Understanding the Structure of Large, Diverse Collections of Shapes

Vladimir G. Kim

Adviser: Thomas A. Funkhouser

Princeton University

3D repositories

Computer Graphics

3D Scanning

Introduction **3D** repositories **Data Analysis** Paleonthology Molecular Biology **3**E **Computer Graphics** Pseudomonas aldolase

Previous Work

Understanding structure

→ 3D shapes • Collections of 3D shapes

(c) Mitra et al., SIGGRAPH'06

(c) Golovinskiy et al. SIGGRAPH Asia'08

Symmetry

Segmentation

Saliency detection

(c) Lee et al. SIGGRAPH'05

Previous Work

Understanding structure
3D shapes
Collections of 3D shapes

Light Standard Newspaper Box Car Traffic Light

(c) Golovinskiy et al., ICCV'09

Grouping

(c) Kalogerakis et al. SIGGRAPH'12

Part-based models

(c) Praun et al., SIGGRAPH'01

Correspondence

Consistent Segmentation

(c) Golovinskiy et al., SMI'09

3D repositories

V

Structure

Correspondences

Parts

Variations

Grouping

- 1. Blended Intrinsic Maps
- 2. Fuzzy Correspondences
- 3. Deformable Template

3D repositories

₩

Structure

Correspondences

- Non-isometric shapes

Variations

Grouping

1. Blended Intrinsic Maps

- 2. Fuzzy Correspondences
- 3. Deformable Template

Complexity: O(N²)

3D repositories

¥

Structure

Correspondences

- Non-isometric shapes
- Leverage power of the set

Variations

Grouping

1. Blended Intrinsic Maps

2. Fuzzy Correspondences

3. Deformable Template

Complexity: O(N^{1.5})

3D repositories

♦

Structure

Correspondences

- Non-isometric shapes
- Leverage power of the set

Parts

- Consistent for all shapes

Variations

- Extra and missing parts
- Deformations

Grouping

- 1. Blended Intrinsic Maps
- 2. Fuzzy Correspondences

3. Deformable Template

Complexity: O(N)

3D repositories

₩

Structure

Correspondences

- Non-isometric shapes

Variations

Grouping

1. Blended Intrinsic Maps

- 2. Fuzzy Correspondences
- 3. Deformable Template

Complexity: O(N²)

Input

- A pair of manifold surfaces
- Related by a non-uniform (i.e. non-isometric) deformation

Input

- A pair of manifold surfaces
- Related by a non-uniform (i.e. non-isometric) deformation

Output

- A map defined at every point
- \circ Smooth
- Low-distortion
- Aligns semantic features

Previous Work

Pairwise Correspondence: Intrinsic

Gromov-Hausdorff

OMÖbius Transformations

Bronstein et al., PNAS' 06

Previous Work

Pairwise Correspondence: Intrinsic

- o Gromov-Hausdorff
- Möbius Transformations

Lipman and Funkhouser, SIGGRAPH'09

Our Approach

Weighted combination of locally-isometric maps

Our Approach

Weighted combination of locally-isometric maps

Our Approach

Weighted combination of locally-isometric maps

The Computational Pipeline

The Computational Pipeline

Find consistent set of candidate maps

The Computational Pipeline

Finding Blending Weights

• For every point p • Compute a weight of each map m_i at p

Finding Blending Weights

• For every point p • Compute a weight of each map m_i at p

We model the weight with deviation from isometry
 Area distortion for conformal maps

The Computational Pipeline

Blending Maps

Input for each point p:
An image m_i(p) after applying each map m_i
A blending weight for each map

Blending Maps

Input for each point p:
An image m_i(p) after applying each map m_i
A blending weight for each map

Output for each point:
 Weighted geodesic centroid of { m_i(p) }

Results

Failures

Comparison

Summary

Blend locally-isometric maps

- Robust to large non-uniform deformations
- Efficient to compute
- Outperforms other methods on benchmark

Goal

3D repositories

₩

Structure

Correspondences

- Non-isometric shapes
- Leverage power of the set

Variations

Grouping

1. Blended Intrinsic Maps

2. Fuzzy Correspondences

3. Deformable Template

Complexity: O(N^{1.5})

Goal

Find point correspondences for all pairs of models in collections with large geometric variations

- Diverse shapes
- Efficient computation

Previous Work

Correspondences in a collection

- All pairwise alignments
- Template fitting
- Map optimization

Previous Work

Correspondences in a collection

- All pairwise alignments
- Template fitting
- Map optimization

Previous Work

Correspondences in a collection

- All pairwise alignments
- Template fitting
- Map optimization

Challenges

Efficient matching of diverse collections
Geometric alignment only works for similar shapes
Point-to-point correspondences do not handle ambiguity
Computing all pairwise alignments is O(N²)

Efficient matching of diverse collections
Geometric alignment only works for similar shapes
Point-to-point correspondences do not handle ambiguity
Computing all pairwise alignments is O(N²)

Efficient matching of diverse collections

- Geometric alignment only works for similar shapes

Point-to-point correspondences do not handle ambiguity
 Computing all pairwise alignments is O(N²)

Diffusion map leverages transitivity:

Efficient matching of diverse collections

- Geometric alignment only works for similar shapes
- Point-to-point correspondences do not handle ambiguity
 Computing all pairwise alignments is O(N²)

Traditional correspondence:

Diffusion map produces continuous similarity values:

Efficient matching of diverse collections
Geometric alignment only works for similar shapes
Point-to-point correspondences do not handle ambiguity
Computing all pairwise alignments is O(N²)

Traditional correspondence:

Diffusion map works with sparse alignments

Chair 4

Pairwise Correspondences

Pairwise Correspondences

Pairwise Correspondences

Larger embedding example

Embedding of 128 points from 7 planes

Larger embedding example

Embedding of 128 points from 7 planes

Larger embedding example

Embedding of 128 points from 7 planes

Larger embedding example

Embedding of 128 points from 7 planes

Computing Fuzzy Correspondences

- 1. Sample points on each model
- 2. Select pairs of models to align
- 3. Estimate correspondences for selected pairs
- ↓ 4. Diffuse point correspondences
 - 5. Re-align pairs to improve consistency
 - Repeat until convergence

Summary

Fuzzy Correspondences via Diffusion

- Represent ambiguity in mapping
- Leverages transitivity to compare dissimilar shapes
- Far less than N² pairwise alignments are required

Talk Outline

3D repositories

↓

Structure

Correspondences

- Non-isometric shapes
- Semantic ambiguity
- Consistent for all pairs

Parts

- Consistent for all shapes

Variations

- Extra and missing parts
- Deformations

Grouping

1. Blended Intrinsic Maps

2. Fuzzy Correspondences

3. Deformable Template

Complexity: O(N)

Goal

3D repositories

♦

Structure

Correspondences

- Non-isometric shapes
- Semantic ambiguity
- Consistent for all pairs

Parts

- Consistent for all shapes

Variations

- Extra and missing parts
- Deformations

Grouping

Previous Work

3D repositories

Structure

Correspondences

- Non-isometric shapes
- Semantic ambiguity
- Consistent for all pairs

Parts

- Consistent for all shapes

Variations

- Extra and missing parts
- Deformations

Grouping

Each paper focuses only on one aspect

(c) Kalogerakis et al., SIGGRPAPH'12

(c) Huang et al., SIGGRAPH Asia'12

(c) Sidi et al. SIGGRAPH Asia'11, Huang et al. SIGGRAPH Asia'11

(c) Hou et al., CAD'05

Learn part-based model with Gaussian distributions for

- Part positions
- Part anisotropic scales
- Part local shape features

Bench

Dining chair

Swivel chair

InitialUnlabeled, unorganizedtemplate3D collection

Initial Unlabeled, unorganized template 3D collection

Final Deformable Templates

template 3D collection

Final Deformable Templates

Final Templates analysis results

Shape to template rigid alignment (r)

- Per part deformations (d)
 - Existence
 - Centroid position
 - Anisotropic scale
- Labeling of points in the shape (ℓ)
- Shape \leftrightarrow template mapping (*m*)

Method

Template Initialization

- Template Fitting
 - **Template Refinement**
 - repeat until convergence

Method

- → Template Initialization
 - Template Fitting
 - **Template Refinement**
 - repeat until convergence

Template Initialization

Manual initialization

- \circ The user aligns boxes to semantic parts (\approx 5 min)
- Automatic initialization
 - Automatically segment all shapes
 - Execute full template learning from best segmentations
 - Pick template with smallest average fitting energy

Method

Template Initialization

Template Fitting

Template Refinement

repeat until convergence

Fitting Energy

$$E = E_{\text{data}} + \gamma E_{\text{deform}} + \beta E_{\text{smooth}}$$

- $\circ E_{data}$ (template \leftrightarrow shape distance + local shape features)
- Edeform (plausibility of template deformation)
- Esmooth (close & similar regions should get the same label)

Alternate steps until shape segmentation converges:

- \circ Segmentation (optimize ℓ)
 - \circ Correspondences (optimize m)
- $\,\circ\, {\sf Deformation}$ (optimize r,d)

Alternate steps until shape segmentation converges:

- \circ Segmentation (optimize ℓ)
 - \circ Correspondences (optimize m)
- $\,\circ\,$ Deformation (optimize r,d)

Alternate steps until shape segmentation converges:

- Segmentation (optimize l)
 Correspondences (optimize m)
- $\,\circ\,$ Deformation (optimize r,d)

$$E = E_{\text{data}} + \gamma E_{\text{deform}} + \beta E_{\text{smooth}}$$

Method: Graph cut [Boykov et al. 2001]

Alternate steps until shape segmentation converges:

- Segmentation (optimize ℓ)
 - Correspondences (optimize m)
- $\,\circ\,$ Deformation (optimize r,d)

$$E = E_{\text{data}} + \gamma E_{\text{deform}} + \beta E_{\text{smooth}}$$

Method: Part-aware closest points

Alternate steps until shape segmentation converges:

• • Segmentation (optimize ℓ)

 \circ Correspondences (optimize m)

- Deformation (optimize r, d)

$$E = E_{\text{data}} + \gamma E_{\text{deform}} + \beta E_{\text{smooth}}$$

Method: Solve for critical points.

position: $\frac{\partial (E_{\text{data}} + E_{\text{deform}})}{\partial b_p} = 0$ scale: $\frac{\partial (E_{\text{data}} + E_{\text{deform}})}{\partial b_s} = 0$

Method

Template Initialization

- Template Fitting
- Template Refinement
 - repeat until convergence

Improve set of templates from unlabeled geometry

a. Initial Template

Improve set of templates from unlabeled geometry

a. Initial Template

b. Fitting Set

Overview

Improve set of templates from unlabeled geometry

Update template set from deformations in Learning Set

- Update current
- $\circ \, \text{Spawn new}$
- Reject outliers

Current Template Set

Update template set from deformations in Learning Set

Update template set from deformations in Learning Set

Update template set from deformations in Learning Set

Update current

Results

Evaluation

- Examples
- $\circ \, \textbf{Correspondence benchmark}$
- Segmentation benchmark
- Timing and complexity

3D Warehouse planes

Randomly sampled template fitting results:

3D Warehouse bikes

Final Templates:

Randomly sampled template fitting results:

Results

Evaluation

- \circ Examples
- Correspondence benchmark
 Segmentation benchmark
- Timing and complexity

Correspondences benchmark

Correspondences benchmark

Results

Evaluation

- \circ Examples
- Correspondence benchmark
- Segmentation benchmark
- Timing and complexity

Co-segmentation benchmark

Results

Evaluation

- \circ Examples
- Correspondence benchmark
- Segmentation benchmark
- Timing and complexity

Timing and complexity

Timing • 20 shapes: 2-3min • 100 shapes: 10-30 min • 3000 planes: 3.3 hrs • 7000 chairs: 10 hrs

Timing and complexity

Timing

- o 20 shapes: 2-3min
- o 100 shapes: 10-30 min
- o 3000 planes: 3.3 hrs
- 07000 chairs: 10 hrs

Complexity

N - collection size, K_L - learning set size, T_{max} - number of templates • At most O(N) iterations • Each iteration is O(K_L T_{max} + K_L²)

Summary

Given a collection, we jointly:

- Cluster models
- Learn a part-based deformable model
- Compute consistent segmentations
- Compute correspondences

Our algorithm is:

- Linear in size of collection
- Out-of-core
- Performs favorably on benchmark datasets

3D repositories

₩

Structure

Correspondences

Parts

Variations

Grouping

Correspondences

Parts

Variations

Grouping

Symmetry

What is missing?

1. Define structure intrinsically:

- robust to articulation
- strong deformations

2. Define structure hierarchically:

- more efficient
- can handle more complex objects or scenes

Google Streetview

input single-view scan

Microsoft Kinect

Acknowledgement

Advisor: Thomas Funkhouser

Collaborators

 Siddhartha Chaudhuri, Xiaobai Chen, Stephen DiVerdi, Aleksey Golovinskiy, Wilmot Li, Yaron Lipman, Tianqiang Liu, Niloy J. Mitra

Princeton students and professors

Researchers who provided code and data

 Brown et al., Giorgi et al., Anguelov et al., Bronstein et al., Ovsjannikov et al., Nguyen et al., Huang et al., Wang et al.

Funding agencies:

NSERC PGS-D, Siebel Scholarship, Adobe Internships
NSF, AFOSR, Intel, Google, Adobe, Marie Curie CIG

Thank you!

ADDITIONAL SLIDES

Previous Work

Previous Work

3D repositories

Structure

Correspondences

Variations

Grouping

(c) Sidi et al. SIGGRAPH Asia'11, Huang et al. SIGGRAPH Asia'11
Previous Work

↓

Structure

Correspondences

Parts

Variations

(c) Kalogerakis et al., SIGGRAPH'12

Previous Work

Structure

Correspondences

Parts

Variations

Gears

Screws

(c) Hou et al., CAD'05

Recap + References

