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How Do We Use Computers?

Explore, Analyze, and Create Data

Canon PowerShot SX170 IS 16.0 MP
Digital Camera - Black

KRR RX*Y 292 product reviews #1 in Canon Digital Cameras
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Shopping
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Geometry and Function

Explore, Analyze, and Create ¢Greowebric Data

*Image from Mathieu Aubry

3D Geometry is essential to understand functionality



Research Agenda

Find structure in 3D data to

o Understand similarities
o Detect important regions
o Learn structural variations

—p ||

3D Data

Understand
Function




Motivating Applications
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Exploring Collections of 3D Models using Fuzzy Correspondences.
V. Kim, W. Li, N. Mitra, S. Chaudhuri, S. DiVerdi, T. Funkhouser, SIGGRAPH 2012



Motivating Applications

model d

Database of 3D Objects User-created
(takes hours to create a model) ~1 minute

Learn
Structural
Variations

to Synthesize
Plausible
Shapes

ShapeSynth: Parameterizing Model Collections for Coupled Shape Exploration and Synthesis
M. Averkiou, V. Kim, Y. Zheng, and N. Mitra, Eurographics 2014
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ShapeSynth: Parameterizing Model Collections for Coupled Shape Exploration and Synthesis
M. Averkiou, V. Kim, Y. Zheng, and N. Mitra, Eurographics 2014



Previous Work

Geometry analysis to understand structure:
(self-serving overview)

o Symmetry
o Correspondences

o Probabillistic structural models
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Symmetry

Key Idea: find a symmetric conformal embedding
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E.g., Mébius Transformations For Global Intrinsic Symmetry Analysis
V. Kim, Y. Lipman, X. Chen, and T. Funkhouser, SGP’10



Correspondences

Key Idea: blend partial intrinsic maps
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E.g., Blended Intrinsic Maps
V. Kim, Y. Lipman, and T. Funkhouser, SIGGRAPH’11



Correspondences

Key Idea: blend partial intrinsic maps
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E.g., Blended Intrinsic Maps
V. Kim, Y. Lipman, and T. Funkhouser, SIGGRAPH’11



Correspondences in Collections

Key Ideas: represent ambiguity in mapping, leverage
consistency and transitivity of correspondences
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E.g, Exploring Collections of 3D Models using Fuzzy Correspondences
V. Kim, W. Li, N. Mitra, S. DiVerdi, T. Funkhouser, SIGGRAPH’12



Probabilistic Part Models

Key Idea: learn deformable templates
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E.qg., Learning Part-based Templates from Large Collections of 3D Shapes
V. Kim, W. Li, N. Mitra, S. Chaudhuri, S. DiVerdi, T. Funkhouser, SIGGRAPH’13



Hierarchical Probabilistic Models

Key Idea: group related elements into hierarchies

Library 5% 7"
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/\Study chair /\’leeﬁng chair
(X2) (X4)

Study desk Meeting table

Scene from 3D Warehouse Semantic Hierarchy

E.qg., Creating Consistent Scene Graphs Using a Probabilistic Grammar
T. Liu, S. Chaudhuri, V. Kim, Q. Huang, N. Mitra, and T. Funkhouser, SIGGRAPH Asia’14
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Challenge

Find common structure




Observation

Affordance is an intrinsic property of a shape
[Gibson’77]




Observation

Affordance is an intrinsic property of a shape
[Gibson’77]

Previous work: classification

Jiang et al.

Rigid poses:

14 84% 4%



_ v Correspondence
Observation | Saliency

* Structural Variations
Affordance is an intrinsic property of a shape
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Affordance is an intrinsic property of a shape
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Affordance Model

Learn from training data

= Geometry of contact points
o Plausibility of poses
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Affordance Model

Learn from training data

= Geometry of contact points
o Plausibility of poses

Random
Regression
Forest
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Affordance Model

Learn from training data

o Geometry of contact points
= Plausibility of poses
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Affordance Model

Learn from training data

o Geometry of contact points
- Plausibility of poses
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Affordance Model

Learn from training data

o Geometry of contact points
= Plausibility of poses
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Affordance Model

Learn from training data

o Geometry of contact points
= Plausibility of poses
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Affordance Model

Learn from training data

o Geometry of contact points
= Plausibility of poses

Mixture of multi-variate Gaussians



Affordance Model and Pose Prediction

Pose Prediction




Pose Prediction

Obijective function for each pose-model fit:
b= Edist =+ Efeat =+ Epose =+ Esymm =+ Eisect

Solve for: Body parts Shape
o Contact points 11 P— S
oJoint angles 6,7
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Pose Prediction

Obijective function for each pose-model fit:
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Pose Prediction

Obijective function for each pose-model fit:
E = Egist + Efeat + =+ Esymm + Bisect
Faw = 3 |ITps — m(p)|

peP
Efear = ) —log V,(m(p))
peP Regression Model
_ ‘9 ,ul|2
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SOIVe fOr: Body parts Shape

o Contact points 11 P— S
oJoint angles 6,7



Pose Prediction

Obijective function for each pose-model fit:

E = Edist + Efeat + Epose + Esymm =+ Eisect

o o 2
Eist = Z |Tpo —m(p)|] | Hard Constraint

peP
O

I Freat = Z - log Vp(m(p))

= — pEP Regression Model
, Key Optimization Terms
— min Z ‘9 'ul |
Epose = el
Solve for: Body parts Shape

o Contact points 11 P— S
oJoint angles 6,7



Pose Prediction Algorithm
Input
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Related via inverse
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Pose Prediction Algorithm

Output: m-e» 0, T
Related via inverse
and forward kinematics

Naive Methods
Explore 110 : Explore 0,1 :

__~# surface points

N > _~#body contacts 540 /

# angles

P!
Too Expensive!
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Output: m 0, T
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Pose Prediction Algorithm
Output: m 0, T

Contact
ontac .
Distribution Pose Prior

Key to Oimization: |
Sample Independently =>
Maximize Joint Probability




Pose Prediction Algorithm

Sample m: classify surface based on local features

Contact Distribution



Pose Prediction Algorithm

Sample 0, T: Gaussian distributions

Contact Distribution



Pose Prediction Algorithm

Sample 0, T: Gaussian distributions
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Pose Prediction Algorithm

Sample 0, T: Gaussian distributions

End
Effector
Energy

Reference
Point
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Pose Prediction Algorithm

Sample ¢, T: Gaussian distributions Reference

Contact Distribution End Effector Distribution



Pose Prediction Algorithm

Sample 6,T: Gaussian distributions
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Pose Prediction Algorithm

Sample 6,T: Gaussian distributions

Contact Distribution End Effector Distribution



Pose Prediction Algorithm
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Pose Prediction Algorithm

Pick global peaks in the joint distribution

right palm

Candidate pose with lower-bound on the energy
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Pose Prediction Algorithm

Run IK on best candidate poses to compute energy
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Predicted pose with the final energy
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Run IK on best candidate poses to compute energy

Best Pose!
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Pose Prediction Algorithm

Run IK on best candidate poses to compute energy

1.11

Predicted pose with the final energy



Pose Prediction Algorithm

Run IK on best candidate poses to compute energy

Final Predicted Pose



Human-centric Model Evaluation
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Leave-one-out Evaluation

Test Data

Training Data
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Pose Prediction Results
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Shape Correspondence Results

100

Pose-aware
correspondence

State-of-the-art

Shape Correspondences
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Salience Estimation Results

Mesh Saliency [Lee et al. 2005]



Estimation Results
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Shape Retrieval Results
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o Designing manufacturable objects
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Correspondences

Find Structure in 3D data to infer Function
= Better structural models

t\.‘;.—-—,
Symmetry Axis Correspondence

with T. Liu and T. Funkhouser, SGP 2012

distance
distance
____ distance

T Telative angle 7 relativeangle relative angle

Autocorrelation — Correspondence
with M. Averkiou and N. Mitra, CGF 2015 (conditional) with A. Nguyen, J. Solomon, L. Guibas

Symmetry And Correspondence Probabilistic Correspondence



Probabilistic Part Model

Find Structure in 3D data to infer Function
= Better structural models

Input

Handle partial observations
An on-going project with M. Sung, R. Angst, L. Guibas



Probabilistic Part Model

Find Structure in 3D data to infer Function
= Better structural models

Input Reconstruction

Handle partial observations
An on-going project with M. Sung, R. Angst, L. Guibas



Research Agenda

Find Structure in 3D data to infer Function
o Better structural models

= Additional input to understand function

o Designing manufacturable objects

o Scene understanding



Semantic Shape Network

Find Structure in 3D data to infer Function
= Additional input to understand function

Backrest Back Support
Seat Affordance Heatmap

An on-going project with L. Yi, I. Shen, H. Su, Q. Huang, A. Sheffer, L. Guibas




Semantic Shape Network

Desiderata
o Crowdsourced
o Semi-supervised
oHandle diverse data
o Active



Semantic Shape Network

Desiderata
= Crowdsourced
o Semi-supervised user-painted
oHandle diverse data reonn
o Active -
erase all
annotations

select tool:
brush or eraser

—y ..

Simple 2D interface



Semantic Shape Network

Desiderata
o Crowdsourced
= Semi-supervised
oHandle diverse data
o Active

Leverage geometry matching
to propagate semantic information

Training
Samples

N SR
dwd A_‘..-: - ‘}H . :C"'. .
neck TR T -

Embedded Training Samples

Local Shape Features Global Correspondences



Semantic Shape Network

Desiderata
o Crowdsourced
o Semi-supervised
= Handle diverse data
o Active

Learn a network structure for
propagating annotations

Backrest Back Support
Seat Affordance Heatmap




Semantic Shape Network

Desiderata
o Crowdsourced
. . =P |Classify| =P |Verif
o Semi-supervised Query
oHandle diverse data
= Active

preliminary
results on
10K models !




Model Dynamic Interactions

Find Structure in 3D data to infer Function
= Additional input to understand function

*image from: “Design of Everyday Things”, D. Norman

¥ An on-going project with K. Gibson, B. Araujo, K. Singh
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Find Structure in 3D data to infer Function
= Additional input to understand function

*image from: “Design of Everyday Things”, D. Norman

¥ An on-going project with K. Gibson, B. Araujo, K. Singh
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Find Structure in 3D data to infer Function
o Better structural models

o Additional input to understand function

= Designing manufacturable objects

o Scene understanding



Furniture Design

Find Structure in 3D data to infer Function
= Designing manufacturable objects




Design Mechanical Assemblies

Find Structure in 3D data to infer Function
= Designing manufacturable objects

G0

m An on-going project with N. Mitra, M. Averkiou



Garment Design

Find Structure in 3D data to infer Function
= Designing manufacturable objects

Database
of Garment Designs

iANE
Y
A TIE

199

User-created Garments

An on-going project with A. Bartle, A. Sheffer, F. Bertouzoz



Garment Design

Pattern

Simulated

Manufactured



Garment Design

Input Our Result




Garment Design
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Find Structure in 3D data to infer Function
o Better structural models

o Additional input to understand function

o Designing manufacturable objects

= Scene understanding



Research Agenda

Find Structure in 3D data to infer Function
o Better structural models

o Additional input to understand function

o Designing manufacturable objects

= Scene understanding
— Reason about function and semantics using 3D CG data
— Advantages: known lighting, camera, objects, functionality”
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Beyond Geometry Analysis

Model object classes from large collections

o Geometry
o Semantics
o Function
o Appearance |
o Materials bey%g?a%reetgh'cs
o Manufacturing R . R
millions semi-supervised o’
of models annotations "

q, L 2

- partial data

o 10,000 % _

o probabilistic ¢ hierarchy
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Summary

Large collections of 3D models are available

(and more are coming!)

o 3D modeling repositories, Kinect scans, Google Streetview,
online shopping catalogues, scientific datasets

Finding structure in large 3D collections is useful to
predict functional attributes

Understanding functionality is essential for
o Exploring and organizing the data

o Digital design

o Scene understanding



4 ‘

Scans of Cities Medical Data CAD Models

Understanding functionality is essential for
o Exploring and organizing the data

o Digital design

o Scene understanding
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Shape Models
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Shape Correspondence

Exploration
and Synthesis
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