Shape2Pose: Human-Centric Shape Analysis

Vladimir G. Kim¹

Siddhartha Chaudhuri²

Leonidas Guibas¹

Thomas Funkhouser²

Stanford University

Goal

Leverage online repositories to understand classes of shapes

Challenge

Find common structure

Affordance is an intrinsic property of a shape

Key Idea

Affordance is

Other Potential Applications: Populating Virtual Environments Interaction-aware Design Functional Understanding

Previous Work: Hallucinating People

Jiang'13 Gupta et al.'11 Grabner et al.'11

Goal

Predict an arbitrary pose

Overview

Introduction

Learning Affordance Model

Pose Prediction

Results & Applications

Pose Parameters

→ Contact points m• Joint Angles θ, T

Pose Parameters

• Contact points m• Joint Angles θ, T

Pose Parameters \circ Contact pointsm \circ Joint Angles θ, T

$$E_{\text{dist}} = \sum_{p \in P} ||T\mathbf{p}_{\theta} - m(p)||^2$$

Pose Parameters \circ Contact pointsm \circ Joint Angles θ, T

$$E_{\text{feat}} = \sum_{p \in P} -\log V_p(m(p))$$

Trained Classifier

Pose Parameters \circ Contact points m \circ Joint Angles θ, T

Pose Parameters \circ Contact pointsm \circ Joint Angles θ, T

$$E_{\text{pose}} = \min_{l \in L} \sum_{i}^{40} \frac{|\theta_i - \mu_l^i|^2}{(\sigma_i^l)^2}$$

Pose Parameters

Energy

- Contact Distance
- Feature Compatibility
- Pose Prior
- o Symmetry

Surface Intersections

Hard Constraint

Key Optimization Terms

Additional Terms

Overview

Introduction

- Learning Affordance Model
- Pose Prediction

Results & Applications

Input

Output: *m*

Output: $m \quad \theta, T$

Output:
$$m \rightarrow \theta, T$$

Output:
$$m \leftarrow \theta, T$$

Sample m: classify surface based on local features

Sample m: classify surface based on local features

Need to include the pose prior in optimization!!!

Sample θ, T : pose is represented by two Gaussians

Contact Distribution

Sample θ, T : pose is represented by two Gaussians

Contact Distribution

End Effector Distribution

Sample relative distribution

Sample θ, T : pose is represented by two Gaussians

Contact Distribution

End Effector Distribution

Our pipeline

Contact Distribution

Overview

Introduction

- Learning Affordance Model
- **Pose Prediction**
- Results & Applications

Datasets

Cockpits (21)

Leave-one-out Results

Training Data (10)

Applications

Examples
Sparse Correspondence
Salience Estimation
Shape Retrieval

App: Sparse Correspondence

App: Sparse Correspondence

App: Salience Estimation

Mesh Saliency [Lee et al. 2005]

App: Salience Estimation

Human-centric Saliency [Our method]

App: Shape Classification & Retrieval

App: Shape Classification & Retrieval

Summary

Human-Centric Shape Analysis

- Affordance is an intrinsic property of a shape
- Efficient optimization by pre-computing end effector distribution
- Applications: correspondence, saliency, retrieval, ...

Semantics

Semantics

Future Work: predict a range of activities

Chair: pushing

Chair: watching TV

Chair: working

Dynamics

Future Work: model dynamic interactions

Dynamics

Future Applications

Populating Virtual Environments

Object Design

Acknowledgement

Code and discussions:
 Qixing Huang, Ashutosh Saxena, Peter Minary, Hao Zhang

• NSF, Intel, Google, Adobe

CODE AND DATA

http://www.cs.princeton.edu/~vk/projects/Shape2Pose/

Thank You!

Our

Our Shape Matching

Timing and Complexity

Timing

Data	N	Prep	Train	Ont
Bicycles	30	80s	115s	130s
Bipedals	30	225s	200s	590s
Cockpits	21	1150s	550s	970s
Carts	11	235s	25s	15s
Chairs	30	50s	60s	80s
Gym Equipment	25	345s	270s	500s
		1		

Complexity

- 1. For each candidate contact alignment Ncand ► N_{rot}=32
- For each rotation around "up" 2. 3.
 - **Greedily add best-energy points**
- 4. Sort poses by lower bound energy
- 5. **Run IK - find exact poses** At most N_{cand}•N_{rot} **Compute full energy** O(N_{cand}²)

Ncand

If Full Energy < Lower Bound - terminate 6.