an interactive tool for understanding local varia-
tions within large collections of shapes. It allows a user to select an
arbitrary ROI (a single point, a large fraction of the surface, several
disjoint patches, or all of the above) and then explore the collection
to see how typical that ROI is in other shapes in the collection,
what other shapes do (or do not) have matching surfaces, how other
shapes align with the ROI, and so on. Multiple queries of this type
can be combined in a faceted search.

To support similarity search and partial alignment in this interac-
tive tool, we have to compute geometric relationships to arbitrary
patches of surfaces selected by a user. Ideally, when the user paints
a ROI, the system can instantly retrieve and align the most (or least)
similar shapes from the collection. However, searching a large
database to satisfy arbitrary partial shape similarity queries is diffi-
cult at interactive rates, while precomputing and storing alignments
for all possible ROIs is unrealistic.

Instead, we take a hybrid approach. In an off-line precomputation,
we construct fuzzy correspondences between points sampled dis-

cretely on surfaces in the collection. Then, during any interactive
session, fuzzy correspondences to the ROI are used to retrieve rele-
vant surfaces and to weight the contributions of point samples when
computing ROI alignments. Effectively, we perform the majority
of matching computation in the off-line phase, while deferring only
the fine-scale refinement of alignments to the interactive phase.

The advantage of this approach is that the off-line phase can in-
fer and leverage low-dimensional structure in the space of shapes
spanned by the collection. It can provide approximate points cor-
respondences that can guide interactive exploration towards inter-
esting shape relationships, which are refined as they are explored.
Next, we describe how the off-line system computes fuzzy corre-
spondences (Section 4) and how the interactive system uses them
for interactive exploration of model collections (Section 5).

4 Computing Fuzzy Correspondences

We cast the problem of computing fuzzy correspondences as a sam-
pling problem, where the goal is to reconstruct the fuzzy correspon-
dence function f (pi, p j). We represent each shape by K discrete
points, and thus a discrete representation of f is an NK ⇥ NK ma-
trix. We further assume geometric and semantic similarity to be
correlated and hence use automatic pairwise matching techniques
to sample entries in f . Note that these pairwise matching meth-
ods are usually slow and error prone especially for diverse shape
collections that differ in geometry and topology, undergo extreme
non-homogeneous deformations, and have missing or extraneous
parts with non-uniform proportions. Specifically, we address two
computational challenges: (i) geometric matching of models is time
consuming and (ii) automatic pairwise alignment methods can pro-
duce semantically incorrect alignments. Thus, the challenge is to
reconstruct f with as few as possible samples obtained with a noisy
sampling procedure.

First, let us denote an approximate correspondence matrix C 2
RNK⇥NK to store computed samples for matched pairs of points.
We make the key observation that in an ideal case, if we assume
that a point on a model corresponds to exactly one unique point on
every other model, then the rank of C is independent of the number
of models (and equals to the number of points, K). We further
use diffusion map to define spectral embedding of C, where each
point on a shape is mapped to a Euclidean space with eigenvectors
scaled by eigenvalues as its coordinates. Since correspondences are
generally smooth (i.e., neighboring points map to close regions),
the embedded points are expected to lie on a low-dimensional man-
ifold where corresponding points are close to each another. We
directly use these distances, also called diffusion distances, to find
the desired function f with f (pi, p j) ⇡ 1 for nearby points. Such
an embedding has two advantages over C: (i) the embedding can be
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Figure 3: In our optimization procedure, we first construct an
initial alignment graph G0, which is further used to fill the corre-
spondence matrix C by aligning shapes connected by an edge. The
spectral embedding of C defines the fuzzy correspondence function
f , which is further used to optimize the alignment graph. We iterate
until the process converges.

To sample fuzzy correspondences, f (pi, p j), we utilize pairwise ge-
ometric matching methods. Although these methods are computa-
tionally expensive and often produce noisy alignments, we observe
that for collections of shapes from the same class a correspondence
matrix that stores high values for corresponding pairs of points
is (i) sparse, (ii) low-rank, and (iii) its rank does not depend on
the number of models. We propose a method based on diffusion
maps [Nadler et al. 2006] to reconstruct f from sparse and noisy
samples (pairwise alignments) and an iterative procedure to adap-
tively guide sampling based on the current estimate of f .

We test the accuracy of our estimate of f using the correspondence
benchmark for intrinsically-similar shapes [Kim et al. 2011]. We
also introduce a new correspondence benchmark of 111 chairs and
86 commercial airplanes using data obtained from the Google 3D
Warehouse. Our method successfully utilizes the collection to im-
prove alignments of shapes in comparison to existing methods (see
Figures 11, 12, and supplementary material).

Contributions. In summary, we
• use fuzzy correspondences to understand similarity relations

across point pairs in a collection of 3D models,
• propose a robust and efficient algorithm to compute fuzzy cor-

respondences from sparse and noisy pairwise alignments,
• evaluate our algorithm on correspondence benchmarks and re-

port substantial improvement over existing alternatives, and
• demonstrate interactive tools for browsing large model collec-

tions including view alignment, partial similarity search, and
faceted exploration.

2 Related Work

Model pairs. Various algorithms have been proposed to align
model pairs under different conditions, e.g., rigid or isometric
deformations, partial overlap, missing data, etc. (see [Besl and
McKay 1992; Mitra et al. 2004; Li et al. 2008] and references
therein). In absence of good initial alignment, researchers have
used manual correspondence for initial placement [Kraevoy and
Sheffer 2004; Schreiner et al. 2004], or proposed purely automatic
methods to search for rigid [Aiger et al. 2008] and as-isometric-
as-possible maps [Bronstein et al. 2006; Lipman and Funkhouser
2009; Ovsjanikov et al. 2010; Sun et al. 2010; Kim et al. 2011].
Such methods, however, make various assumptions about the model
quality and geometric similarity across the models (e.g., near isom-
etry, same topology, etc.). Hence, most existing point-to-point
methods (see [van Kaick et al. 2011]) focus on databases of hu-
man bodies, body parts, and quadruped animals, rather than hetero-
geneous collections with diverse shape variations (e.g., in Google
3D Warehouse). For example, even manually prescribing point-to-
point correspondences among the chairs in Figure 2 is ambiguous
and difficult.

Model collections. Desirable alignment across models often relates
to model semantics and can be difficult to infer purely based on ge-
ometric reasoning of isolated model pairs. Hence, researchers have
collectively analyzed multiple models from the same class to ex-
tract corresponding deformation models and consistent alignments.
In the context of images, Heath et al. [2010] collectively analyze
collections of (segmented) images to identify interesting relation-
ship pathways. In the context of scene graphs, Fisher et al. [2011]
extract placement relationship across various models in a scene.

For certain applications (e.g., annotation transfer among segmented
models), even a coarse part-level correspondence can be sufficient.
In the context of single models, Kalogerakis et al. [2010] propose

Figure 2: Fuzzy correspondence values for two points selected in
different places on a chair. The points shown in dark blue have
largest fuzzy correspondence to the selected points. todo

a data-driven approach to simultaneously segment and label parts
in 3D meshes using a combination of geometric features and con-
textual labels. The segmented parts can be co-analyzed to estab-
lish consistent part-to-part correspondences across multiple mod-
els [Golovinskiy and Funkhouser 2009; Huang et al. 2011; Sidi
et al. 2011]. Extracting parts a priori (i.e., before the user explores
the database), however, limits the types of possible applications,
e.g., in faceted browsing where the user prescribes part boundaries
at runtime. Further, geometrically establishing even part-level cor-
respondence maps can be ambiguous in cases of collections with
large topological variations and is widely considered to be very
challenging (see also [van Kaick et al. 2011]).

In a related attempt, Nguyen et al. [2011] propose an interesting
algorithm to improve point-to-point mappings between model pairs
belonging to collections of shapes. Their method is based on the
assumption that all cycles of consistent maps must return to iden-
tity (and hence implicitly assumes that point-to-point maps can be
consistently established across diverse models). They formulate
the condition using an optimization to iteratively improve 3-cycles,
thus leveraging information from the whole model collection. The
method, however, has three important limitations: (i) it computes
point-to-point correspondences and thus is not applicable to hetero-
geneous quality models, (ii) it propagates information only across
3-cycles and thus converges slowly, and (iii) it only aligns pairs of
models by concatenating full maps, which limits applicability of
this method to heterogeneous datasets where most pairs of models
might not have a bijective map between them. In contrast, using
fuzzy correspondences we align all the models in a single step (see
Figure 11 and supplementary material) and use consistency of per-
point paths to efficiently handle large and diverse datasets.

Diffusion maps. Introduced by Nadler et al. [2006], diffusion maps
provide a probabilistic interpretation of spectral clustering and di-
mension reduction algorithms. Specifically, when correspondences
are represented by real values, diffusion maps allow all points to be
embedded into a Euclidean space with distances induced by con-
sistency of all direct and indirect correspondences. Diffusion maps
have been used for analyzing image collections [Heath et al. 2010],
establishing symmetric correspondences [Lipman et al. 2010], or
clustering similar segments for consistent segmentation [Sidi et al.
2011]. Note that unlike spectral clustering applications, our goal
is to find a low-dimensional manifold to describe in-class deforma-
tions rather than constructing disjoint clusters.

In a related attempt, Sidi et al. [2011] pre-segment each model in-
dividually, map the segments to a suitable descriptor space, and
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then perform spectral clustering to identify consistent segments,
which are finally refined using a graph cut optimization. In con-
trast, we only make use of a sparse set of alignment information
between geometrically similar model pairs and diffuse the infor-
mation to the other model pairs. Intuitively, we use the manifold
induced by spectral embedding to understand the correspondences
across geometrically distant shapes. We formulate an optimization
procedure to iteratively improve the embedding by pruning out
inconsistent or weak pairwise alignments, and adding alignments
that are consistent across all the models in the collection. Further, a
pre-segmented part-based method cannot easily support interactive
exploration over diverse datasets (see Figure 7).

Exploring model collections. Early efforts in 3D model database
search primarily extract clusters in various descriptor spaces to
group models into similar categories (see [Shilane et al. 2004] and
references therein), while some interactive systems allow provid-
ing relevance feedback for search tasks [Giorgi et al. 2010]. Our
focus, however, is to explore and understand model intra-category
variations, which are often subtle.

For few classes of shapes, such as human bodies, one can explicitly
build a generative model that can be used for exploration, analy-
sis, and synthesis [Allen et al. 2003; Anguelov et al. 2005]. Such
methods, however, assume access to a template shape or availability
of consistent point-to-point correspondence across all the models.
Only recently, Ovsjanikov et al. [2011] present an algorithm to ex-
plore global variations in model collections that be explained as low
complexity deformations of part-based template models. They ex-
tract such variations using a coupled spatial-descriptor space analy-
sis. In contrast, we enable region-based exploration allowing users
to interactively add and adapt navigation criteria. Such guided
browsing is particularly useful for diverse collections where the
different regions of individual shapes vary differently.

We draw inspiration from previous research on searching and navi-
gating collections of text-based documents, such as Web pages. In
this domain, most traditional interfaces support hierarchical navi-
gation based on a predefined item categories along with text search
using a bag-of-words approach. More recently faceted brows-
ing [Hearst 2006] allow users to dynamically prescribe multiple
filters or facets to narrow the exploration space. As a key contri-
bution, we enable a form of faceted browsing for large 3D model
collections and demonstrate its potential for interactive exploration.

3 Overview

We have designed an interactive tool for understanding local varia-
tions within large collections of shapes. It allows a user to select an
arbitrary ROI (a single point, a large fraction of the surface, several
disjoint patches, or all of the above) and then explore the collection
to see how typical that ROI is in other shapes in the collection,
what other shapes do (or do not) have matching surfaces, how other
shapes align with the ROI, and so on. Multiple queries of this type
can be combined in a faceted search.

To support similarity search and partial alignment in this interac-
tive tool, we have to compute geometric relationships to arbitrary
patches of surfaces selected by a user. Ideally, when the user paints
a ROI, the system can instantly retrieve and align the most (or least)
similar shapes from the collection. However, searching a large
database to satisfy arbitrary partial shape similarity queries is diffi-
cult at interactive rates, while precomputing and storing alignments
for all possible ROIs is unrealistic.

Instead, we take a hybrid approach. In an off-line precomputation,
we construct fuzzy correspondences between points sampled dis-

cretely on surfaces in the collection. Then, during any interactive
session, fuzzy correspondences to the ROI are used to retrieve rele-
vant surfaces and to weight the contributions of point samples when
computing ROI alignments. Effectively, we perform the majority
of matching computation in the off-line phase, while deferring only
the fine-scale refinement of alignments to the interactive phase.

The advantage of this approach is that the off-line phase can in-
fer and leverage low-dimensional structure in the space of shapes
spanned by the collection. It can provide approximate points cor-
respondences that can guide interactive exploration towards inter-
esting shape relationships, which are refined as they are explored.
Next, we describe how the off-line system computes fuzzy corre-
spondences (Section 4) and how the interactive system uses them
for interactive exploration of model collections (Section 5).

4 Computing Fuzzy Correspondences

We cast the problem of computing fuzzy correspondences as a sam-
pling problem, where the goal is to reconstruct the fuzzy correspon-
dence function f (pi, p j). We represent each shape by K discrete
points, and thus a discrete representation of f is an NK ⇥ NK ma-
trix. We further assume geometric and semantic similarity to be
correlated and hence use automatic pairwise matching techniques
to sample entries in f . Note that these pairwise matching meth-
ods are usually slow and error prone especially for diverse shape
collections that differ in geometry and topology, undergo extreme
non-homogeneous deformations, and have missing or extraneous
parts with non-uniform proportions. Specifically, we address two
computational challenges: (i) geometric matching of models is time
consuming and (ii) automatic pairwise alignment methods can pro-
duce semantically incorrect alignments. Thus, the challenge is to
reconstruct f with as few as possible samples obtained with a noisy
sampling procedure.

First, let us denote an approximate correspondence matrix C 2
RNK⇥NK to store computed samples for matched pairs of points.
We make the key observation that in an ideal case, if we assume
that a point on a model corresponds to exactly one unique point on
every other model, then the rank of C is independent of the number
of models (and equals to the number of points, K). We further
use diffusion map to define spectral embedding of C, where each
point on a shape is mapped to a Euclidean space with eigenvectors
scaled by eigenvalues as its coordinates. Since correspondences are
generally smooth (i.e., neighboring points map to close regions),
the embedded points are expected to lie on a low-dimensional man-
ifold where corresponding points are close to each another. We
directly use these distances, also called diffusion distances, to find
the desired function f with f (pi, p j) ⇡ 1 for nearby points. Such
an embedding has two advantages over C: (i) the embedding can be
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Figure 3: In our optimization procedure, we first construct an
initial alignment graph G0, which is further used to fill the corre-
spondence matrix C by aligning shapes connected by an edge. The
spectral embedding of C defines the fuzzy correspondence function
f , which is further used to optimize the alignment graph. We iterate
until the process converges.

To sample fuzzy correspondences, f (pi, p j), we utilize pairwise ge-
ometric matching methods. Although these methods are computa-
tionally expensive and often produce noisy alignments, we observe
that for collections of shapes from the same class a correspondence
matrix that stores high values for corresponding pairs of points
is (i) sparse, (ii) low-rank, and (iii) its rank does not depend on
the number of models. We propose a method based on diffusion
maps [Nadler et al. 2006] to reconstruct f from sparse and noisy
samples (pairwise alignments) and an iterative procedure to adap-
tively guide sampling based on the current estimate of f .

We test the accuracy of our estimate of f using the correspondence
benchmark for intrinsically-similar shapes [Kim et al. 2011]. We
also introduce a new correspondence benchmark of 111 chairs and
86 commercial airplanes using data obtained from the Google 3D
Warehouse. Our method successfully utilizes the collection to im-
prove alignments of shapes in comparison to existing methods (see
Figures 11, 12, and supplementary material).

Contributions. In summary, we
• use fuzzy correspondences to understand similarity relations

across point pairs in a collection of 3D models,
• propose a robust and efficient algorithm to compute fuzzy cor-

respondences from sparse and noisy pairwise alignments,
• evaluate our algorithm on correspondence benchmarks and re-

port substantial improvement over existing alternatives, and
• demonstrate interactive tools for browsing large model collec-

tions including view alignment, partial similarity search, and
faceted exploration.

2 Related Work

Model pairs. Various algorithms have been proposed to align
model pairs under different conditions, e.g., rigid or isometric
deformations, partial overlap, missing data, etc. (see [Besl and
McKay 1992; Mitra et al. 2004; Li et al. 2008] and references
therein). In absence of good initial alignment, researchers have
used manual correspondence for initial placement [Kraevoy and
Sheffer 2004; Schreiner et al. 2004], or proposed purely automatic
methods to search for rigid [Aiger et al. 2008] and as-isometric-
as-possible maps [Bronstein et al. 2006; Lipman and Funkhouser
2009; Ovsjanikov et al. 2010; Sun et al. 2010; Kim et al. 2011].
Such methods, however, make various assumptions about the model
quality and geometric similarity across the models (e.g., near isom-
etry, same topology, etc.). Hence, most existing point-to-point
methods (see [van Kaick et al. 2011]) focus on databases of hu-
man bodies, body parts, and quadruped animals, rather than hetero-
geneous collections with diverse shape variations (e.g., in Google
3D Warehouse). For example, even manually prescribing point-to-
point correspondences among the chairs in Figure 2 is ambiguous
and difficult.

Model collections. Desirable alignment across models often relates
to model semantics and can be difficult to infer purely based on ge-
ometric reasoning of isolated model pairs. Hence, researchers have
collectively analyzed multiple models from the same class to ex-
tract corresponding deformation models and consistent alignments.
In the context of images, Heath et al. [2010] collectively analyze
collections of (segmented) images to identify interesting relation-
ship pathways. In the context of scene graphs, Fisher et al. [2011]
extract placement relationship across various models in a scene.

For certain applications (e.g., annotation transfer among segmented
models), even a coarse part-level correspondence can be sufficient.
In the context of single models, Kalogerakis et al. [2010] propose

Figure 2: Fuzzy correspondence values for two points selected in
different places on a chair. The points shown in dark blue have
largest fuzzy correspondence to the selected points. todo

a data-driven approach to simultaneously segment and label parts
in 3D meshes using a combination of geometric features and con-
textual labels. The segmented parts can be co-analyzed to estab-
lish consistent part-to-part correspondences across multiple mod-
els [Golovinskiy and Funkhouser 2009; Huang et al. 2011; Sidi
et al. 2011]. Extracting parts a priori (i.e., before the user explores
the database), however, limits the types of possible applications,
e.g., in faceted browsing where the user prescribes part boundaries
at runtime. Further, geometrically establishing even part-level cor-
respondence maps can be ambiguous in cases of collections with
large topological variations and is widely considered to be very
challenging (see also [van Kaick et al. 2011]).

In a related attempt, Nguyen et al. [2011] propose an interesting
algorithm to improve point-to-point mappings between model pairs
belonging to collections of shapes. Their method is based on the
assumption that all cycles of consistent maps must return to iden-
tity (and hence implicitly assumes that point-to-point maps can be
consistently established across diverse models). They formulate
the condition using an optimization to iteratively improve 3-cycles,
thus leveraging information from the whole model collection. The
method, however, has three important limitations: (i) it computes
point-to-point correspondences and thus is not applicable to hetero-
geneous quality models, (ii) it propagates information only across
3-cycles and thus converges slowly, and (iii) it only aligns pairs of
models by concatenating full maps, which limits applicability of
this method to heterogeneous datasets where most pairs of models
might not have a bijective map between them. In contrast, using
fuzzy correspondences we align all the models in a single step (see
Figure 11 and supplementary material) and use consistency of per-
point paths to efficiently handle large and diverse datasets.

Diffusion maps. Introduced by Nadler et al. [2006], diffusion maps
provide a probabilistic interpretation of spectral clustering and di-
mension reduction algorithms. Specifically, when correspondences
are represented by real values, diffusion maps allow all points to be
embedded into a Euclidean space with distances induced by con-
sistency of all direct and indirect correspondences. Diffusion maps
have been used for analyzing image collections [Heath et al. 2010],
establishing symmetric correspondences [Lipman et al. 2010], or
clustering similar segments for consistent segmentation [Sidi et al.
2011]. Note that unlike spectral clustering applications, our goal
is to find a low-dimensional manifold to describe in-class deforma-
tions rather than constructing disjoint clusters.

In a related attempt, Sidi et al. [2011] pre-segment each model in-
dividually, map the segments to a suitable descriptor space, and
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then perform spectral clustering to identify consistent segments,
which are finally refined using a graph cut optimization. In con-
trast, we only make use of a sparse set of alignment information
between geometrically similar model pairs and diffuse the infor-
mation to the other model pairs. Intuitively, we use the manifold
induced by spectral embedding to understand the correspondences
across geometrically distant shapes. We formulate an optimization
procedure to iteratively improve the embedding by pruning out
inconsistent or weak pairwise alignments, and adding alignments
that are consistent across all the models in the collection. Further, a
pre-segmented part-based method cannot easily support interactive
exploration over diverse datasets (see Figure 7).

Exploring model collections. Early efforts in 3D model database
search primarily extract clusters in various descriptor spaces to
group models into similar categories (see [Shilane et al. 2004] and
references therein), while some interactive systems allow provid-
ing relevance feedback for search tasks [Giorgi et al. 2010]. Our
focus, however, is to explore and understand model intra-category
variations, which are often subtle.

For few classes of shapes, such as human bodies, one can explicitly
build a generative model that can be used for exploration, analy-
sis, and synthesis [Allen et al. 2003; Anguelov et al. 2005]. Such
methods, however, assume access to a template shape or availability
of consistent point-to-point correspondence across all the models.
Only recently, Ovsjanikov et al. [2011] present an algorithm to ex-
plore global variations in model collections that be explained as low
complexity deformations of part-based template models. They ex-
tract such variations using a coupled spatial-descriptor space analy-
sis. In contrast, we enable region-based exploration allowing users
to interactively add and adapt navigation criteria. Such guided
browsing is particularly useful for diverse collections where the
different regions of individual shapes vary differently.

We draw inspiration from previous research on searching and navi-
gating collections of text-based documents, such as Web pages. In
this domain, most traditional interfaces support hierarchical navi-
gation based on a predefined item categories along with text search
using a bag-of-words approach. More recently faceted brows-
ing [Hearst 2006] allow users to dynamically prescribe multiple
filters or facets to narrow the exploration space. As a key contri-
bution, we enable a form of faceted browsing for large 3D model
collections and demonstrate its potential for interactive exploration.

3 Overview

We have designed an interactive tool for understanding local varia-
tions within large collections of shapes. It allows a user to select an
arbitrary ROI (a single point, a large fraction of the surface, several
disjoint patches, or all of the above) and then explore the collection
to see how typical that ROI is in other shapes in the collection,
what other shapes do (or do not) have matching surfaces, how other
shapes align with the ROI, and so on. Multiple queries of this type
can be combined in a faceted search.

To support similarity search and partial alignment in this interac-
tive tool, we have to compute geometric relationships to arbitrary
patches of surfaces selected by a user. Ideally, when the user paints
a ROI, the system can instantly retrieve and align the most (or least)
similar shapes from the collection. However, searching a large
database to satisfy arbitrary partial shape similarity queries is diffi-
cult at interactive rates, while precomputing and storing alignments
for all possible ROIs is unrealistic.

Instead, we take a hybrid approach. In an off-line precomputation,
we construct fuzzy correspondences between points sampled dis-

cretely on surfaces in the collection. Then, during any interactive
session, fuzzy correspondences to the ROI are used to retrieve rele-
vant surfaces and to weight the contributions of point samples when
computing ROI alignments. Effectively, we perform the majority
of matching computation in the off-line phase, while deferring only
the fine-scale refinement of alignments to the interactive phase.

The advantage of this approach is that the off-line phase can in-
fer and leverage low-dimensional structure in the space of shapes
spanned by the collection. It can provide approximate points cor-
respondences that can guide interactive exploration towards inter-
esting shape relationships, which are refined as they are explored.
Next, we describe how the off-line system computes fuzzy corre-
spondences (Section 4) and how the interactive system uses them
for interactive exploration of model collections (Section 5).

4 Computing Fuzzy Correspondences

We cast the problem of computing fuzzy correspondences as a sam-
pling problem, where the goal is to reconstruct the fuzzy correspon-
dence function f (pi, p j). We represent each shape by K discrete
points, and thus a discrete representation of f is an NK ⇥ NK ma-
trix. We further assume geometric and semantic similarity to be
correlated and hence use automatic pairwise matching techniques
to sample entries in f . Note that these pairwise matching meth-
ods are usually slow and error prone especially for diverse shape
collections that differ in geometry and topology, undergo extreme
non-homogeneous deformations, and have missing or extraneous
parts with non-uniform proportions. Specifically, we address two
computational challenges: (i) geometric matching of models is time
consuming and (ii) automatic pairwise alignment methods can pro-
duce semantically incorrect alignments. Thus, the challenge is to
reconstruct f with as few as possible samples obtained with a noisy
sampling procedure.

First, let us denote an approximate correspondence matrix C 2
RNK⇥NK to store computed samples for matched pairs of points.
We make the key observation that in an ideal case, if we assume
that a point on a model corresponds to exactly one unique point on
every other model, then the rank of C is independent of the number
of models (and equals to the number of points, K). We further
use diffusion map to define spectral embedding of C, where each
point on a shape is mapped to a Euclidean space with eigenvectors
scaled by eigenvalues as its coordinates. Since correspondences are
generally smooth (i.e., neighboring points map to close regions),
the embedded points are expected to lie on a low-dimensional man-
ifold where corresponding points are close to each another. We
directly use these distances, also called diffusion distances, to find
the desired function f with f (pi, p j) ⇡ 1 for nearby points. Such
an embedding has two advantages over C: (i) the embedding can be
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Figure 3: In our optimization procedure, we first construct an
initial alignment graph G0, which is further used to fill the corre-
spondence matrix C by aligning shapes connected by an edge. The
spectral embedding of C defines the fuzzy correspondence function
f , which is further used to optimize the alignment graph. We iterate
until the process converges.

To sample fuzzy correspondences, f (pi, p j), we utilize pairwise ge-
ometric matching methods. Although these methods are computa-
tionally expensive and often produce noisy alignments, we observe
that for collections of shapes from the same class a correspondence
matrix that stores high values for corresponding pairs of points
is (i) sparse, (ii) low-rank, and (iii) its rank does not depend on
the number of models. We propose a method based on diffusion
maps [Nadler et al. 2006] to reconstruct f from sparse and noisy
samples (pairwise alignments) and an iterative procedure to adap-
tively guide sampling based on the current estimate of f .

We test the accuracy of our estimate of f using the correspondence
benchmark for intrinsically-similar shapes [Kim et al. 2011]. We
also introduce a new correspondence benchmark of 111 chairs and
86 commercial airplanes using data obtained from the Google 3D
Warehouse. Our method successfully utilizes the collection to im-
prove alignments of shapes in comparison to existing methods (see
Figures 11, 12, and supplementary material).

Contributions. In summary, we
• use fuzzy correspondences to understand similarity relations

across point pairs in a collection of 3D models,
• propose a robust and efficient algorithm to compute fuzzy cor-

respondences from sparse and noisy pairwise alignments,
• evaluate our algorithm on correspondence benchmarks and re-

port substantial improvement over existing alternatives, and
• demonstrate interactive tools for browsing large model collec-

tions including view alignment, partial similarity search, and
faceted exploration.

2 Related Work

Model pairs. Various algorithms have been proposed to align
model pairs under different conditions, e.g., rigid or isometric
deformations, partial overlap, missing data, etc. (see [Besl and
McKay 1992; Mitra et al. 2004; Li et al. 2008] and references
therein). In absence of good initial alignment, researchers have
used manual correspondence for initial placement [Kraevoy and
Sheffer 2004; Schreiner et al. 2004], or proposed purely automatic
methods to search for rigid [Aiger et al. 2008] and as-isometric-
as-possible maps [Bronstein et al. 2006; Lipman and Funkhouser
2009; Ovsjanikov et al. 2010; Sun et al. 2010; Kim et al. 2011].
Such methods, however, make various assumptions about the model
quality and geometric similarity across the models (e.g., near isom-
etry, same topology, etc.). Hence, most existing point-to-point
methods (see [van Kaick et al. 2011]) focus on databases of hu-
man bodies, body parts, and quadruped animals, rather than hetero-
geneous collections with diverse shape variations (e.g., in Google
3D Warehouse). For example, even manually prescribing point-to-
point correspondences among the chairs in Figure 2 is ambiguous
and difficult.

Model collections. Desirable alignment across models often relates
to model semantics and can be difficult to infer purely based on ge-
ometric reasoning of isolated model pairs. Hence, researchers have
collectively analyzed multiple models from the same class to ex-
tract corresponding deformation models and consistent alignments.
In the context of images, Heath et al. [2010] collectively analyze
collections of (segmented) images to identify interesting relation-
ship pathways. In the context of scene graphs, Fisher et al. [2011]
extract placement relationship across various models in a scene.

For certain applications (e.g., annotation transfer among segmented
models), even a coarse part-level correspondence can be sufficient.
In the context of single models, Kalogerakis et al. [2010] propose

Figure 2: Fuzzy correspondence values for two points selected in
different places on a chair. The points shown in dark blue have
largest fuzzy correspondence to the selected points. todo

a data-driven approach to simultaneously segment and label parts
in 3D meshes using a combination of geometric features and con-
textual labels. The segmented parts can be co-analyzed to estab-
lish consistent part-to-part correspondences across multiple mod-
els [Golovinskiy and Funkhouser 2009; Huang et al. 2011; Sidi
et al. 2011]. Extracting parts a priori (i.e., before the user explores
the database), however, limits the types of possible applications,
e.g., in faceted browsing where the user prescribes part boundaries
at runtime. Further, geometrically establishing even part-level cor-
respondence maps can be ambiguous in cases of collections with
large topological variations and is widely considered to be very
challenging (see also [van Kaick et al. 2011]).

In a related attempt, Nguyen et al. [2011] propose an interesting
algorithm to improve point-to-point mappings between model pairs
belonging to collections of shapes. Their method is based on the
assumption that all cycles of consistent maps must return to iden-
tity (and hence implicitly assumes that point-to-point maps can be
consistently established across diverse models). They formulate
the condition using an optimization to iteratively improve 3-cycles,
thus leveraging information from the whole model collection. The
method, however, has three important limitations: (i) it computes
point-to-point correspondences and thus is not applicable to hetero-
geneous quality models, (ii) it propagates information only across
3-cycles and thus converges slowly, and (iii) it only aligns pairs of
models by concatenating full maps, which limits applicability of
this method to heterogeneous datasets where most pairs of models
might not have a bijective map between them. In contrast, using
fuzzy correspondences we align all the models in a single step (see
Figure 11 and supplementary material) and use consistency of per-
point paths to efficiently handle large and diverse datasets.

Diffusion maps. Introduced by Nadler et al. [2006], diffusion maps
provide a probabilistic interpretation of spectral clustering and di-
mension reduction algorithms. Specifically, when correspondences
are represented by real values, diffusion maps allow all points to be
embedded into a Euclidean space with distances induced by con-
sistency of all direct and indirect correspondences. Diffusion maps
have been used for analyzing image collections [Heath et al. 2010],
establishing symmetric correspondences [Lipman et al. 2010], or
clustering similar segments for consistent segmentation [Sidi et al.
2011]. Note that unlike spectral clustering applications, our goal
is to find a low-dimensional manifold to describe in-class deforma-
tions rather than constructing disjoint clusters.

In a related attempt, Sidi et al. [2011] pre-segment each model in-
dividually, map the segments to a suitable descriptor space, and
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then perform spectral clustering to identify consistent segments,
which are finally refined using a graph cut optimization. In con-
trast, we only make use of a sparse set of alignment information
between geometrically similar model pairs and diffuse the infor-
mation to the other model pairs. Intuitively, we use the manifold
induced by spectral embedding to understand the correspondences
across geometrically distant shapes. We formulate an optimization
procedure to iteratively improve the embedding by pruning out
inconsistent or weak pairwise alignments, and adding alignments
that are consistent across all the models in the collection. Further, a
pre-segmented part-based method cannot easily support interactive
exploration over diverse datasets (see Figure 7).

Exploring model collections. Early efforts in 3D model database
search primarily extract clusters in various descriptor spaces to
group models into similar categories (see [Shilane et al. 2004] and
references therein), while some interactive systems allow provid-
ing relevance feedback for search tasks [Giorgi et al. 2010]. Our
focus, however, is to explore and understand model intra-category
variations, which are often subtle.

For few classes of shapes, such as human bodies, one can explicitly
build a generative model that can be used for exploration, analy-
sis, and synthesis [Allen et al. 2003; Anguelov et al. 2005]. Such
methods, however, assume access to a template shape or availability
of consistent point-to-point correspondence across all the models.
Only recently, Ovsjanikov et al. [2011] present an algorithm to ex-
plore global variations in model collections that be explained as low
complexity deformations of part-based template models. They ex-
tract such variations using a coupled spatial-descriptor space analy-
sis. In contrast, we enable region-based exploration allowing users
to interactively add and adapt navigation criteria. Such guided
browsing is particularly useful for diverse collections where the
different regions of individual shapes vary differently.

We draw inspiration from previous research on searching and navi-
gating collections of text-based documents, such as Web pages. In
this domain, most traditional interfaces support hierarchical navi-
gation based on a predefined item categories along with text search
using a bag-of-words approach. More recently faceted brows-
ing [Hearst 2006] allow users to dynamically prescribe multiple
filters or facets to narrow the exploration space. As a key contri-
bution, we enable a form of faceted browsing for large 3D model
collections and demonstrate its potential for interactive exploration.

3 Overview

We have designed an interactive tool for understanding local varia-
tions within large collections of shapes. It allows a user to select an
arbitrary ROI (a single point, a large fraction of the surface, several
disjoint patches, or all of the above) and then explore the collection
to see how typical that ROI is in other shapes in the collection,
what other shapes do (or do not) have matching surfaces, how other
shapes align with the ROI, and so on. Multiple queries of this type
can be combined in a faceted search.

To support similarity search and partial alignment in this interac-
tive tool, we have to compute geometric relationships to arbitrary
patches of surfaces selected by a user. Ideally, when the user paints
a ROI, the system can instantly retrieve and align the most (or least)
similar shapes from the collection. However, searching a large
database to satisfy arbitrary partial shape similarity queries is diffi-
cult at interactive rates, while precomputing and storing alignments
for all possible ROIs is unrealistic.

Instead, we take a hybrid approach. In an off-line precomputation,
we construct fuzzy correspondences between points sampled dis-

cretely on surfaces in the collection. Then, during any interactive
session, fuzzy correspondences to the ROI are used to retrieve rele-
vant surfaces and to weight the contributions of point samples when
computing ROI alignments. Effectively, we perform the majority
of matching computation in the off-line phase, while deferring only
the fine-scale refinement of alignments to the interactive phase.

The advantage of this approach is that the off-line phase can in-
fer and leverage low-dimensional structure in the space of shapes
spanned by the collection. It can provide approximate points cor-
respondences that can guide interactive exploration towards inter-
esting shape relationships, which are refined as they are explored.
Next, we describe how the off-line system computes fuzzy corre-
spondences (Section 4) and how the interactive system uses them
for interactive exploration of model collections (Section 5).

4 Computing Fuzzy Correspondences

We cast the problem of computing fuzzy correspondences as a sam-
pling problem, where the goal is to reconstruct the fuzzy correspon-
dence function f (pi, p j). We represent each shape by K discrete
points, and thus a discrete representation of f is an NK ⇥ NK ma-
trix. We further assume geometric and semantic similarity to be
correlated and hence use automatic pairwise matching techniques
to sample entries in f . Note that these pairwise matching meth-
ods are usually slow and error prone especially for diverse shape
collections that differ in geometry and topology, undergo extreme
non-homogeneous deformations, and have missing or extraneous
parts with non-uniform proportions. Specifically, we address two
computational challenges: (i) geometric matching of models is time
consuming and (ii) automatic pairwise alignment methods can pro-
duce semantically incorrect alignments. Thus, the challenge is to
reconstruct f with as few as possible samples obtained with a noisy
sampling procedure.

First, let us denote an approximate correspondence matrix C 2
RNK⇥NK to store computed samples for matched pairs of points.
We make the key observation that in an ideal case, if we assume
that a point on a model corresponds to exactly one unique point on
every other model, then the rank of C is independent of the number
of models (and equals to the number of points, K). We further
use diffusion map to define spectral embedding of C, where each
point on a shape is mapped to a Euclidean space with eigenvectors
scaled by eigenvalues as its coordinates. Since correspondences are
generally smooth (i.e., neighboring points map to close regions),
the embedded points are expected to lie on a low-dimensional man-
ifold where corresponding points are close to each another. We
directly use these distances, also called diffusion distances, to find
the desired function f with f (pi, p j) ⇡ 1 for nearby points. Such
an embedding has two advantages over C: (i) the embedding can be
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Figure 3: In our optimization procedure, we first construct an
initial alignment graph G0, which is further used to fill the corre-
spondence matrix C by aligning shapes connected by an edge. The
spectral embedding of C defines the fuzzy correspondence function
f , which is further used to optimize the alignment graph. We iterate
until the process converges.

To sample fuzzy correspondences, f (pi, p j), we utilize pairwise ge-
ometric matching methods. Although these methods are computa-
tionally expensive and often produce noisy alignments, we observe
that for collections of shapes from the same class a correspondence
matrix that stores high values for corresponding pairs of points
is (i) sparse, (ii) low-rank, and (iii) its rank does not depend on
the number of models. We propose a method based on diffusion
maps [Nadler et al. 2006] to reconstruct f from sparse and noisy
samples (pairwise alignments) and an iterative procedure to adap-
tively guide sampling based on the current estimate of f .

We test the accuracy of our estimate of f using the correspondence
benchmark for intrinsically-similar shapes [Kim et al. 2011]. We
also introduce a new correspondence benchmark of 111 chairs and
86 commercial airplanes using data obtained from the Google 3D
Warehouse. Our method successfully utilizes the collection to im-
prove alignments of shapes in comparison to existing methods (see
Figures 11, 12, and supplementary material).

Contributions. In summary, we
• use fuzzy correspondences to understand similarity relations

across point pairs in a collection of 3D models,
• propose a robust and efficient algorithm to compute fuzzy cor-

respondences from sparse and noisy pairwise alignments,
• evaluate our algorithm on correspondence benchmarks and re-

port substantial improvement over existing alternatives, and
• demonstrate interactive tools for browsing large model collec-

tions including view alignment, partial similarity search, and
faceted exploration.

2 Related Work

Model pairs. Various algorithms have been proposed to align
model pairs under different conditions, e.g., rigid or isometric
deformations, partial overlap, missing data, etc. (see [Besl and
McKay 1992; Mitra et al. 2004; Li et al. 2008] and references
therein). In absence of good initial alignment, researchers have
used manual correspondence for initial placement [Kraevoy and
Sheffer 2004; Schreiner et al. 2004], or proposed purely automatic
methods to search for rigid [Aiger et al. 2008] and as-isometric-
as-possible maps [Bronstein et al. 2006; Lipman and Funkhouser
2009; Ovsjanikov et al. 2010; Sun et al. 2010; Kim et al. 2011].
Such methods, however, make various assumptions about the model
quality and geometric similarity across the models (e.g., near isom-
etry, same topology, etc.). Hence, most existing point-to-point
methods (see [van Kaick et al. 2011]) focus on databases of hu-
man bodies, body parts, and quadruped animals, rather than hetero-
geneous collections with diverse shape variations (e.g., in Google
3D Warehouse). For example, even manually prescribing point-to-
point correspondences among the chairs in Figure 2 is ambiguous
and difficult.

Model collections. Desirable alignment across models often relates
to model semantics and can be difficult to infer purely based on ge-
ometric reasoning of isolated model pairs. Hence, researchers have
collectively analyzed multiple models from the same class to ex-
tract corresponding deformation models and consistent alignments.
In the context of images, Heath et al. [2010] collectively analyze
collections of (segmented) images to identify interesting relation-
ship pathways. In the context of scene graphs, Fisher et al. [2011]
extract placement relationship across various models in a scene.

For certain applications (e.g., annotation transfer among segmented
models), even a coarse part-level correspondence can be sufficient.
In the context of single models, Kalogerakis et al. [2010] propose

Figure 2: Fuzzy correspondence values for two points selected in
different places on a chair. The points shown in dark blue have
largest fuzzy correspondence to the selected points. todo

a data-driven approach to simultaneously segment and label parts
in 3D meshes using a combination of geometric features and con-
textual labels. The segmented parts can be co-analyzed to estab-
lish consistent part-to-part correspondences across multiple mod-
els [Golovinskiy and Funkhouser 2009; Huang et al. 2011; Sidi
et al. 2011]. Extracting parts a priori (i.e., before the user explores
the database), however, limits the types of possible applications,
e.g., in faceted browsing where the user prescribes part boundaries
at runtime. Further, geometrically establishing even part-level cor-
respondence maps can be ambiguous in cases of collections with
large topological variations and is widely considered to be very
challenging (see also [van Kaick et al. 2011]).

In a related attempt, Nguyen et al. [2011] propose an interesting
algorithm to improve point-to-point mappings between model pairs
belonging to collections of shapes. Their method is based on the
assumption that all cycles of consistent maps must return to iden-
tity (and hence implicitly assumes that point-to-point maps can be
consistently established across diverse models). They formulate
the condition using an optimization to iteratively improve 3-cycles,
thus leveraging information from the whole model collection. The
method, however, has three important limitations: (i) it computes
point-to-point correspondences and thus is not applicable to hetero-
geneous quality models, (ii) it propagates information only across
3-cycles and thus converges slowly, and (iii) it only aligns pairs of
models by concatenating full maps, which limits applicability of
this method to heterogeneous datasets where most pairs of models
might not have a bijective map between them. In contrast, using
fuzzy correspondences we align all the models in a single step (see
Figure 11 and supplementary material) and use consistency of per-
point paths to efficiently handle large and diverse datasets.

Diffusion maps. Introduced by Nadler et al. [2006], diffusion maps
provide a probabilistic interpretation of spectral clustering and di-
mension reduction algorithms. Specifically, when correspondences
are represented by real values, diffusion maps allow all points to be
embedded into a Euclidean space with distances induced by con-
sistency of all direct and indirect correspondences. Diffusion maps
have been used for analyzing image collections [Heath et al. 2010],
establishing symmetric correspondences [Lipman et al. 2010], or
clustering similar segments for consistent segmentation [Sidi et al.
2011]. Note that unlike spectral clustering applications, our goal
is to find a low-dimensional manifold to describe in-class deforma-
tions rather than constructing disjoint clusters.

In a related attempt, Sidi et al. [2011] pre-segment each model in-
dividually, map the segments to a suitable descriptor space, and

[Kim et al., Siggraph 2012]
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then perform spectral clustering to identify consistent segments,
which are finally refined using a graph cut optimization. In con-
trast, we only make use of a sparse set of alignment information
between geometrically similar model pairs and diffuse the infor-
mation to the other model pairs. Intuitively, we use the manifold
induced by spectral embedding to understand the correspondences
across geometrically distant shapes. We formulate an optimization
procedure to iteratively improve the embedding by pruning out
inconsistent or weak pairwise alignments, and adding alignments
that are consistent across all the models in the collection. Further, a
pre-segmented part-based method cannot easily support interactive
exploration over diverse datasets (see Figure 7).

Exploring model collections. Early efforts in 3D model database
search primarily extract clusters in various descriptor spaces to
group models into similar categories (see [Shilane et al. 2004] and
references therein), while some interactive systems allow provid-
ing relevance feedback for search tasks [Giorgi et al. 2010]. Our
focus, however, is to explore and understand model intra-category
variations, which are often subtle.

For few classes of shapes, such as human bodies, one can explicitly
build a generative model that can be used for exploration, analy-
sis, and synthesis [Allen et al. 2003; Anguelov et al. 2005]. Such
methods, however, assume access to a template shape or availability
of consistent point-to-point correspondence across all the models.
Only recently, Ovsjanikov et al. [2011] present an algorithm to ex-
plore global variations in model collections that be explained as low
complexity deformations of part-based template models. They ex-
tract such variations using a coupled spatial-descriptor space analy-
sis. In contrast, we enable region-based exploration allowing users
to interactively add and adapt navigation criteria. Such guided
browsing is particularly useful for diverse collections where the
different regions of individual shapes vary differently.

We draw inspiration from previous research on searching and navi-
gating collections of text-based documents, such as Web pages. In
this domain, most traditional interfaces support hierarchical navi-
gation based on a predefined item categories along with text search
using a bag-of-words approach. More recently faceted brows-
ing [Hearst 2006] allow users to dynamically prescribe multiple
filters or facets to narrow the exploration space. As a key contri-
bution, we enable a form of faceted browsing for large 3D model
collections and demonstrate its potential for interactive exploration.

3 Overview

We have designed an interactive tool for understanding local varia-
tions within large collections of shapes. It allows a user to select an
arbitrary ROI (a single point, a large fraction of the surface, several
disjoint patches, or all of the above) and then explore the collection
to see how typical that ROI is in other shapes in the collection,
what other shapes do (or do not) have matching surfaces, how other
shapes align with the ROI, and so on. Multiple queries of this type
can be combined in a faceted search.

To support similarity search and partial alignment in this interac-
tive tool, we have to compute geometric relationships to arbitrary
patches of surfaces selected by a user. Ideally, when the user paints
a ROI, the system can instantly retrieve and align the most (or least)
similar shapes from the collection. However, searching a large
database to satisfy arbitrary partial shape similarity queries is diffi-
cult at interactive rates, while precomputing and storing alignments
for all possible ROIs is unrealistic.

Instead, we take a hybrid approach. In an off-line precomputation,
we construct fuzzy correspondences between points sampled dis-

cretely on surfaces in the collection. Then, during any interactive
session, fuzzy correspondences to the ROI are used to retrieve rele-
vant surfaces and to weight the contributions of point samples when
computing ROI alignments. Effectively, we perform the majority
of matching computation in the off-line phase, while deferring only
the fine-scale refinement of alignments to the interactive phase.

The advantage of this approach is that the off-line phase can in-
fer and leverage low-dimensional structure in the space of shapes
spanned by the collection. It can provide approximate points cor-
respondences that can guide interactive exploration towards inter-
esting shape relationships, which are refined as they are explored.
Next, we describe how the off-line system computes fuzzy corre-
spondences (Section 4) and how the interactive system uses them
for interactive exploration of model collections (Section 5).

4 Computing Fuzzy Correspondences

We cast the problem of computing fuzzy correspondences as a sam-
pling problem, where the goal is to reconstruct the fuzzy correspon-
dence function f (pi, p j). We represent each shape by K discrete
points, and thus a discrete representation of f is an NK ⇥ NK ma-
trix. We further assume geometric and semantic similarity to be
correlated and hence use automatic pairwise matching techniques
to sample entries in f . Note that these pairwise matching meth-
ods are usually slow and error prone especially for diverse shape
collections that differ in geometry and topology, undergo extreme
non-homogeneous deformations, and have missing or extraneous
parts with non-uniform proportions. Specifically, we address two
computational challenges: (i) geometric matching of models is time
consuming and (ii) automatic pairwise alignment methods can pro-
duce semantically incorrect alignments. Thus, the challenge is to
reconstruct f with as few as possible samples obtained with a noisy
sampling procedure.

First, let us denote an approximate correspondence matrix C 2
RNK⇥NK to store computed samples for matched pairs of points.
We make the key observation that in an ideal case, if we assume
that a point on a model corresponds to exactly one unique point on
every other model, then the rank of C is independent of the number
of models (and equals to the number of points, K). We further
use diffusion map to define spectral embedding of C, where each
point on a shape is mapped to a Euclidean space with eigenvectors
scaled by eigenvalues as its coordinates. Since correspondences are
generally smooth (i.e., neighboring points map to close regions),
the embedded points are expected to lie on a low-dimensional man-
ifold where corresponding points are close to each another. We
directly use these distances, also called diffusion distances, to find
the desired function f with f (pi, p j) ⇡ 1 for nearby points. Such
an embedding has two advantages over C: (i) the embedding can be

2.#Construct##
Ini.al#Graph:#G0#

1.#Sample#
Input#Shapes#

6.#Op.mize##
Graph#Gi#

iterate#

5.#Compute#Fuzzy##
Corrs.##f(pi, pj)

4.#Fill#and#embed#
Corr.#Mtx.#C(pi, pj)

3.#Align#Pairs##
of#Shapes#

Figure 3: In our optimization procedure, we first construct an
initial alignment graph G0, which is further used to fill the corre-
spondence matrix C by aligning shapes connected by an edge. The
spectral embedding of C defines the fuzzy correspondence function
f , which is further used to optimize the alignment graph. We iterate
until the process converges.

To sample fuzzy correspondences, f (pi, p j), we utilize pairwise ge-
ometric matching methods. Although these methods are computa-
tionally expensive and often produce noisy alignments, we observe
that for collections of shapes from the same class a correspondence
matrix that stores high values for corresponding pairs of points
is (i) sparse, (ii) low-rank, and (iii) its rank does not depend on
the number of models. We propose a method based on diffusion
maps [Nadler et al. 2006] to reconstruct f from sparse and noisy
samples (pairwise alignments) and an iterative procedure to adap-
tively guide sampling based on the current estimate of f .

We test the accuracy of our estimate of f using the correspondence
benchmark for intrinsically-similar shapes [Kim et al. 2011]. We
also introduce a new correspondence benchmark of 111 chairs and
86 commercial airplanes using data obtained from the Google 3D
Warehouse. Our method successfully utilizes the collection to im-
prove alignments of shapes in comparison to existing methods (see
Figures 11, 12, and supplementary material).

Contributions. In summary, we
• use fuzzy correspondences to understand similarity relations

across point pairs in a collection of 3D models,
• propose a robust and efficient algorithm to compute fuzzy cor-

respondences from sparse and noisy pairwise alignments,
• evaluate our algorithm on correspondence benchmarks and re-

port substantial improvement over existing alternatives, and
• demonstrate interactive tools for browsing large model collec-

tions including view alignment, partial similarity search, and
faceted exploration.

2 Related Work

Model pairs. Various algorithms have been proposed to align
model pairs under different conditions, e.g., rigid or isometric
deformations, partial overlap, missing data, etc. (see [Besl and
McKay 1992; Mitra et al. 2004; Li et al. 2008] and references
therein). In absence of good initial alignment, researchers have
used manual correspondence for initial placement [Kraevoy and
Sheffer 2004; Schreiner et al. 2004], or proposed purely automatic
methods to search for rigid [Aiger et al. 2008] and as-isometric-
as-possible maps [Bronstein et al. 2006; Lipman and Funkhouser
2009; Ovsjanikov et al. 2010; Sun et al. 2010; Kim et al. 2011].
Such methods, however, make various assumptions about the model
quality and geometric similarity across the models (e.g., near isom-
etry, same topology, etc.). Hence, most existing point-to-point
methods (see [van Kaick et al. 2011]) focus on databases of hu-
man bodies, body parts, and quadruped animals, rather than hetero-
geneous collections with diverse shape variations (e.g., in Google
3D Warehouse). For example, even manually prescribing point-to-
point correspondences among the chairs in Figure 2 is ambiguous
and difficult.

Model collections. Desirable alignment across models often relates
to model semantics and can be difficult to infer purely based on ge-
ometric reasoning of isolated model pairs. Hence, researchers have
collectively analyzed multiple models from the same class to ex-
tract corresponding deformation models and consistent alignments.
In the context of images, Heath et al. [2010] collectively analyze
collections of (segmented) images to identify interesting relation-
ship pathways. In the context of scene graphs, Fisher et al. [2011]
extract placement relationship across various models in a scene.

For certain applications (e.g., annotation transfer among segmented
models), even a coarse part-level correspondence can be sufficient.
In the context of single models, Kalogerakis et al. [2010] propose

Figure 2: Fuzzy correspondence values for two points selected in
different places on a chair. The points shown in dark blue have
largest fuzzy correspondence to the selected points. todo

a data-driven approach to simultaneously segment and label parts
in 3D meshes using a combination of geometric features and con-
textual labels. The segmented parts can be co-analyzed to estab-
lish consistent part-to-part correspondences across multiple mod-
els [Golovinskiy and Funkhouser 2009; Huang et al. 2011; Sidi
et al. 2011]. Extracting parts a priori (i.e., before the user explores
the database), however, limits the types of possible applications,
e.g., in faceted browsing where the user prescribes part boundaries
at runtime. Further, geometrically establishing even part-level cor-
respondence maps can be ambiguous in cases of collections with
large topological variations and is widely considered to be very
challenging (see also [van Kaick et al. 2011]).

In a related attempt, Nguyen et al. [2011] propose an interesting
algorithm to improve point-to-point mappings between model pairs
belonging to collections of shapes. Their method is based on the
assumption that all cycles of consistent maps must return to iden-
tity (and hence implicitly assumes that point-to-point maps can be
consistently established across diverse models). They formulate
the condition using an optimization to iteratively improve 3-cycles,
thus leveraging information from the whole model collection. The
method, however, has three important limitations: (i) it computes
point-to-point correspondences and thus is not applicable to hetero-
geneous quality models, (ii) it propagates information only across
3-cycles and thus converges slowly, and (iii) it only aligns pairs of
models by concatenating full maps, which limits applicability of
this method to heterogeneous datasets where most pairs of models
might not have a bijective map between them. In contrast, using
fuzzy correspondences we align all the models in a single step (see
Figure 11 and supplementary material) and use consistency of per-
point paths to efficiently handle large and diverse datasets.

Diffusion maps. Introduced by Nadler et al. [2006], diffusion maps
provide a probabilistic interpretation of spectral clustering and di-
mension reduction algorithms. Specifically, when correspondences
are represented by real values, diffusion maps allow all points to be
embedded into a Euclidean space with distances induced by con-
sistency of all direct and indirect correspondences. Diffusion maps
have been used for analyzing image collections [Heath et al. 2010],
establishing symmetric correspondences [Lipman et al. 2010], or
clustering similar segments for consistent segmentation [Sidi et al.
2011]. Note that unlike spectral clustering applications, our goal
is to find a low-dimensional manifold to describe in-class deforma-
tions rather than constructing disjoint clusters.

In a related attempt, Sidi et al. [2011] pre-segment each model in-
dividually, map the segments to a suitable descriptor space, and
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then perform spectral clustering to identify consistent segments,
which are finally refined using a graph cut optimization. In con-
trast, we only make use of a sparse set of alignment information
between geometrically similar model pairs and diffuse the infor-
mation to the other model pairs. Intuitively, we use the manifold
induced by spectral embedding to understand the correspondences
across geometrically distant shapes. We formulate an optimization
procedure to iteratively improve the embedding by pruning out
inconsistent or weak pairwise alignments, and adding alignments
that are consistent across all the models in the collection. Further, a
pre-segmented part-based method cannot easily support interactive
exploration over diverse datasets (see Figure 7).

Exploring model collections. Early efforts in 3D model database
search primarily extract clusters in various descriptor spaces to
group models into similar categories (see [Shilane et al. 2004] and
references therein), while some interactive systems allow provid-
ing relevance feedback for search tasks [Giorgi et al. 2010]. Our
focus, however, is to explore and understand model intra-category
variations, which are often subtle.

For few classes of shapes, such as human bodies, one can explicitly
build a generative model that can be used for exploration, analy-
sis, and synthesis [Allen et al. 2003; Anguelov et al. 2005]. Such
methods, however, assume access to a template shape or availability
of consistent point-to-point correspondence across all the models.
Only recently, Ovsjanikov et al. [2011] present an algorithm to ex-
plore global variations in model collections that be explained as low
complexity deformations of part-based template models. They ex-
tract such variations using a coupled spatial-descriptor space analy-
sis. In contrast, we enable region-based exploration allowing users
to interactively add and adapt navigation criteria. Such guided
browsing is particularly useful for diverse collections where the
different regions of individual shapes vary differently.

We draw inspiration from previous research on searching and navi-
gating collections of text-based documents, such as Web pages. In
this domain, most traditional interfaces support hierarchical navi-
gation based on a predefined item categories along with text search
using a bag-of-words approach. More recently faceted brows-
ing [Hearst 2006] allow users to dynamically prescribe multiple
filters or facets to narrow the exploration space. As a key contri-
bution, we enable a form of faceted browsing for large 3D model
collections and demonstrate its potential for interactive exploration.

3 Overview

We have designed an interactive tool for understanding local varia-
tions within large collections of shapes. It allows a user to select an
arbitrary ROI (a single point, a large fraction of the surface, several
disjoint patches, or all of the above) and then explore the collection
to see how typical that ROI is in other shapes in the collection,
what other shapes do (or do not) have matching surfaces, how other
shapes align with the ROI, and so on. Multiple queries of this type
can be combined in a faceted search.

To support similarity search and partial alignment in this interac-
tive tool, we have to compute geometric relationships to arbitrary
patches of surfaces selected by a user. Ideally, when the user paints
a ROI, the system can instantly retrieve and align the most (or least)
similar shapes from the collection. However, searching a large
database to satisfy arbitrary partial shape similarity queries is diffi-
cult at interactive rates, while precomputing and storing alignments
for all possible ROIs is unrealistic.

Instead, we take a hybrid approach. In an off-line precomputation,
we construct fuzzy correspondences between points sampled dis-

cretely on surfaces in the collection. Then, during any interactive
session, fuzzy correspondences to the ROI are used to retrieve rele-
vant surfaces and to weight the contributions of point samples when
computing ROI alignments. Effectively, we perform the majority
of matching computation in the off-line phase, while deferring only
the fine-scale refinement of alignments to the interactive phase.

The advantage of this approach is that the off-line phase can in-
fer and leverage low-dimensional structure in the space of shapes
spanned by the collection. It can provide approximate points cor-
respondences that can guide interactive exploration towards inter-
esting shape relationships, which are refined as they are explored.
Next, we describe how the off-line system computes fuzzy corre-
spondences (Section 4) and how the interactive system uses them
for interactive exploration of model collections (Section 5).

4 Computing Fuzzy Correspondences

We cast the problem of computing fuzzy correspondences as a sam-
pling problem, where the goal is to reconstruct the fuzzy correspon-
dence function f (pi, p j). We represent each shape by K discrete
points, and thus a discrete representation of f is an NK ⇥ NK ma-
trix. We further assume geometric and semantic similarity to be
correlated and hence use automatic pairwise matching techniques
to sample entries in f . Note that these pairwise matching meth-
ods are usually slow and error prone especially for diverse shape
collections that differ in geometry and topology, undergo extreme
non-homogeneous deformations, and have missing or extraneous
parts with non-uniform proportions. Specifically, we address two
computational challenges: (i) geometric matching of models is time
consuming and (ii) automatic pairwise alignment methods can pro-
duce semantically incorrect alignments. Thus, the challenge is to
reconstruct f with as few as possible samples obtained with a noisy
sampling procedure.

First, let us denote an approximate correspondence matrix C 2
RNK⇥NK to store computed samples for matched pairs of points.
We make the key observation that in an ideal case, if we assume
that a point on a model corresponds to exactly one unique point on
every other model, then the rank of C is independent of the number
of models (and equals to the number of points, K). We further
use diffusion map to define spectral embedding of C, where each
point on a shape is mapped to a Euclidean space with eigenvectors
scaled by eigenvalues as its coordinates. Since correspondences are
generally smooth (i.e., neighboring points map to close regions),
the embedded points are expected to lie on a low-dimensional man-
ifold where corresponding points are close to each another. We
directly use these distances, also called diffusion distances, to find
the desired function f with f (pi, p j) ⇡ 1 for nearby points. Such
an embedding has two advantages over C: (i) the embedding can be
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Figure 3: In our optimization procedure, we first construct an
initial alignment graph G0, which is further used to fill the corre-
spondence matrix C by aligning shapes connected by an edge. The
spectral embedding of C defines the fuzzy correspondence function
f , which is further used to optimize the alignment graph. We iterate
until the process converges.

To sample fuzzy correspondences, f (pi, p j), we utilize pairwise ge-
ometric matching methods. Although these methods are computa-
tionally expensive and often produce noisy alignments, we observe
that for collections of shapes from the same class a correspondence
matrix that stores high values for corresponding pairs of points
is (i) sparse, (ii) low-rank, and (iii) its rank does not depend on
the number of models. We propose a method based on diffusion
maps [Nadler et al. 2006] to reconstruct f from sparse and noisy
samples (pairwise alignments) and an iterative procedure to adap-
tively guide sampling based on the current estimate of f .

We test the accuracy of our estimate of f using the correspondence
benchmark for intrinsically-similar shapes [Kim et al. 2011]. We
also introduce a new correspondence benchmark of 111 chairs and
86 commercial airplanes using data obtained from the Google 3D
Warehouse. Our method successfully utilizes the collection to im-
prove alignments of shapes in comparison to existing methods (see
Figures 11, 12, and supplementary material).

Contributions. In summary, we
• use fuzzy correspondences to understand similarity relations

across point pairs in a collection of 3D models,
• propose a robust and efficient algorithm to compute fuzzy cor-

respondences from sparse and noisy pairwise alignments,
• evaluate our algorithm on correspondence benchmarks and re-

port substantial improvement over existing alternatives, and
• demonstrate interactive tools for browsing large model collec-

tions including view alignment, partial similarity search, and
faceted exploration.

2 Related Work

Model pairs. Various algorithms have been proposed to align
model pairs under different conditions, e.g., rigid or isometric
deformations, partial overlap, missing data, etc. (see [Besl and
McKay 1992; Mitra et al. 2004; Li et al. 2008] and references
therein). In absence of good initial alignment, researchers have
used manual correspondence for initial placement [Kraevoy and
Sheffer 2004; Schreiner et al. 2004], or proposed purely automatic
methods to search for rigid [Aiger et al. 2008] and as-isometric-
as-possible maps [Bronstein et al. 2006; Lipman and Funkhouser
2009; Ovsjanikov et al. 2010; Sun et al. 2010; Kim et al. 2011].
Such methods, however, make various assumptions about the model
quality and geometric similarity across the models (e.g., near isom-
etry, same topology, etc.). Hence, most existing point-to-point
methods (see [van Kaick et al. 2011]) focus on databases of hu-
man bodies, body parts, and quadruped animals, rather than hetero-
geneous collections with diverse shape variations (e.g., in Google
3D Warehouse). For example, even manually prescribing point-to-
point correspondences among the chairs in Figure 2 is ambiguous
and difficult.

Model collections. Desirable alignment across models often relates
to model semantics and can be difficult to infer purely based on ge-
ometric reasoning of isolated model pairs. Hence, researchers have
collectively analyzed multiple models from the same class to ex-
tract corresponding deformation models and consistent alignments.
In the context of images, Heath et al. [2010] collectively analyze
collections of (segmented) images to identify interesting relation-
ship pathways. In the context of scene graphs, Fisher et al. [2011]
extract placement relationship across various models in a scene.

For certain applications (e.g., annotation transfer among segmented
models), even a coarse part-level correspondence can be sufficient.
In the context of single models, Kalogerakis et al. [2010] propose

Figure 2: Fuzzy correspondence values for two points selected in
different places on a chair. The points shown in dark blue have
largest fuzzy correspondence to the selected points. todo

a data-driven approach to simultaneously segment and label parts
in 3D meshes using a combination of geometric features and con-
textual labels. The segmented parts can be co-analyzed to estab-
lish consistent part-to-part correspondences across multiple mod-
els [Golovinskiy and Funkhouser 2009; Huang et al. 2011; Sidi
et al. 2011]. Extracting parts a priori (i.e., before the user explores
the database), however, limits the types of possible applications,
e.g., in faceted browsing where the user prescribes part boundaries
at runtime. Further, geometrically establishing even part-level cor-
respondence maps can be ambiguous in cases of collections with
large topological variations and is widely considered to be very
challenging (see also [van Kaick et al. 2011]).

In a related attempt, Nguyen et al. [2011] propose an interesting
algorithm to improve point-to-point mappings between model pairs
belonging to collections of shapes. Their method is based on the
assumption that all cycles of consistent maps must return to iden-
tity (and hence implicitly assumes that point-to-point maps can be
consistently established across diverse models). They formulate
the condition using an optimization to iteratively improve 3-cycles,
thus leveraging information from the whole model collection. The
method, however, has three important limitations: (i) it computes
point-to-point correspondences and thus is not applicable to hetero-
geneous quality models, (ii) it propagates information only across
3-cycles and thus converges slowly, and (iii) it only aligns pairs of
models by concatenating full maps, which limits applicability of
this method to heterogeneous datasets where most pairs of models
might not have a bijective map between them. In contrast, using
fuzzy correspondences we align all the models in a single step (see
Figure 11 and supplementary material) and use consistency of per-
point paths to efficiently handle large and diverse datasets.

Diffusion maps. Introduced by Nadler et al. [2006], diffusion maps
provide a probabilistic interpretation of spectral clustering and di-
mension reduction algorithms. Specifically, when correspondences
are represented by real values, diffusion maps allow all points to be
embedded into a Euclidean space with distances induced by con-
sistency of all direct and indirect correspondences. Diffusion maps
have been used for analyzing image collections [Heath et al. 2010],
establishing symmetric correspondences [Lipman et al. 2010], or
clustering similar segments for consistent segmentation [Sidi et al.
2011]. Note that unlike spectral clustering applications, our goal
is to find a low-dimensional manifold to describe in-class deforma-
tions rather than constructing disjoint clusters.

In a related attempt, Sidi et al. [2011] pre-segment each model in-
dividually, map the segments to a suitable descriptor space, and

[Kim et al., Siggraph 2012]
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S := {S1, S2, . . . , SN}

f(pi, pj) : S⇥ S ! R

then perform spectral clustering to identify consistent segments,
which are finally refined using a graph cut optimization. In con-
trast, we only make use of a sparse set of alignment information
between geometrically similar model pairs and diffuse the infor-
mation to the other model pairs. Intuitively, we use the manifold
induced by spectral embedding to understand the correspondences
across geometrically distant shapes. We formulate an optimization
procedure to iteratively improve the embedding by pruning out
inconsistent or weak pairwise alignments, and adding alignments
that are consistent across all the models in the collection. Further, a
pre-segmented part-based method cannot easily support interactive
exploration over diverse datasets (see Figure 7).

Exploring model collections. Early efforts in 3D model database
search primarily extract clusters in various descriptor spaces to
group models into similar categories (see [Shilane et al. 2004] and
references therein), while some interactive systems allow provid-
ing relevance feedback for search tasks [Giorgi et al. 2010]. Our
focus, however, is to explore and understand model intra-category
variations, which are often subtle.

For few classes of shapes, such as human bodies, one can explicitly
build a generative model that can be used for exploration, analy-
sis, and synthesis [Allen et al. 2003; Anguelov et al. 2005]. Such
methods, however, assume access to a template shape or availability
of consistent point-to-point correspondence across all the models.
Only recently, Ovsjanikov et al. [2011] present an algorithm to ex-
plore global variations in model collections that be explained as low
complexity deformations of part-based template models. They ex-
tract such variations using a coupled spatial-descriptor space analy-
sis. In contrast, we enable region-based exploration allowing users
to interactively add and adapt navigation criteria. Such guided
browsing is particularly useful for diverse collections where the
different regions of individual shapes vary differently.

We draw inspiration from previous research on searching and navi-
gating collections of text-based documents, such as Web pages. In
this domain, most traditional interfaces support hierarchical navi-
gation based on a predefined item categories along with text search
using a bag-of-words approach. More recently faceted brows-
ing [Hearst 2006] allow users to dynamically prescribe multiple
filters or facets to narrow the exploration space. As a key contri-
bution, we enable a form of faceted browsing for large 3D model
collections and demonstrate its potential for interactive exploration.

3 Overview

We have designed an interactive tool for understanding local varia-
tions within large collections of shapes. It allows a user to select an
arbitrary ROI (a single point, a large fraction of the surface, several
disjoint patches, or all of the above) and then explore the collection
to see how typical that ROI is in other shapes in the collection,
what other shapes do (or do not) have matching surfaces, how other
shapes align with the ROI, and so on. Multiple queries of this type
can be combined in a faceted search.

To support similarity search and partial alignment in this interac-
tive tool, we have to compute geometric relationships to arbitrary
patches of surfaces selected by a user. Ideally, when the user paints
a ROI, the system can instantly retrieve and align the most (or least)
similar shapes from the collection. However, searching a large
database to satisfy arbitrary partial shape similarity queries is diffi-
cult at interactive rates, while precomputing and storing alignments
for all possible ROIs is unrealistic.

Instead, we take a hybrid approach. In an off-line precomputation,
we construct fuzzy correspondences between points sampled dis-

cretely on surfaces in the collection. Then, during any interactive
session, fuzzy correspondences to the ROI are used to retrieve rele-
vant surfaces and to weight the contributions of point samples when
computing ROI alignments. Effectively, we perform the majority
of matching computation in the off-line phase, while deferring only
the fine-scale refinement of alignments to the interactive phase.

The advantage of this approach is that the off-line phase can in-
fer and leverage low-dimensional structure in the space of shapes
spanned by the collection. It can provide approximate points cor-
respondences that can guide interactive exploration towards inter-
esting shape relationships, which are refined as they are explored.
Next, we describe how the off-line system computes fuzzy corre-
spondences (Section 4) and how the interactive system uses them
for interactive exploration of model collections (Section 5).

4 Computing Fuzzy Correspondences

We cast the problem of computing fuzzy correspondences as a sam-
pling problem, where the goal is to reconstruct the fuzzy correspon-
dence function f (pi, p j). We represent each shape by K discrete
points, and thus a discrete representation of f is an NK ⇥ NK ma-
trix. We further assume geometric and semantic similarity to be
correlated and hence use automatic pairwise matching techniques
to sample entries in f . Note that these pairwise matching meth-
ods are usually slow and error prone especially for diverse shape
collections that differ in geometry and topology, undergo extreme
non-homogeneous deformations, and have missing or extraneous
parts with non-uniform proportions. Specifically, we address two
computational challenges: (i) geometric matching of models is time
consuming and (ii) automatic pairwise alignment methods can pro-
duce semantically incorrect alignments. Thus, the challenge is to
reconstruct f with as few as possible samples obtained with a noisy
sampling procedure.

First, let us denote an approximate correspondence matrix C 2
RNK⇥NK to store computed samples for matched pairs of points.
We make the key observation that in an ideal case, if we assume
that a point on a model corresponds to exactly one unique point on
every other model, then the rank of C is independent of the number
of models (and equals to the number of points, K). We further
use diffusion map to define spectral embedding of C, where each
point on a shape is mapped to a Euclidean space with eigenvectors
scaled by eigenvalues as its coordinates. Since correspondences are
generally smooth (i.e., neighboring points map to close regions),
the embedded points are expected to lie on a low-dimensional man-
ifold where corresponding points are close to each another. We
directly use these distances, also called diffusion distances, to find
the desired function f with f (pi, p j) ⇡ 1 for nearby points. Such
an embedding has two advantages over C: (i) the embedding can be
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1.#Sample#
Input#Shapes#
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Graph#Gi#

iterate#

5.#Compute#Fuzzy##
Corrs.##f(pi, pj)

4.#Fill#and#embed#
Corr.#Mtx.#C(pi, pj)

3.#Align#Pairs##
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Figure 3: In our optimization procedure, we first construct an
initial alignment graph G0, which is further used to fill the corre-
spondence matrix C by aligning shapes connected by an edge. The
spectral embedding of C defines the fuzzy correspondence function
f , which is further used to optimize the alignment graph. We iterate
until the process converges.

To sample fuzzy correspondences, f (pi, p j), we utilize pairwise ge-
ometric matching methods. Although these methods are computa-
tionally expensive and often produce noisy alignments, we observe
that for collections of shapes from the same class a correspondence
matrix that stores high values for corresponding pairs of points
is (i) sparse, (ii) low-rank, and (iii) its rank does not depend on
the number of models. We propose a method based on diffusion
maps [Nadler et al. 2006] to reconstruct f from sparse and noisy
samples (pairwise alignments) and an iterative procedure to adap-
tively guide sampling based on the current estimate of f .

We test the accuracy of our estimate of f using the correspondence
benchmark for intrinsically-similar shapes [Kim et al. 2011]. We
also introduce a new correspondence benchmark of 111 chairs and
86 commercial airplanes using data obtained from the Google 3D
Warehouse. Our method successfully utilizes the collection to im-
prove alignments of shapes in comparison to existing methods (see
Figures 11, 12, and supplementary material).

Contributions. In summary, we
• use fuzzy correspondences to understand similarity relations

across point pairs in a collection of 3D models,
• propose a robust and efficient algorithm to compute fuzzy cor-

respondences from sparse and noisy pairwise alignments,
• evaluate our algorithm on correspondence benchmarks and re-

port substantial improvement over existing alternatives, and
• demonstrate interactive tools for browsing large model collec-

tions including view alignment, partial similarity search, and
faceted exploration.

2 Related Work

Model pairs. Various algorithms have been proposed to align
model pairs under different conditions, e.g., rigid or isometric
deformations, partial overlap, missing data, etc. (see [Besl and
McKay 1992; Mitra et al. 2004; Li et al. 2008] and references
therein). In absence of good initial alignment, researchers have
used manual correspondence for initial placement [Kraevoy and
Sheffer 2004; Schreiner et al. 2004], or proposed purely automatic
methods to search for rigid [Aiger et al. 2008] and as-isometric-
as-possible maps [Bronstein et al. 2006; Lipman and Funkhouser
2009; Ovsjanikov et al. 2010; Sun et al. 2010; Kim et al. 2011].
Such methods, however, make various assumptions about the model
quality and geometric similarity across the models (e.g., near isom-
etry, same topology, etc.). Hence, most existing point-to-point
methods (see [van Kaick et al. 2011]) focus on databases of hu-
man bodies, body parts, and quadruped animals, rather than hetero-
geneous collections with diverse shape variations (e.g., in Google
3D Warehouse). For example, even manually prescribing point-to-
point correspondences among the chairs in Figure 2 is ambiguous
and difficult.

Model collections. Desirable alignment across models often relates
to model semantics and can be difficult to infer purely based on ge-
ometric reasoning of isolated model pairs. Hence, researchers have
collectively analyzed multiple models from the same class to ex-
tract corresponding deformation models and consistent alignments.
In the context of images, Heath et al. [2010] collectively analyze
collections of (segmented) images to identify interesting relation-
ship pathways. In the context of scene graphs, Fisher et al. [2011]
extract placement relationship across various models in a scene.

For certain applications (e.g., annotation transfer among segmented
models), even a coarse part-level correspondence can be sufficient.
In the context of single models, Kalogerakis et al. [2010] propose

Figure 2: Fuzzy correspondence values for two points selected in
different places on a chair. The points shown in dark blue have
largest fuzzy correspondence to the selected points. todo

a data-driven approach to simultaneously segment and label parts
in 3D meshes using a combination of geometric features and con-
textual labels. The segmented parts can be co-analyzed to estab-
lish consistent part-to-part correspondences across multiple mod-
els [Golovinskiy and Funkhouser 2009; Huang et al. 2011; Sidi
et al. 2011]. Extracting parts a priori (i.e., before the user explores
the database), however, limits the types of possible applications,
e.g., in faceted browsing where the user prescribes part boundaries
at runtime. Further, geometrically establishing even part-level cor-
respondence maps can be ambiguous in cases of collections with
large topological variations and is widely considered to be very
challenging (see also [van Kaick et al. 2011]).

In a related attempt, Nguyen et al. [2011] propose an interesting
algorithm to improve point-to-point mappings between model pairs
belonging to collections of shapes. Their method is based on the
assumption that all cycles of consistent maps must return to iden-
tity (and hence implicitly assumes that point-to-point maps can be
consistently established across diverse models). They formulate
the condition using an optimization to iteratively improve 3-cycles,
thus leveraging information from the whole model collection. The
method, however, has three important limitations: (i) it computes
point-to-point correspondences and thus is not applicable to hetero-
geneous quality models, (ii) it propagates information only across
3-cycles and thus converges slowly, and (iii) it only aligns pairs of
models by concatenating full maps, which limits applicability of
this method to heterogeneous datasets where most pairs of models
might not have a bijective map between them. In contrast, using
fuzzy correspondences we align all the models in a single step (see
Figure 11 and supplementary material) and use consistency of per-
point paths to efficiently handle large and diverse datasets.

Diffusion maps. Introduced by Nadler et al. [2006], diffusion maps
provide a probabilistic interpretation of spectral clustering and di-
mension reduction algorithms. Specifically, when correspondences
are represented by real values, diffusion maps allow all points to be
embedded into a Euclidean space with distances induced by con-
sistency of all direct and indirect correspondences. Diffusion maps
have been used for analyzing image collections [Heath et al. 2010],
establishing symmetric correspondences [Lipman et al. 2010], or
clustering similar segments for consistent segmentation [Sidi et al.
2011]. Note that unlike spectral clustering applications, our goal
is to find a low-dimensional manifold to describe in-class deforma-
tions rather than constructing disjoint clusters.

In a related attempt, Sidi et al. [2011] pre-segment each model in-
dividually, map the segments to a suitable descriptor space, and

[Kim et al., Siggraph 2012]
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found without aligning all the point pairs, and (ii) the embedding is
robust with respect to noise.

The only remaining challenge is to align a small subset of pairs
of models to best approximate the embedding. Let us define an
alignment graph G(S, A) where nodes are shapes and edges (a 2 A)
are geometric alignments of pairs of models. Each edge a has an
associated alignment parameter f (e.g., an affine transformation, an
intrinsic map, etc.), and computes a block in the correspondence
matrix C for all pairs of points on the two models connected by
that edge. We would like to construct a graph G that would min-
imize noise by only including edges between comparable shapes,
and have multiple paths between pairs of models to compensate
for possible misalignments. We propose an optimization procedure
that starts with an initial graph G and iteratively updates the edges
to improve the embedding. We now describe the individual steps of
our computational pipeline (see Figure 3).

Step 1: Sample input shapes. We represent any shape Si by a
discrete set of sample points Pi. The set is produced by starting
with a random vertex and then iteratively adding vertices that are
farthest from the set until |Pi| = K = 128 [Eldar et al. 1997]. We
only estimate the fuzzy correspondence function for pairs of points
in Pi across different models, and then interpolate the function to
the rest of the shape using nearest-neighbor interpolation.

Step 2: Construct an initial alignment graph. We want to con-
struct an initial graph G0(S, A0), such that (i) edges in A0 only
connect shapes similar enough to be matched automatically, and
(ii) any pair of shapes has multiple paths between them so that the
embedding is robust to misalignments.

The first idea is demonstrated in Figure 4 where airplane models
are the nodes of the graph and edges are produced by an affine
alignment with a transformation that minimizes surface distance.
Note that the airplanes with wings closer to the nose are misaligned
with models that have position closer to the tail. In this case, just
having a linear noise-free alignment graph GB (where only similar
models are matched) leads to a more accurate embedding (right
column), while a complete noisy graph GA results in blending of
correspondences for the wings (left column).

In order to avoid comparing geometrically diverse shapes, we use
a shape descriptor to predict which shapes might be aligned more
robustly. More specifically, we use dot product of spherical har-
monics shape descriptors [Kazhdan et al. 2003] to define potential
similarity across all pairs of shapes. Another desirable property
of the graph G0 is to have multiple paths between pairs of mod-
els to correct for pairwise misalignments. We achieve this using
edge rank as proposed by Heath et al. [2010]: Given a connected
graph and a set of candidate edges (not yet in the graph), the edge
rank greedily sorts the canidate edges giving higher priority to the
ones that would improve the algebraic connectivity, which is mea-
sured by the second smallest eigenvalue. We iteratively add such
edges between pairs of nodes i, j with the maximal absolute differ-
ence between the ith and jth elements of the Fiedler vector of the
connectivity matrix of G. We refer the reader to Wang and Van
Mieghem [2008] and Heath et al. [2010] for further details.

To create the initial alignment graph G0, we first create a minimal
spanning tree based on the spherical harmonic descriptors. Next,
we select a set of candidate edges using 3M nearest neighbors of
each node (M = 5 in our experiments). Finally, we edge rank the
candidate edges and pick the first N · M edges (roughly M edges
per shape). Higher M encourages improving the connectivity of G.

Step 3a: Align pairs of shapes extrinsically. Our method can use
any pairwise alignment method, so this step can be altered depend-
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Figure 4: A denser alignment graph might result in more noise
due to alignment of dissimilar models. A complete graph GA has
more misalignments that result in blending of wings in the embed-
ded space (left), while the linear graph GB resolves the issue (right).

ing on the user knowledge of the collection (e.g., see Step 3b). For
the data obtained from Google 3D Warehouse we simply use affine
transformations to align pairs of similar shapes.

Given two shapes Sk and Sl , an alignment score aSk ,Sl ,f (pi 2 Sk, p j 2
Sl) : Sk ⇥ Sl ! R is defined over some parameter space f (e.g.,
all affine transformations T ). The score a is defined per pair of
points and depends on a quality of the local alignment (La) as well
as quality of the global alignment (Ba):

aSk ,Sl ,f (pi, p j) := La(pi, p j) · Ba(Sk, Sl). (1)

We define the local term based on Euclidean distance after the trans-
formation f = T , while the global term represents how well does T
align two shapes globally:

La(pi, p j) := exp
✓
�DEucl.(pi, T (p j))2

s(Sl)2

◆
(2)

Ba(Sk, Sl) :=

 Z

p12Sk

exp

 
�DEucl.(p1, T (Sl))2

(0.5 · s(Sl))
2

!
dA(p1)

!
⇥

 Z

p22Sl

exp

 
�DEucl.(p2, T�1(Sk))2

(0.5 · s(Sk))
2

!
dA(p2)

!
. (3)

Note that s(S) depends on the expected ambiguity of pairwise
alignments (higher s captures fuzzier pairwise matching), we
use s(S) = Diam(S)/5 for all examples, where Diam(S) is an
average distance between all pairs of points, i.e., Diam(S) :=
Âp j ,p j2S DEucl.(pi, p j)/K2. The global term roughly estimates what
fraction of surfaces align under a tighter threshold s(S)/2.

Finally, we find the aligning transformation T for a pair of models.
In our experience, the models in Google Warehouse have consistent
upward orientation, so we only look for optimal 2D rotation and a
scale. To avoid optimizing over the space of real-valued param-
eters, we test all 4 alignments of principal components for a pair
of shapes as an initial guess, and locally refine the transformation

correspondence information
can be diffused across

shape collections
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Future	
  Challenges
• Beyond part-based models

• Big data challenge

• Unified encoding of structure across models

• How to deal with inconsistencies among relations?

• ‘Semantic’ tagging + infer object function

slides, supplementary on project page
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Bag of words
HOG
GIST
SIFT

…
Industry level

Shape distributions
Spherical harmonics

Light fields
Heat kernel 

...
Research level

Discrimina9ve	
  Feature	
  Descriptors
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1. Topology: continuous structure-aware topology variation

2. Functionality: how to describe, compare, classify, and 
synthesize functionality for 3D objects
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3. Big data: how to best tap into the vast amount of 

available data (e.g., images) but quickly distil them

Projective shape analysis (PSA): 3D shape analysis by learning 
from image data (Thursday, 16:00, “Shape and ML” session)
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Friday, 29 November 13



Course: Structure-Aware Shape Processing

4. Too much “preservation”! Let’s combine to create 
truly new structures or even functionalities, e.g., a 
functional hybrid
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5. User desires: Are the modeling paradigms we are 
developing truly what users want?

•  We claim that the tools developed are designed for novice 
users, was this claim really validated?

•  Could any tool we have developed so far get more than 1.5 

million views on Youtube?

Challenges
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