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input model sample set signatures transformations surface patches

patching
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Figure 2: The symmetry extraction pipeline. Sampling yields a set P of surface points. For each pi P a local signature is computed. Points
pi p j with similar signatures are paired and a point in transformation space is computed mapping the local frame of pi to the one at p j.
Clustering in yields subsets of P that remain invariant under a certain transformation, which can be extracted using spatial region growing.

such a pair can be understood as evidence for the existence of this
specific reflective symmetry. By looking at all such pairs we can
accumulate this evidence and extract the relevant symmetry rela-
tion(s). Only if many point pairs agree on (roughly) the same re-
flection line, do we have reason to believe that the corresponding
symmetry is truly present in the model. Thus we can detect po-
tential symmetries by looking at clusters of points in the space of
transformations , where each point corresponds to a specific re-
flection line. However, as shown in the illustration, the evidence of
a single point pair is only reliable if the local geometry around the
points is faithfully mirrored by the reflective transformation. This
observation will allow us to significantly prune the set of all point
pairs and avoid an exhaustive computation on a quadratic number
of point pairs.

Since the mapping to does not incorporate the spatial position
of surface samples, pairs from unrelated parts of the object can be
mapped to the same point in transformation space. Thus in a second
phase we extract spatially coherent components of the model that
are invariant under the extracted symmetry transformations. Us-
ing the point pair correspondences present in the cluster, we per-
form an incremental region growing algorithm to verify a specific
symmetry. Figure 2 gives a high-level overview of our symmetry
extraction pipeline. The following sections will elaborate on the
individual stages and provide details of our approach.

d

transformation space

Figure 3: Illustration of symmetry detection for reflections. Every
pair of points defines a symmetry line l that can be described by a
distance d and an angle . Multiple points clustered in a small re-
gion in transformation space provide evidence of a symmetry. The
pair on the top left is discarded due to normal inconsistency.

We consider the Euclidean transformation group generated by
translations, rotations, reflections, and uniform scalings. Our goal
is to find parts of a given 3D shape that are invariant under trans-
formations in this symmetry group or some lower-dimensional sub-
group.

In order to apply the ideas sketched above, we need to compute the
transformation Ti j that maps a point pi on the surface of the model
to another point p j. While point positions are sufficient for defin-
ing a unique plane of reflection as in the example above, we cannot
determine all degrees of freedom of a general Euclidean transform
from the spatial positions alone. We therefore compute geometry
signatures at each sample point pi based on the concept of normal
cycles [Cohen-Steiner and Morvan 2003]. We apply the algorithm
proposed in [Alliez et al. 2003] to approximate the curvature tensor
at pi within a sphere of radius r and compute integrated principal
curvatures i 1 i 2 and principal directions ci 1 and ci 2. The ra-
dius r should be on the order of the local sample spacing to achieve
sufficient averaging when computing the curvature tensor and avoid
a strong dependence on the specific location of the sample points.

cj,1

cj.2

nj

pjci,1

ci,2
ni

pi cj,1

cj.2
ci,1
~

ci,2
~

cj,1

cj.2

n  =i nj
~

ci,1
~

ci,2
~

The principal directions define a local frame ci 1 ci 2 ni , with nor-
mal vector ni ci 1 ci 2. We orient this frame as a right-handed
coordinate frame that aligns with the outward pointing surface nor-
mal by flipping signs of the appropriate vectors if necessary. In
order to obtain a canonical rotational component Ri j of the transfor-
mation Ti j we first align the two normals along their common plane
and then pick the smaller of the two rotations around the normal
that aligns to one of the two possible choices of orientation in tan-
gent space. The uniform scale component of Ti j is estimated from
the ratio of principal curvatures as si j i 1 j 1 i 2 j 2 2,
the translation is computed as ti j p j si jRi jpi. For a given
pair pi p j we thus obtain a point in 7-dimensional transforma-
tion space as Ti j si j Rx

i j Ry
i j Rz

i j tx
i j ty

i j tz
i j , where Rx

i j Ry
i j Rz

i j
are the Euler angles derived from Ri j and ti j tx

i j ty
i j tz

i j
T . In order

to handle reflections, we also compute the transformation obtained
when reflecting the model about an arbitrary but fixed plane.

A differential surface patch at umbilic points, i.e., those for which
i 1 i 2, is invariant under rotations around the surface normal.

Pairs involving such points and their signatures do not define a
unique transformation, but trace out curves in transformation space,
which may quickly camouflage meaningful symmetry clusters. To
avoid clutter in transformation space, we discard these points from
the sample set, i.e., we only consider points on the surface with
distinct principal curvatures (and hence stable principal directions),

[Huang et al., TOG 2013]
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Abstract1

Near-regular structures are common in man-made and natural ob-2

jects. Algorithmic detection of such regularity greatly facilitates3

our understanding of shape geometries, and subsequently can be4

used to generate or modify complex patterns on acquired or mod-5

eled objects. Regularity manifests itself both in the repetition of6

certain geometric elements, as well as in the structured placement7

of these elements. We show how the regularity detection problem8

can be cast in an optimization framework and efficiently solved9

using linear programming techniques. Our optimization has a dis-10

crete aspect, the connectivity relationships among the elements, as11

well as a continuous aspect, the locations of the elements of inter-12

est. Both of these are captured by our near-regular mesh extraction13

framework, which alternates between discrete and continuous op-14

timizations. We demonstrate the effectiveness of our framework15

on a variety of problems including manifold near-regular structure16

extraction, structure-preserving pattern manipulation, and marker-17

less correspondence detection. Robustness results with respect to18

geometric and topological noise are also presented on synthesized19

and on benchmark datasets.20

Keywords: intrinsic near-regular structure, integer and linear pro-21

gramming, pattern manipulation, markerless correspondence22

1 Introduction23

Global structures in the form of symmetric and near-regular re-24

peating patterns are very common in natural and manmade objects,25

e.g., see Figure 2. These relations arise both from the presence of26

regularly spaced repeated elements, as well as geometric and topo-27

logical consistency in the placement of the elements. Discovering28

such global spatial relations entails a holistic understanding of ob-29

ject geometry that goes well beyond the detection of localized fea-30

tures. Moreover, regularity is often partial involving only parts of31

an object, and approximate, in that the consistency of the repeated32

elements and of their spatial relationships may be imprecise. This33

makes computational discovery of near-regularity particularly chal-34

lenging. In the last few years, the problem of regularity detection35

of 3D geometry under rigid and isometric mappings has attracted36

a great deal of attention both because of its fundamental impor-37

tance in shape understanding as well as its applications in shape38

matching, structure-preserving editing, and structure-driven shape39

search [Pauly et al. 2008; Lipman and Funkhouser 2009; Bokeloh40

et al. 2010; Kim et al. 2010]. In this paper we introduce a novel41

framework for near-regularity detection.42

We represent near regular structures as a partial near-regular mesh43

overlayed on an object’s surface, where the mesh vertices capture44

the repeating elements, and the mesh connectivity reveals the struc-45

tural regularity of the spatial relationships among these elements.46

Such an explicit representation of the extracted near-regularity can47

be easily manipulated using standard mesh-processing tools (see48

Figure 1).49

In particular, we define a near-regular (NR) pattern (see Figure 2)50

on a given oriented manifold mesh S by a set of texel-point pairs51

T := {(Pi,pi)}, such that there exists:52

• a valid 2-manifold MT on S with vertex set {pi} and near regular53

vertices and faces under appropriate regularity measures,54

• a base texel-point pair (P ,p) such that for each texel-point pair55

(Pi,pi), there is an approximate rigid transformation Ti that56

aligns texel P with texel Pi, i.e., Ti(P ) � Pi, and Ti(p) ⇥ pi.57

Further, ⌅i, jPiP j = ?, and for complete NR-meshes ⇤iPi = S .58

Thus, regularity detection involves simultaneous extraction of the59

repeated texel-point pairs T , their aligning maps Ti, as well as re-60

covering the connectivity of the layout pattern MT across the ele-61

ments on the shape. The optimization involves both geometric and62

topological aspects, translating into a mixed discrete-continuous63

problem involving appropriate regularity measures. On the geome-64

try side, for example, we look for elements with consistent feature65

descriptors. On the topology side, we build a 2-complex on the66

elements and measure regularity in the degree of the vertices, the67

faces, or both.68

Our main insight is to formulate the topology extraction as a con-69

strained optimization problem. Given a connected and oriented70

manifold mesh and a set of sample points on it, we create a col-71

lection of possibly overlapping patches using the sample points as72

vertices and the connecting geodesic curves as patch boundaries. In73

this setting, NR-mesh extraction amounts to selecting the subset of74

patches that maximizes a suitable regularity measure and forms a75

valid 2-manifold simplicial complex (partially) covering the mesh.76
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Figure 2: Near-regular structures are ubiquitous in the world.
(Right) Marked base texel-point pair (P ,p) along with the near-
regular repetition pattern encoded as NR-mesh MT .
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certain geometric elements, as well as in the structured placement7
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crete aspect, the connectivity relationships among the elements, as11

well as a continuous aspect, the locations of the elements of inter-12

est. Both of these are captured by our near-regular mesh extraction13

framework, which alternates between discrete and continuous op-14

timizations. We demonstrate the effectiveness of our framework15
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and on benchmark datasets.20

Keywords: intrinsic near-regular structure, integer and linear pro-21

gramming, pattern manipulation, markerless correspondence22

1 Introduction23

Global structures in the form of symmetric and near-regular re-24

peating patterns are very common in natural and manmade objects,25

e.g., see Figure 2. These relations arise both from the presence of26

regularly spaced repeated elements, as well as geometric and topo-27

logical consistency in the placement of the elements. Discovering28

such global spatial relations entails a holistic understanding of ob-29

ject geometry that goes well beyond the detection of localized fea-30

tures. Moreover, regularity is often partial involving only parts of31

an object, and approximate, in that the consistency of the repeated32

elements and of their spatial relationships may be imprecise. This33

makes computational discovery of near-regularity particularly chal-34

lenging. In the last few years, the problem of regularity detection35

of 3D geometry under rigid and isometric mappings has attracted36

a great deal of attention both because of its fundamental impor-37

tance in shape understanding as well as its applications in shape38

matching, structure-preserving editing, and structure-driven shape39

search [Pauly et al. 2008; Lipman and Funkhouser 2009; Bokeloh40

et al. 2010; Kim et al. 2010]. In this paper we introduce a novel41

framework for near-regularity detection.42

We represent near regular structures as a partial near-regular mesh43

overlayed on an object’s surface, where the mesh vertices capture44

the repeating elements, and the mesh connectivity reveals the struc-45

tural regularity of the spatial relationships among these elements.46

Such an explicit representation of the extracted near-regularity can47

be easily manipulated using standard mesh-processing tools (see48

Figure 1).49

In particular, we define a near-regular (NR) pattern (see Figure 2)50

on a given oriented manifold mesh S by a set of texel-point pairs51

T := {(Pi,pi)}, such that there exists:52

• a valid 2-manifold MT on S with vertex set {pi} and near regular53

vertices and faces under appropriate regularity measures,54

• a base texel-point pair (P ,p) such that for each texel-point pair55

(Pi,pi), there is an approximate rigid transformation Ti that56

aligns texel P with texel Pi, i.e., Ti(P ) � Pi, and Ti(p) ⇥ pi.57

Further, ⌅i, jPiP j = ?, and for complete NR-meshes ⇤iPi = S .58

Thus, regularity detection involves simultaneous extraction of the59

repeated texel-point pairs T , their aligning maps Ti, as well as re-60

covering the connectivity of the layout pattern MT across the ele-61

ments on the shape. The optimization involves both geometric and62

topological aspects, translating into a mixed discrete-continuous63

problem involving appropriate regularity measures. On the geome-64

try side, for example, we look for elements with consistent feature65

descriptors. On the topology side, we build a 2-complex on the66

elements and measure regularity in the degree of the vertices, the67

faces, or both.68

Our main insight is to formulate the topology extraction as a con-69

strained optimization problem. Given a connected and oriented70

manifold mesh and a set of sample points on it, we create a col-71

lection of possibly overlapping patches using the sample points as72

vertices and the connecting geodesic curves as patch boundaries. In73

this setting, NR-mesh extraction amounts to selecting the subset of74

patches that maximizes a suitable regularity measure and forms a75

valid 2-manifold simplicial complex (partially) covering the mesh.76
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Figure 2: Near-regular structures are ubiquitous in the world.
(Right) Marked base texel-point pair (P ,p) along with the near-
regular repetition pattern encoded as NR-mesh MT .
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Figure 1: Various applications enabled by our near-regular structure extraction framework.

Abstract1

Near-regular structures are common in man-made and natural ob-2

jects. Algorithmic detection of such regularity greatly facilitates3

our understanding of shape geometries, and subsequently can be4

used to generate or modify complex patterns on acquired or mod-5

eled objects. Regularity manifests itself both in the repetition of6

certain geometric elements, as well as in the structured placement7

of these elements. We show how the regularity detection problem8

can be cast in an optimization framework and efficiently solved9

using linear programming techniques. Our optimization has a dis-10

crete aspect, the connectivity relationships among the elements, as11

well as a continuous aspect, the locations of the elements of inter-12

est. Both of these are captured by our near-regular mesh extraction13

framework, which alternates between discrete and continuous op-14

timizations. We demonstrate the effectiveness of our framework15

on a variety of problems including manifold near-regular structure16

extraction, structure-preserving pattern manipulation, and marker-17

less correspondence detection. Robustness results with respect to18

geometric and topological noise are also presented on synthesized19

and on benchmark datasets.20
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1 Introduction23

Global structures in the form of symmetric and near-regular re-24

peating patterns are very common in natural and manmade objects,25

e.g., see Figure 2. These relations arise both from the presence of26

regularly spaced repeated elements, as well as geometric and topo-27

logical consistency in the placement of the elements. Discovering28

such global spatial relations entails a holistic understanding of ob-29

ject geometry that goes well beyond the detection of localized fea-30

tures. Moreover, regularity is often partial involving only parts of31

an object, and approximate, in that the consistency of the repeated32

elements and of their spatial relationships may be imprecise. This33

makes computational discovery of near-regularity particularly chal-34

lenging. In the last few years, the problem of regularity detection35

of 3D geometry under rigid and isometric mappings has attracted36

a great deal of attention both because of its fundamental impor-37

tance in shape understanding as well as its applications in shape38

matching, structure-preserving editing, and structure-driven shape39

search [Pauly et al. 2008; Lipman and Funkhouser 2009; Bokeloh40

et al. 2010; Kim et al. 2010]. In this paper we introduce a novel41

framework for near-regularity detection.42

We represent near regular structures as a partial near-regular mesh43

overlayed on an object’s surface, where the mesh vertices capture44

the repeating elements, and the mesh connectivity reveals the struc-45

tural regularity of the spatial relationships among these elements.46

Such an explicit representation of the extracted near-regularity can47

be easily manipulated using standard mesh-processing tools (see48

Figure 1).49

In particular, we define a near-regular (NR) pattern (see Figure 2)50

on a given oriented manifold mesh S by a set of texel-point pairs51

T := {(Pi,pi)}, such that there exists:52

• a valid 2-manifold MT on S with vertex set {pi} and near regular53

vertices and faces under appropriate regularity measures,54

• a base texel-point pair (P ,p) such that for each texel-point pair55

(Pi,pi), there is an approximate rigid transformation Ti that56

aligns texel P with texel Pi, i.e., Ti(P ) � Pi, and Ti(p) ⇥ pi.57

Further, ⌅i, jPiP j = ?, and for complete NR-meshes ⇤iPi = S .58

Thus, regularity detection involves simultaneous extraction of the59

repeated texel-point pairs T , their aligning maps Ti, as well as re-60

covering the connectivity of the layout pattern MT across the ele-61

ments on the shape. The optimization involves both geometric and62

topological aspects, translating into a mixed discrete-continuous63

problem involving appropriate regularity measures. On the geome-64

try side, for example, we look for elements with consistent feature65

descriptors. On the topology side, we build a 2-complex on the66

elements and measure regularity in the degree of the vertices, the67

faces, or both.68

Our main insight is to formulate the topology extraction as a con-69

strained optimization problem. Given a connected and oriented70

manifold mesh and a set of sample points on it, we create a col-71

lection of possibly overlapping patches using the sample points as72

vertices and the connecting geodesic curves as patch boundaries. In73

this setting, NR-mesh extraction amounts to selecting the subset of74

patches that maximizes a suitable regularity measure and forms a75

valid 2-manifold simplicial complex (partially) covering the mesh.76
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Figure 2: Near-regular structures are ubiquitous in the world.
(Right) Marked base texel-point pair (P ,p) along with the near-
regular repetition pattern encoded as NR-mesh MT .
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Figure 5: Vertex regularity term leads to a better NR-mesh.

away from their final positions, incorporating the vertex regularity274

term increases robustness (see Figure 5).275

Manifold Constraints. We now present constraints to ensure that
a patch collection results in a desirable mesh structure. A necessary
constraint for a patch collection M to be a mesh is that each interior
curve in M is adjacent to the same number of patches from its left
and right sides. Formally speaking, we have the following curve
constraints:

dM (c) = |AL(c) ⌃M |� |AR(c) ⌃M | = 0, c ⌅ CI ⌃M (3)

where, AL(c), AR respectively denote the set of patches on the left276

and the right of curve c.277

Proposition 2. If a patch collection M satisfies the curve con-278

straints in Equation 3, then M covers the underlying manifold S279

a constant number of times.280

Proof: See appendix.281

The remaining task is pick an arbitrary face f ⌅ F and constraint
it to be covered exactly by one patch in M . Thus, we have the
following uniqueness constraint

|C( f ) ⌃M | = 1 (4)

where, C( f ) ⇤ P denotes the set of patches that cover f .282

Although a direct way to ensure the manifold property is to apply283

the uniqueness constraints to all the faces in F , this results in too284

many independent uniqueness constraints leading to an inefficient285

optimization. Further, the face constraints by themselves become286

insufficient to handle partial NR-mesh extractions.287

Combining Equations 1– 4, we arrive at the following constrained
optimization for complete NR-mesh extraction:

min
M⇤P

�
P

P⌅M
wP + ⇥v

P
v⌅M

wv||AP (v) ⌃M |� �|

s.t. |C( f ) ⌃M | = 1,
|AL(c) ⌃M |� |AR(c) ⌃M | = 0, c ⌅ CI ,

(5)

where, ⇥v controls the importance of vertex regularity (⇥v = 1 in288

our experiments).289

Integer Programming Formulation. Solving the above opti-290

mization, effectively amounts to extracting a suitable subset from291

P . We parameterize an arbitrary patch collection M by associating292

each patch P ⌅ P with a binary indicator zP where, zP = 1 if p ⌅ M293

and zP = 0 otherwise.294

Using the patch indicators, the patch regularity term defined in
Equation 1 becomes:

Rp = �
X

P⌅P

wPzP. (6)

To formulate the vertex regularity term, we associate each sample
V ⌅ Vs with a binary indicator xv where xv = 1 if v ⌅ M and xv = 0

otherwise. Combining both the patch indicators and vertex indica-
tors, we rewrite the cumulative vertex regularity energy as

Rv =
X

v⌅S

wv|
X

P⌅AP (v)

zP � �xv|. (7)

Note that the vertex indicators are determined by the patch indi-
cators. In fact, xv = maxP⌅AP (v) zP. As the vertex regularity term
which pushes xv = 0 if zP = 0,⇧P ⌅ AP (v), we relax these con-
straints as the following inequalities:

zP ⇥ xv, ⇧v ⌅ P, ⇧P ⌅ P . (8)

Using patch indicators, we respectively rewrite the curve con-
straints defined in Equation 3 and the uniqueness constraint defined
in Equation 4 as

X

P⌅AL(c)

zP =
X

P⌅AR(c)

zP, c ⌅ CI , (9)

and X

P⌅C( f )

zP = 1. (10)

Finally, combining Equations 6–10, we formulate the complete NR-
mesh extraction as the following integer program:

min
zP,xv⌅{0,1}

�
P
P⌅P

wPzP + ⇥v
P
v⌅S

wv|
P

P⌅AP (v)
zP � �xv|

s.t. zP ⇥ xv, ⇧v ⌅ P , ⇧P ⌅ P ,P
P⌅AL(c)

zP =
P

P⌅AR(c)
zP, c ⌅ CI ,

P
P⌅C( f )

zP = 1.

(11)

3.1 Partial NR-Mesh Extraction295

In case of partial NR-Mesh extraction, the boundary curves of the
underlying NR-mesh no longer satisfy the curve constraints. Hence,
we reformulate the curve constraints as an energy term

Rc(M ) =
X

c⌅CI

wc|
X

P⌅AL(c)

zP �
X

P⌅AR(c)

zP|, (12)

where, wc denotes our estimate on the possibility of c lying in inte-
rior of the underlying NR-mesh. In this paper, we set wc to be

wc = min(wL
c , wR

c )/max(wL
c , wR

c ),

input&model

edited&model

NR.mesh&+&
extracted&patterns

candidate&vertices/edges

Figure 6: Detecting manifold near-regular patterns. (Top) Input
model; feature samples extracted using the local maxima of vol-
ume integral invariant and candidate edges formed by connecting
neighboring samples with similar spin image signatures; extracted
NR-mesh with detected base element. (Bottom) Edited model with
alternate base element.
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away from their final positions, incorporating the vertex regularity274

term increases robustness (see Figure 5).275

Manifold Constraints. We now present constraints to ensure that
a patch collection results in a desirable mesh structure. A necessary
constraint for a patch collection M to be a mesh is that each interior
curve in M is adjacent to the same number of patches from its left
and right sides. Formally speaking, we have the following curve
constraints:

dM (c) = |AL(c) ⌃M |� |AR(c) ⌃M | = 0, c ⌅ CI ⌃M (3)

where, AL(c), AR respectively denote the set of patches on the left276

and the right of curve c.277

Proposition 2. If a patch collection M satisfies the curve con-278

straints in Equation 3, then M covers the underlying manifold S279

a constant number of times.280

Proof: See appendix.281

The remaining task is pick an arbitrary face f ⌅ F and constraint
it to be covered exactly by one patch in M . Thus, we have the
following uniqueness constraint

|C( f ) ⌃M | = 1 (4)

where, C( f ) ⇤ P denotes the set of patches that cover f .282

Although a direct way to ensure the manifold property is to apply283

the uniqueness constraints to all the faces in F , this results in too284

many independent uniqueness constraints leading to an inefficient285

optimization. Further, the face constraints by themselves become286

insufficient to handle partial NR-mesh extractions.287

Combining Equations 1– 4, we arrive at the following constrained
optimization for complete NR-mesh extraction:

min
M⇤P

�
P

P⌅M
wP + ⇥v

P
v⌅M

wv||AP (v) ⌃M |� �|

s.t. |C( f ) ⌃M | = 1,
|AL(c) ⌃M |� |AR(c) ⌃M | = 0, c ⌅ CI ,

(5)

where, ⇥v controls the importance of vertex regularity (⇥v = 1 in288

our experiments).289

Integer Programming Formulation. Solving the above opti-290

mization, effectively amounts to extracting a suitable subset from291

P . We parameterize an arbitrary patch collection M by associating292

each patch P ⌅ P with a binary indicator zP where, zP = 1 if p ⌅ M293

and zP = 0 otherwise.294

Using the patch indicators, the patch regularity term defined in
Equation 1 becomes:

Rp = �
X

P⌅P

wPzP. (6)

To formulate the vertex regularity term, we associate each sample
V ⌅ Vs with a binary indicator xv where xv = 1 if v ⌅ M and xv = 0

otherwise. Combining both the patch indicators and vertex indica-
tors, we rewrite the cumulative vertex regularity energy as

Rv =
X

v⌅S

wv|
X

P⌅AP (v)

zP � �xv|. (7)

Note that the vertex indicators are determined by the patch indi-
cators. In fact, xv = maxP⌅AP (v) zP. As the vertex regularity term
which pushes xv = 0 if zP = 0,⇧P ⌅ AP (v), we relax these con-
straints as the following inequalities:

zP ⇥ xv, ⇧v ⌅ P, ⇧P ⌅ P . (8)

Using patch indicators, we respectively rewrite the curve con-
straints defined in Equation 3 and the uniqueness constraint defined
in Equation 4 as

X

P⌅AL(c)

zP =
X

P⌅AR(c)

zP, c ⌅ CI , (9)

and X

P⌅C( f )

zP = 1. (10)

Finally, combining Equations 6–10, we formulate the complete NR-
mesh extraction as the following integer program:

min
zP,xv⌅{0,1}

�
P
P⌅P

wPzP + ⇥v
P
v⌅S

wv|
P

P⌅AP (v)
zP � �xv|

s.t. zP ⇥ xv, ⇧v ⌅ P , ⇧P ⌅ P ,P
P⌅AL(c)

zP =
P

P⌅AR(c)
zP, c ⌅ CI ,

P
P⌅C( f )

zP = 1.

(11)

3.1 Partial NR-Mesh Extraction295

In case of partial NR-Mesh extraction, the boundary curves of the
underlying NR-mesh no longer satisfy the curve constraints. Hence,
we reformulate the curve constraints as an energy term

Rc(M ) =
X

c⌅CI

wc|
X

P⌅AL(c)

zP �
X

P⌅AR(c)

zP|, (12)

where, wc denotes our estimate on the possibility of c lying in inte-
rior of the underlying NR-mesh. In this paper, we set wc to be

wc = min(wL
c , wR

c )/max(wL
c , wR

c ),
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Figure 6: Detecting manifold near-regular patterns. (Top) Input
model; feature samples extracted using the local maxima of vol-
ume integral invariant and candidate edges formed by connecting
neighboring samples with similar spin image signatures; extracted
NR-mesh with detected base element. (Bottom) Edited model with
alternate base element.
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away from their final positions, incorporating the vertex regularity274

term increases robustness (see Figure 5).275

Manifold Constraints. We now present constraints to ensure that
a patch collection results in a desirable mesh structure. A necessary
constraint for a patch collection M to be a mesh is that each interior
curve in M is adjacent to the same number of patches from its left
and right sides. Formally speaking, we have the following curve
constraints:

dM (c) = |AL(c) ⌃M |� |AR(c) ⌃M | = 0, c ⌅ CI ⌃M (3)

where, AL(c), AR respectively denote the set of patches on the left276

and the right of curve c.277

Proposition 2. If a patch collection M satisfies the curve con-278

straints in Equation 3, then M covers the underlying manifold S279

a constant number of times.280

Proof: See appendix.281

The remaining task is pick an arbitrary face f ⌅ F and constraint
it to be covered exactly by one patch in M . Thus, we have the
following uniqueness constraint

|C( f ) ⌃M | = 1 (4)

where, C( f ) ⇤ P denotes the set of patches that cover f .282

Although a direct way to ensure the manifold property is to apply283

the uniqueness constraints to all the faces in F , this results in too284

many independent uniqueness constraints leading to an inefficient285

optimization. Further, the face constraints by themselves become286

insufficient to handle partial NR-mesh extractions.287

Combining Equations 1– 4, we arrive at the following constrained
optimization for complete NR-mesh extraction:

min
M⇤P

�
P

P⌅M
wP + ⇥v
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wv||AP (v) ⌃M |� �|

s.t. |C( f ) ⌃M | = 1,
|AL(c) ⌃M |� |AR(c) ⌃M | = 0, c ⌅ CI ,

(5)

where, ⇥v controls the importance of vertex regularity (⇥v = 1 in288

our experiments).289

Integer Programming Formulation. Solving the above opti-290

mization, effectively amounts to extracting a suitable subset from291

P . We parameterize an arbitrary patch collection M by associating292

each patch P ⌅ P with a binary indicator zP where, zP = 1 if p ⌅ M293

and zP = 0 otherwise.294

Using the patch indicators, the patch regularity term defined in
Equation 1 becomes:

Rp = �
X

P⌅P

wPzP. (6)

To formulate the vertex regularity term, we associate each sample
V ⌅ Vs with a binary indicator xv where xv = 1 if v ⌅ M and xv = 0

otherwise. Combining both the patch indicators and vertex indica-
tors, we rewrite the cumulative vertex regularity energy as

Rv =
X

v⌅S

wv|
X

P⌅AP (v)

zP � �xv|. (7)

Note that the vertex indicators are determined by the patch indi-
cators. In fact, xv = maxP⌅AP (v) zP. As the vertex regularity term
which pushes xv = 0 if zP = 0,⇧P ⌅ AP (v), we relax these con-
straints as the following inequalities:

zP ⇥ xv, ⇧v ⌅ P, ⇧P ⌅ P . (8)

Using patch indicators, we respectively rewrite the curve con-
straints defined in Equation 3 and the uniqueness constraint defined
in Equation 4 as

X

P⌅AL(c)

zP =
X

P⌅AR(c)

zP, c ⌅ CI , (9)

and X

P⌅C( f )

zP = 1. (10)

Finally, combining Equations 6–10, we formulate the complete NR-
mesh extraction as the following integer program:

min
zP,xv⌅{0,1}
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P⌅P

wPzP + ⇥v
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3.1 Partial NR-Mesh Extraction295

In case of partial NR-Mesh extraction, the boundary curves of the
underlying NR-mesh no longer satisfy the curve constraints. Hence,
we reformulate the curve constraints as an energy term

Rc(M ) =
X

c⌅CI

wc|
X

P⌅AL(c)

zP �
X

P⌅AR(c)

zP|, (12)

where, wc denotes our estimate on the possibility of c lying in inte-
rior of the underlying NR-mesh. In this paper, we set wc to be

wc = min(wL
c , wR

c )/max(wL
c , wR

c ),
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Figure 6: Detecting manifold near-regular patterns. (Top) Input
model; feature samples extracted using the local maxima of vol-
ume integral invariant and candidate edges formed by connecting
neighboring samples with similar spin image signatures; extracted
NR-mesh with detected base element. (Bottom) Edited model with
alternate base element.
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away from their final positions, incorporating the vertex regularity274

term increases robustness (see Figure 5).275

Manifold Constraints. We now present constraints to ensure that
a patch collection results in a desirable mesh structure. A necessary
constraint for a patch collection M to be a mesh is that each interior
curve in M is adjacent to the same number of patches from its left
and right sides. Formally speaking, we have the following curve
constraints:

dM (c) = |AL(c) ⌃M |� |AR(c) ⌃M | = 0, c ⌅ CI ⌃M (3)

where, AL(c), AR respectively denote the set of patches on the left276

and the right of curve c.277

Proposition 2. If a patch collection M satisfies the curve con-278

straints in Equation 3, then M covers the underlying manifold S279

a constant number of times.280

Proof: See appendix.281

The remaining task is pick an arbitrary face f ⌅ F and constraint
it to be covered exactly by one patch in M . Thus, we have the
following uniqueness constraint

|C( f ) ⌃M | = 1 (4)

where, C( f ) ⇤ P denotes the set of patches that cover f .282

Although a direct way to ensure the manifold property is to apply283

the uniqueness constraints to all the faces in F , this results in too284

many independent uniqueness constraints leading to an inefficient285

optimization. Further, the face constraints by themselves become286

insufficient to handle partial NR-mesh extractions.287

Combining Equations 1– 4, we arrive at the following constrained
optimization for complete NR-mesh extraction:

min
M⇤P

�
P

P⌅M
wP + ⇥v

P
v⌅M

wv||AP (v) ⌃M |� �|

s.t. |C( f ) ⌃M | = 1,
|AL(c) ⌃M |� |AR(c) ⌃M | = 0, c ⌅ CI ,

(5)

where, ⇥v controls the importance of vertex regularity (⇥v = 1 in288

our experiments).289

Integer Programming Formulation. Solving the above opti-290

mization, effectively amounts to extracting a suitable subset from291

P . We parameterize an arbitrary patch collection M by associating292

each patch P ⌅ P with a binary indicator zP where, zP = 1 if p ⌅ M293

and zP = 0 otherwise.294

Using the patch indicators, the patch regularity term defined in
Equation 1 becomes:

Rp = �
X

P⌅P

wPzP. (6)

To formulate the vertex regularity term, we associate each sample
V ⌅ Vs with a binary indicator xv where xv = 1 if v ⌅ M and xv = 0

otherwise. Combining both the patch indicators and vertex indica-
tors, we rewrite the cumulative vertex regularity energy as

Rv =
X

v⌅S

wv|
X

P⌅AP (v)

zP � �xv|. (7)

Note that the vertex indicators are determined by the patch indi-
cators. In fact, xv = maxP⌅AP (v) zP. As the vertex regularity term
which pushes xv = 0 if zP = 0,⇧P ⌅ AP (v), we relax these con-
straints as the following inequalities:

zP ⇥ xv, ⇧v ⌅ P, ⇧P ⌅ P . (8)

Using patch indicators, we respectively rewrite the curve con-
straints defined in Equation 3 and the uniqueness constraint defined
in Equation 4 as

X

P⌅AL(c)

zP =
X

P⌅AR(c)

zP, c ⌅ CI , (9)

and X

P⌅C( f )

zP = 1. (10)

Finally, combining Equations 6–10, we formulate the complete NR-
mesh extraction as the following integer program:

min
zP,xv⌅{0,1}
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P⌅P

wPzP + ⇥v
P
v⌅S
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P⌅AL(c)

zP =
P

P⌅AR(c)
zP, c ⌅ CI ,

P
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zP = 1.

(11)

3.1 Partial NR-Mesh Extraction295

In case of partial NR-Mesh extraction, the boundary curves of the
underlying NR-mesh no longer satisfy the curve constraints. Hence,
we reformulate the curve constraints as an energy term

Rc(M ) =
X

c⌅CI

wc|
X

P⌅AL(c)

zP �
X

P⌅AR(c)

zP|, (12)

where, wc denotes our estimate on the possibility of c lying in inte-
rior of the underlying NR-mesh. In this paper, we set wc to be

wc = min(wL
c , wR

c )/max(wL
c , wR

c ),
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Figure 6: Detecting manifold near-regular patterns. (Top) Input
model; feature samples extracted using the local maxima of vol-
ume integral invariant and candidate edges formed by connecting
neighboring samples with similar spin image signatures; extracted
NR-mesh with detected base element. (Bottom) Edited model with
alternate base element.
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mization framework.

Abstract1

Near-regular structures are commonly found in many man-made2

and natural objects. The detection of regularity forms an essen-3

tial aspect of our understanding of shapes in the world around us4

and can also be a great aid in procedurally generating or modify-5

ing complex patterns on synthetic objects. Regularity manifests6

itself both in the repetition of certain geometric elements, as well7

and in the structured placement of these elements. In this paper8

we show how the regularity detection problem can be cast in an9

optimization framework and solved by using integer programming10

techniques and their linear programming relaxations. Our opti-11

mization has a continuous aspect, the locations of the elements of12

interest, as well as a discrete aspect, the connectivity relationships13

among the elements. Both are captured by our near regular mesh14

extraction procedure, alternating between continuous and discrete15

optimization steps. We demonstrate our framework on a variety16

of problems including manifold near-regular structure extraction,17

markerless correspondence detection, structure-preserving pattern18

replacement and pattern swapping. Robustness results with respect19

to geometric and topological noise are also presented.20

Keywords: unorganized points, intrinsic near-regular structure,21

shape matching, integer and linear programming22

1 Introduction23

Regularity in geometric structures is prevalent in the world around24

us, across both natural and man-made objects. Regularity entails a25

more holistic or global understanding of the geometry of a shape,26

well beyond localized feature detection. It comprises both the pres-27

ence of repeated features or elements, as well as geometric and28

topological consistency in the placement of these elements on an29

object. Furthermore, regularity is often partial involving only a part30

of an object, and/or approximate, in that the consistency of the re-31

peated elements and of their spatial relationships may be imperfect.32

This makes its computational discovery challenging. In the last33

few years, the problem of regularity detection has attracted a great34

deal of attention in computer graphics, both because of its funda-35

mental importance in shape understanding as well as its applicabil-36

ity towards many geometry processing tasks, including shape re-37

Figure 2: Near-regular structure are commonly encountered in
various natural and man-made objects.

pair and completion, structure-preserving editing, structure-driven38

shape search.39

In this paper we present a novel approach to the regularity detec-40

tion problem, both in terms of the representation of the regularity41

itself and in terms of the mathematical tools used to obtain it. We42

represent regularities as partial, near regular meshes overlayed on43

an object’s surface — where the mesh vertices capture the repeating44

elements or features, and the mesh connectivity reveals the structure45

or regularity of the spatial relationships among these elements or46

features. This is an explicit representation of the regularity that is47

easy to visualize, as it can be overlayed on the original model, and48

easy to manipulate through standard mesh-processing tools. Be-49

cause it can be so easily visualized, our new representation make it50

possible to quickly compare multiple structures on the same shape,51

the same structure across different shapes, etc.52

The fundamental insight of our approach is to cast regularity detec-53

tion as an optimization problem. We must simultaneously optimize54

over the locations of the putative repeated elements, as well as over55

the connection pattern among them. Thus the optimization involves56

both geometric and topological aspects, translating into a novel57

mixed discrete-continuous optimization problem on the regularity58

score. On the geometry side, for example, we look for elements59

with consistent feature descriptors or signatures, while for their re-60

lationships we look for consistency of geodesic distances (hence61

we detect intrinsic regularity). On the topology side, we build a 2-62

complex on the elements where we seek regularity in the degree of63

the faces, the vertices, or both.64
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Abstract1

Near-regular structures are commonly found in many man-made2

and natural objects. The detection of regularity forms an essen-3

tial aspect of our understanding of shapes in the world around us4

and can also be a great aid in procedurally generating or modify-5

ing complex patterns on synthetic objects. Regularity manifests6

itself both in the repetition of certain geometric elements, as well7

and in the structured placement of these elements. In this paper8

we show how the regularity detection problem can be cast in an9

optimization framework and solved by using integer programming10

techniques and their linear programming relaxations. Our opti-11

mization has a continuous aspect, the locations of the elements of12

interest, as well as a discrete aspect, the connectivity relationships13

among the elements. Both are captured by our near regular mesh14

extraction procedure, alternating between continuous and discrete15

optimization steps. We demonstrate our framework on a variety16

of problems including manifold near-regular structure extraction,17

markerless correspondence detection, structure-preserving pattern18

replacement and pattern swapping. Robustness results with respect19

to geometric and topological noise are also presented.20

Keywords: unorganized points, intrinsic near-regular structure,21

shape matching, integer and linear programming22

1 Introduction23

Regularity in geometric structures is prevalent in the world around24

us, across both natural and man-made objects. Regularity entails a25

more holistic or global understanding of the geometry of a shape,26

well beyond localized feature detection. It comprises both the pres-27

ence of repeated features or elements, as well as geometric and28

topological consistency in the placement of these elements on an29

object. Furthermore, regularity is often partial involving only a part30

of an object, and/or approximate, in that the consistency of the re-31

peated elements and of their spatial relationships may be imperfect.32

This makes its computational discovery challenging. In the last33

few years, the problem of regularity detection has attracted a great34

deal of attention in computer graphics, both because of its funda-35

mental importance in shape understanding as well as its applicabil-36

ity towards many geometry processing tasks, including shape re-37

Figure 2: Near-regular structure are commonly encountered in
various natural and man-made objects.

pair and completion, structure-preserving editing, structure-driven38

shape search.39

In this paper we present a novel approach to the regularity detec-40

tion problem, both in terms of the representation of the regularity41

itself and in terms of the mathematical tools used to obtain it. We42

represent regularities as partial, near regular meshes overlayed on43

an object’s surface — where the mesh vertices capture the repeating44

elements or features, and the mesh connectivity reveals the structure45

or regularity of the spatial relationships among these elements or46

features. This is an explicit representation of the regularity that is47

easy to visualize, as it can be overlayed on the original model, and48

easy to manipulate through standard mesh-processing tools. Be-49

cause it can be so easily visualized, our new representation make it50

possible to quickly compare multiple structures on the same shape,51

the same structure across different shapes, etc.52

The fundamental insight of our approach is to cast regularity detec-53

tion as an optimization problem. We must simultaneously optimize54

over the locations of the putative repeated elements, as well as over55

the connection pattern among them. Thus the optimization involves56

both geometric and topological aspects, translating into a novel57

mixed discrete-continuous optimization problem on the regularity58

score. On the geometry side, for example, we look for elements59

with consistent feature descriptors or signatures, while for their re-60

lationships we look for consistency of geodesic distances (hence61

we detect intrinsic regularity). On the topology side, we build a 2-62

complex on the elements where we seek regularity in the degree of63

the faces, the vertices, or both.64
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Abstract1

Near-regular structures are common in man-made and natural ob-2

jects. Algorithmic detection of such regularity greatly facilitates3

our understanding of shape geometries, and subsequently can be4

used to generate or modify complex patterns on acquired or mod-5

eled objects. Regularity manifests itself both in the repetition of6

certain geometric elements, as well as in the structured placement7

of these elements. We show how the regularity detection problem8

can be cast in an optimization framework and efficiently solved9

using linear programming techniques. Our optimization has a dis-10

crete aspect, the connectivity relationships among the elements, as11

well as a continuous aspect, the locations of the elements of inter-12

est. Both of these are captured by our near-regular mesh extraction13

framework, which alternates between discrete and continuous op-14

timizations. We demonstrate the effectiveness of our framework15

on a variety of problems including manifold near-regular structure16

extraction, structure-preserving pattern manipulation, and marker-17

less correspondence detection. Robustness results with respect to18

geometric and topological noise are also presented on synthesized19

and on benchmark datasets.20

Keywords: intrinsic near-regular structure, integer and linear pro-21

gramming, pattern manipulation, markerless correspondence22

1 Introduction23

Global structures in the form of symmetric and near-regular re-24

peating patterns are very common in natural and manmade objects,25

e.g., see Figure 2. These relations arise both from the presence of26

regularly spaced repeated elements, as well as geometric and topo-27

logical consistency in the placement of the elements. Discovering28

such global spatial relations entails a holistic understanding of ob-29

ject geometry that goes well beyond the detection of localized fea-30

tures. Moreover, regularity is often partial involving only parts of31

an object, and approximate, in that the consistency of the repeated32

elements and of their spatial relationships may be imprecise. This33

makes computational discovery of near-regularity particularly chal-34

lenging. In the last few years, the problem of regularity detection35

of 3D geometry under rigid and isometric mappings has attracted36

a great deal of attention both because of its fundamental impor-37

tance in shape understanding as well as its applications in shape38

matching, structure-preserving editing, and structure-driven shape39

search [Pauly et al. 2008; Lipman and Funkhouser 2009; Bokeloh40

et al. 2010; Kim et al. 2010]. In this paper we introduce a novel41

framework for near-regularity detection.42

We represent near regular structures as a partial near-regular mesh43

overlayed on an object’s surface, where the mesh vertices capture44

the repeating elements, and the mesh connectivity reveals the struc-45

tural regularity of the spatial relationships among these elements.46

Such an explicit representation of the extracted near-regularity can47

be easily manipulated using standard mesh-processing tools (see48

Figure 1).49

In particular, we define a near-regular (NR) pattern (see Figure 2)50

on a given oriented manifold mesh S by a set of texel-point pairs51

T := {(Pi,pi)}, such that there exists:52

• a valid 2-manifold MT on S with vertex set {pi} and near regular53

vertices and faces under appropriate regularity measures,54

• a base texel-point pair (P ,p) such that for each texel-point pair55

(Pi,pi), there is an approximate rigid transformation Ti that56

aligns texel P with texel Pi, i.e., Ti(P ) � Pi, and Ti(p) ⇥ pi.57

Further, ⌅i, jPiP j = ?, and for complete NR-meshes ⇤iPi = S .58

Thus, regularity detection involves simultaneous extraction of the59

repeated texel-point pairs T , their aligning maps Ti, as well as re-60

covering the connectivity of the layout pattern MT across the ele-61

ments on the shape. The optimization involves both geometric and62

topological aspects, translating into a mixed discrete-continuous63

problem involving appropriate regularity measures. On the geome-64

try side, for example, we look for elements with consistent feature65

descriptors. On the topology side, we build a 2-complex on the66

elements and measure regularity in the degree of the vertices, the67

faces, or both.68

Our main insight is to formulate the topology extraction as a con-69

strained optimization problem. Given a connected and oriented70

manifold mesh and a set of sample points on it, we create a col-71

lection of possibly overlapping patches using the sample points as72

vertices and the connecting geodesic curves as patch boundaries. In73

this setting, NR-mesh extraction amounts to selecting the subset of74

patches that maximizes a suitable regularity measure and forms a75

valid 2-manifold simplicial complex (partially) covering the mesh.76

TiTiTiTiTiTiTiTiTiTiTiTiTiTiTiTiTi

PPPPPPPPPPPPPPPPP

ppppppppppppppppp

pipipipipipipipipipipipipipipipipi

Figure 2: Near-regular structures are ubiquitous in the world.
(Right) Marked base texel-point pair (P ,p) along with the near-
regular repetition pattern encoded as NR-mesh MT .
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Constrained	
  Shape	
  Space

• mesh       point

• combinatorics remain fixed

• starting mesh       satisfies (nonlinear) constraints

x = (v1, . . . , vn) 2 RD

x0
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Each (face) constraint/relation

�i := {x 2 RD : Ei(x) = 0} 8 i = 1, . . . ,m

d ) x0 + d
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(uT ·Aj · u)nj

Ei(x) = Ei(x0) +rET
i · (x� x0) +

1

2
(x� x0)

T ·Hi · (x� x0)

+o(kx� x0k2)

Ei(u) = Ei(x0) +
1

2

mX

j=1

(rET
i · nj)(u

T ·Aj · u)

+
1

2

D�mX

p=1

D�mX

q=1

(eTp ·Hi · eq)upuq + o(kuk2)
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