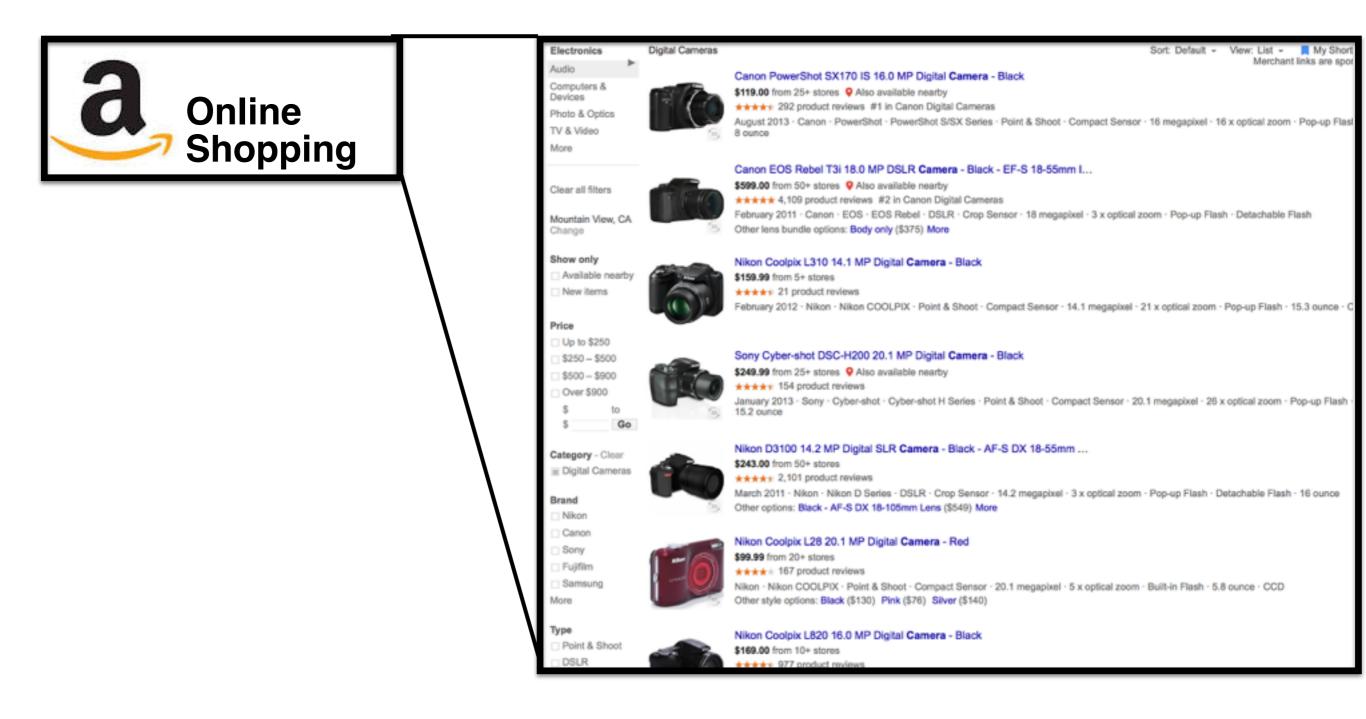
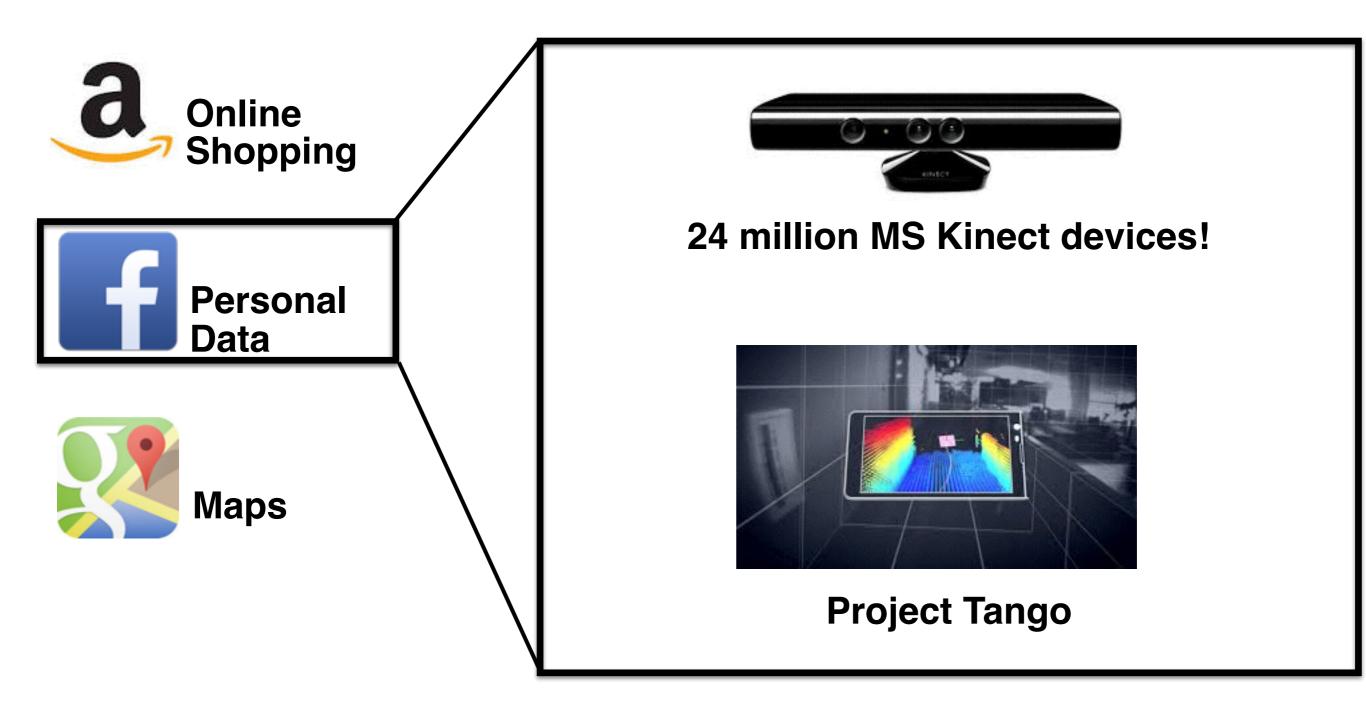
Structure and Function in Large Collections of 3D Shapes

Vladimir G. Kim

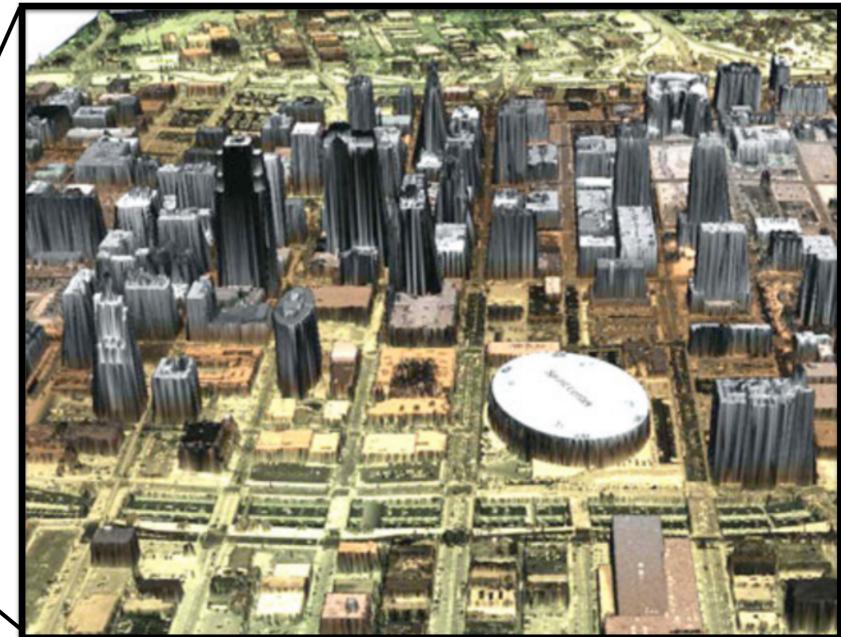
Stanford University



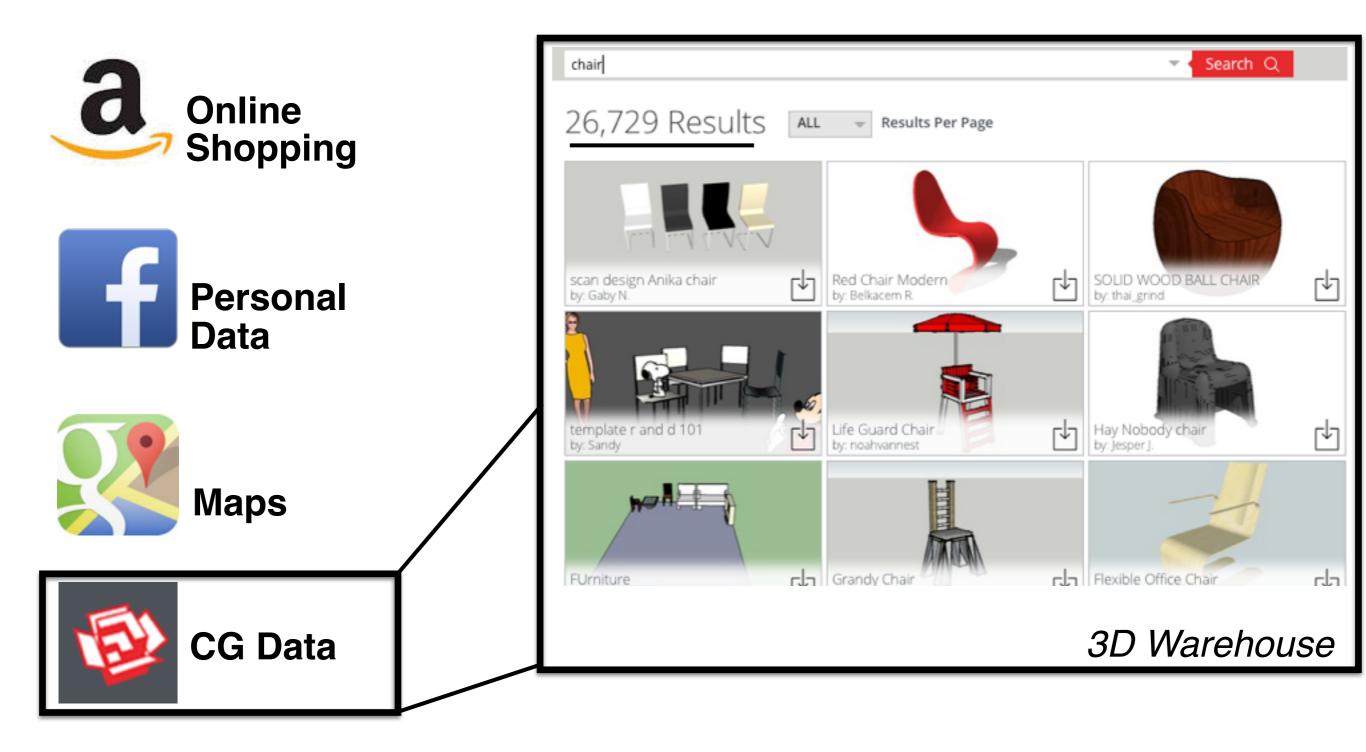


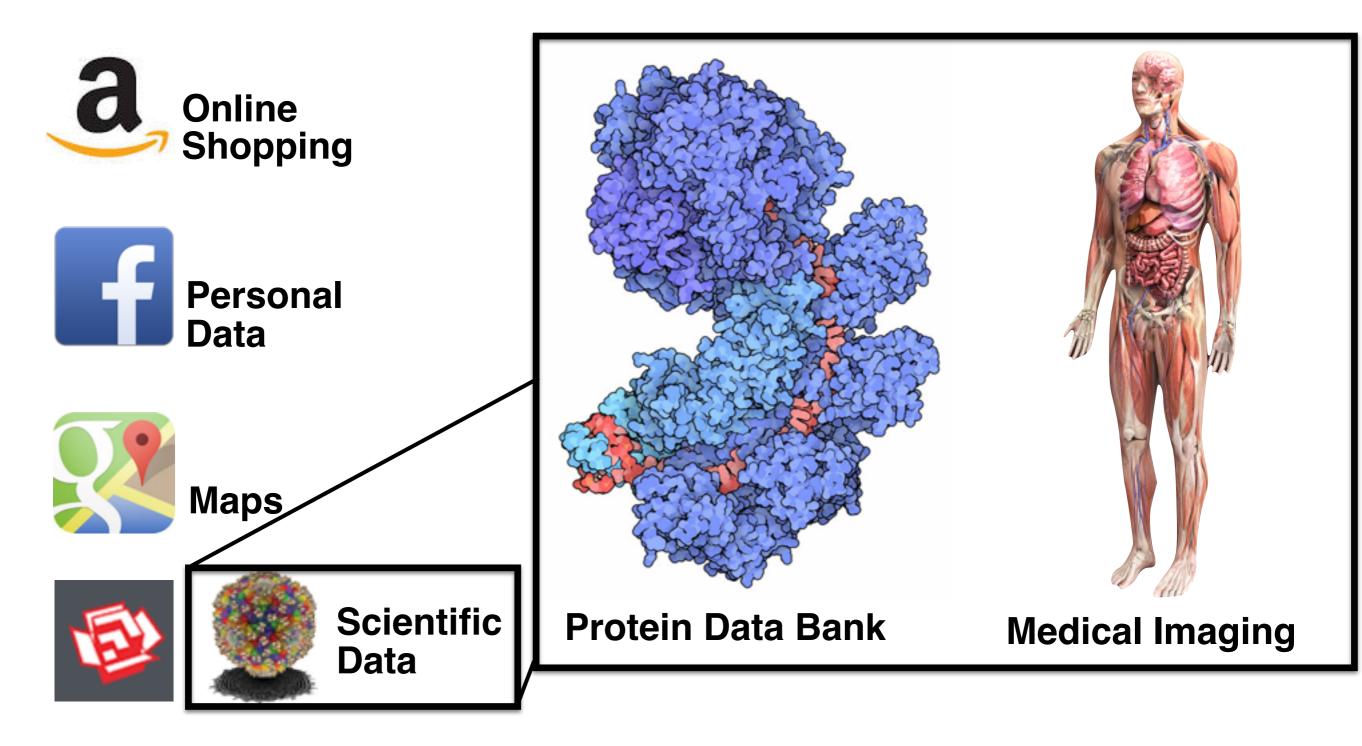


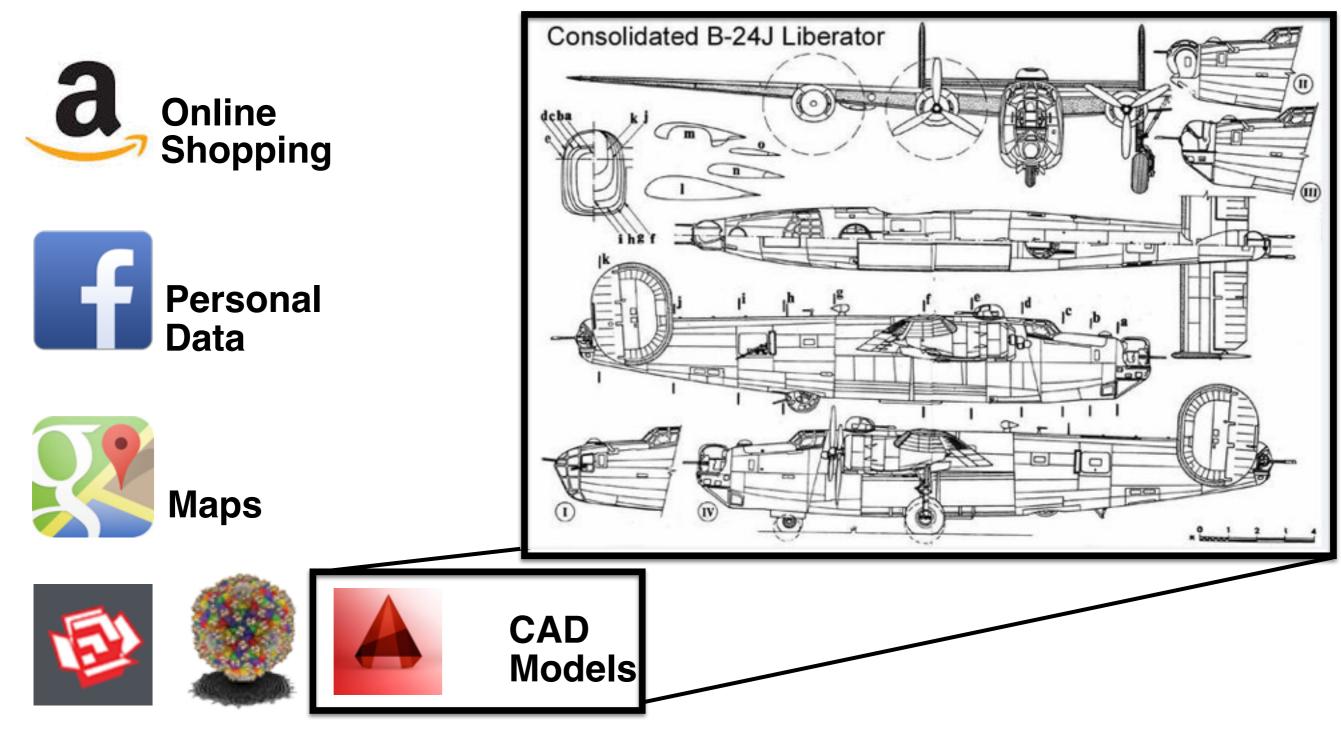
Explore, Analyze, and Create Data



Google Streetview Point Cloud





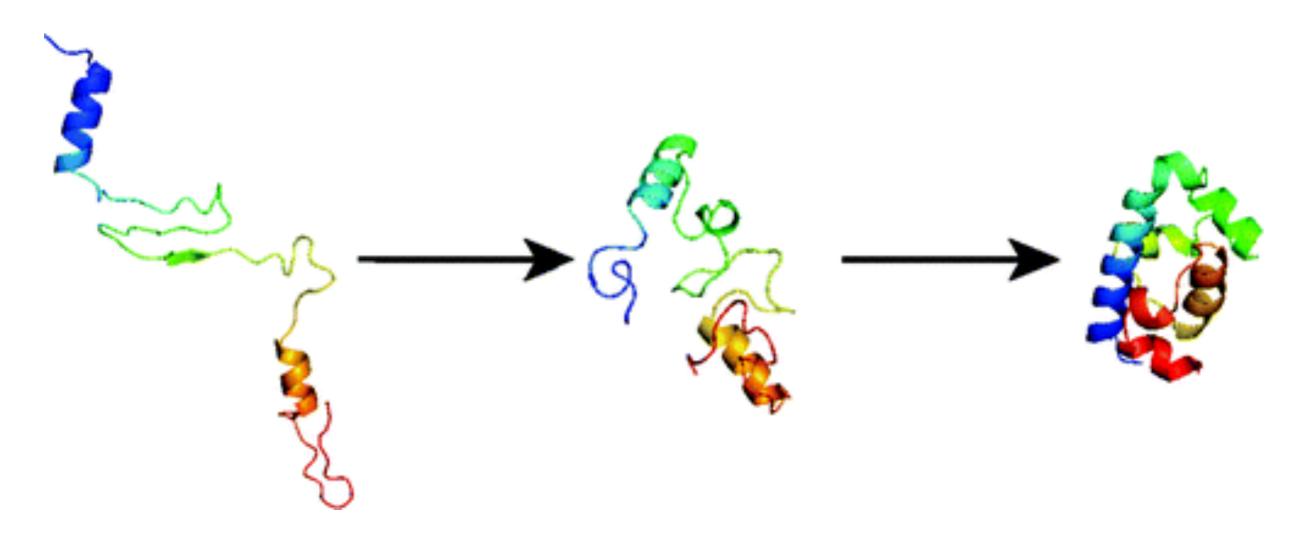


Geometry and Function

Explore, Analyze, and Create Geometric Data

Geometry and Function

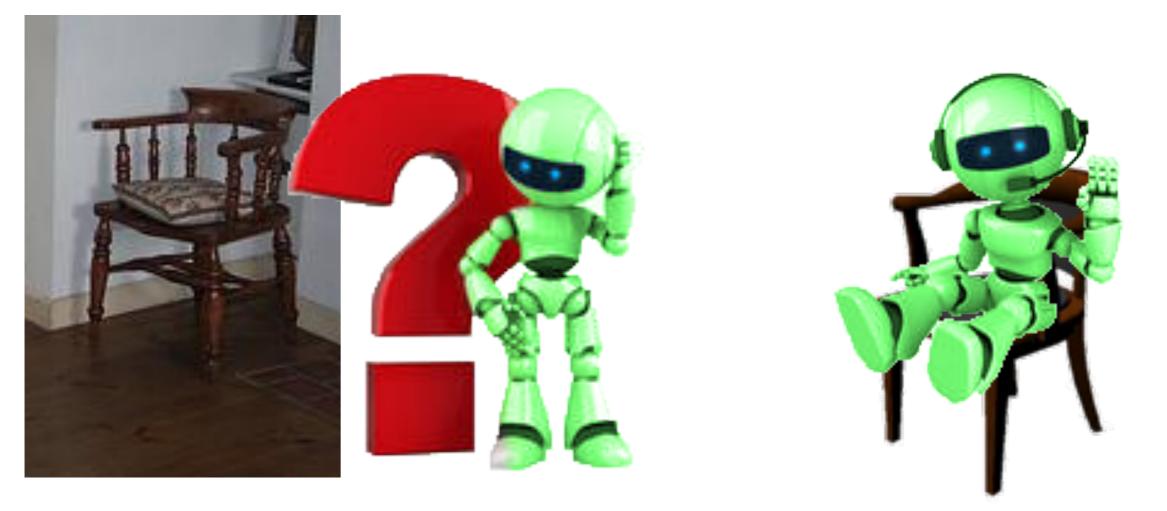
Explore, Analyze, and Create Geometric Data



3D Geometry is essential to understand functionality

Geometry and Function

Explore, Analyze, and Create Geometric Data

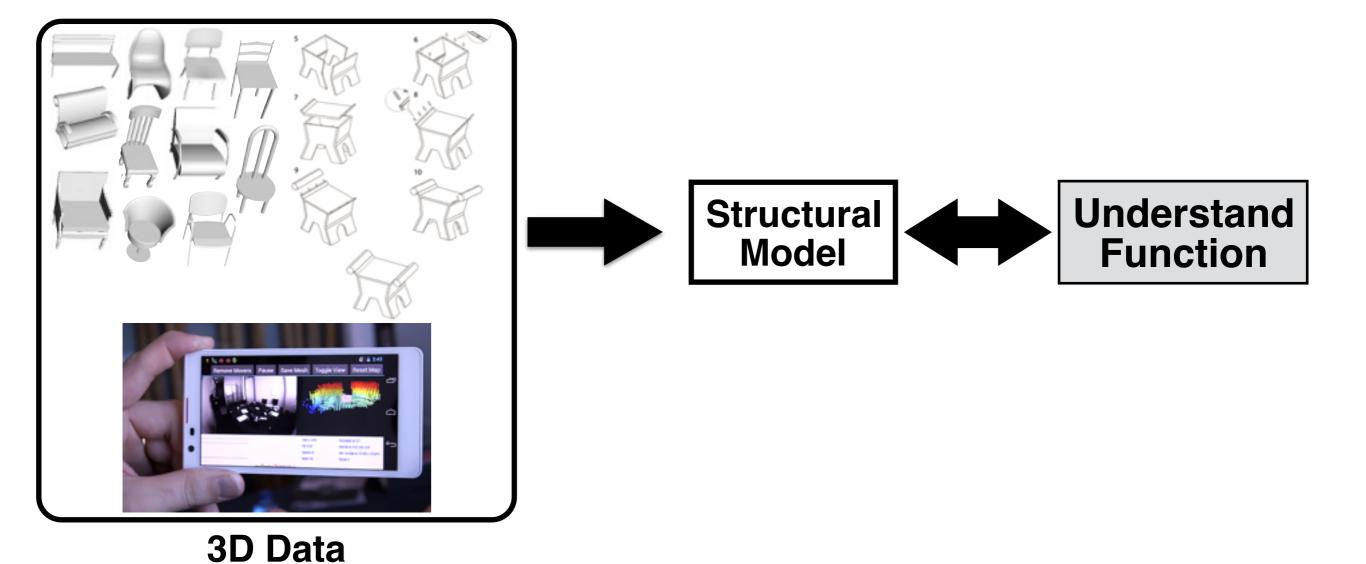


^{*}Image from Mathieu Aubry

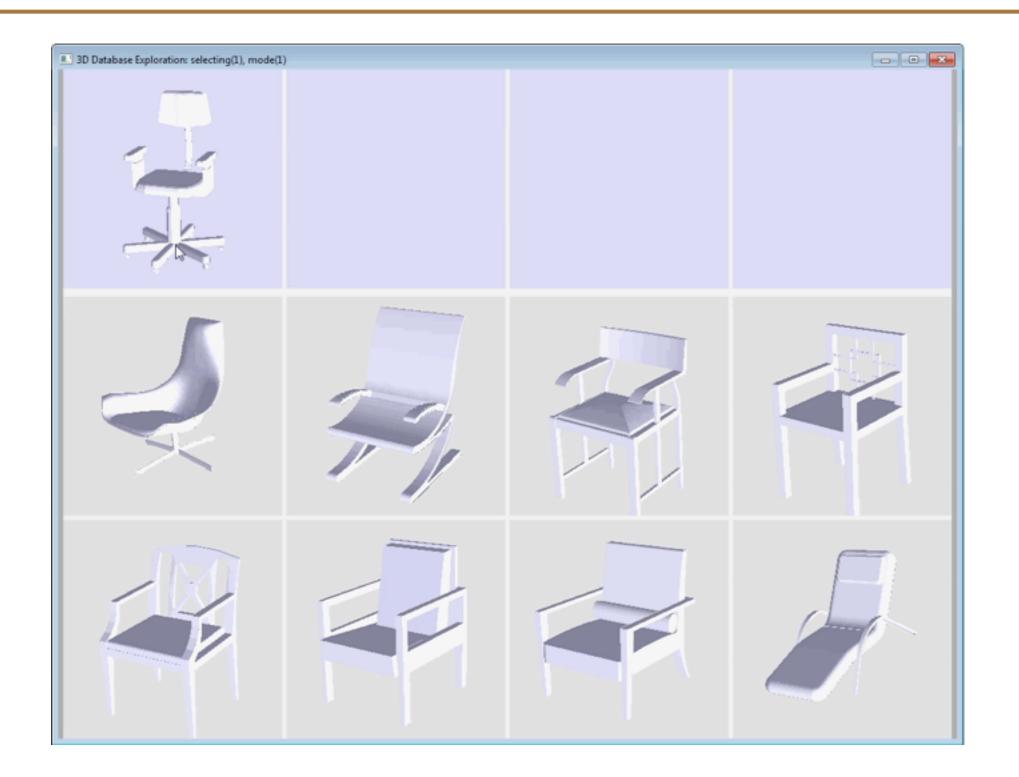
3D Geometry is essential to understand functionality

Research Agenda

Find structure in 3D data to
Understand similarities
Detect important regions
Learn structural variations



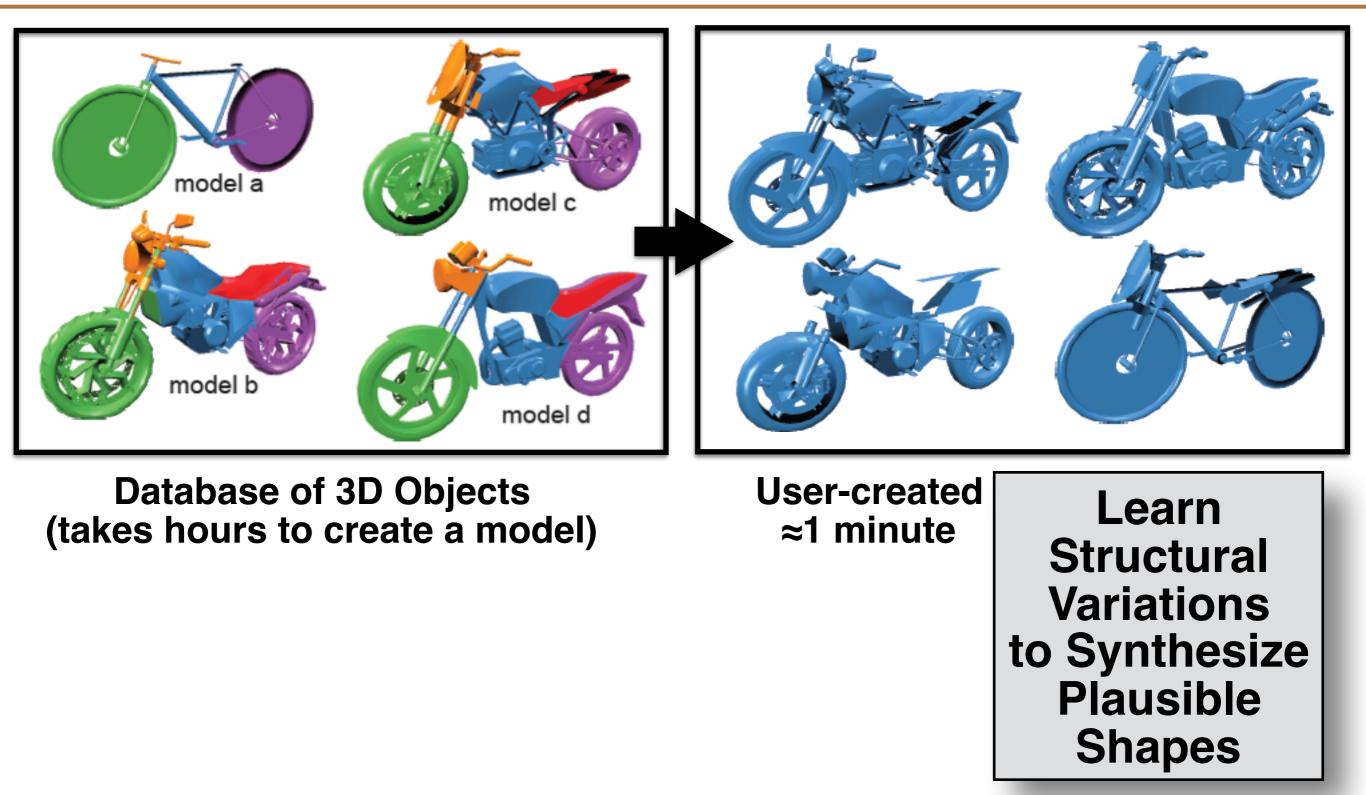
Motivating Applications



Understand Similarity to Explore Collections of Objects

Exploring Collections of 3D Models using Fuzzy Correspondences. V. Kim, W. Li, N. Mitra, S. Chaudhuri, S. DiVerdi, T. Funkhouser, SIGGRAPH 2012

Motivating Applications



ShapeSynth: Parameterizing Model Collections for Coupled Shape Exploration and Synthesis M. Averkiou, V. Kim, Y. Zheng, and N. Mitra, Eurographics 2014

Motivating Applications

000

Add Shapes Save Synthesized Model Interaction Mode: Synthesis | Constraints: ON | No of Neighbours: 10 | No of neighbors used: 4 / No of independent parts: 4 24 models 16 mode Exploration view

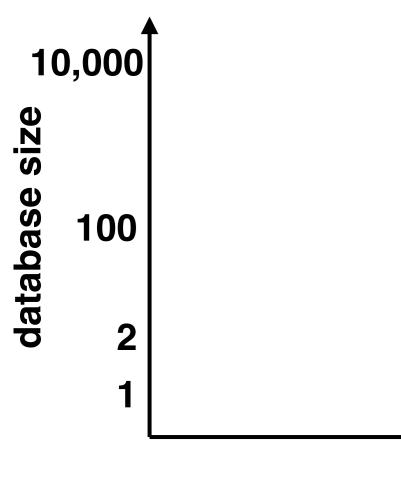
> ShapeSynth: Parameterizing Model Collections for Coupled Shape Exploration and Synthesis M. Averkiou, V. Kim, Y. Zheng, and N. Mitra, Eurographics 2014

Previous Work

Geometry analysis to understand structure:

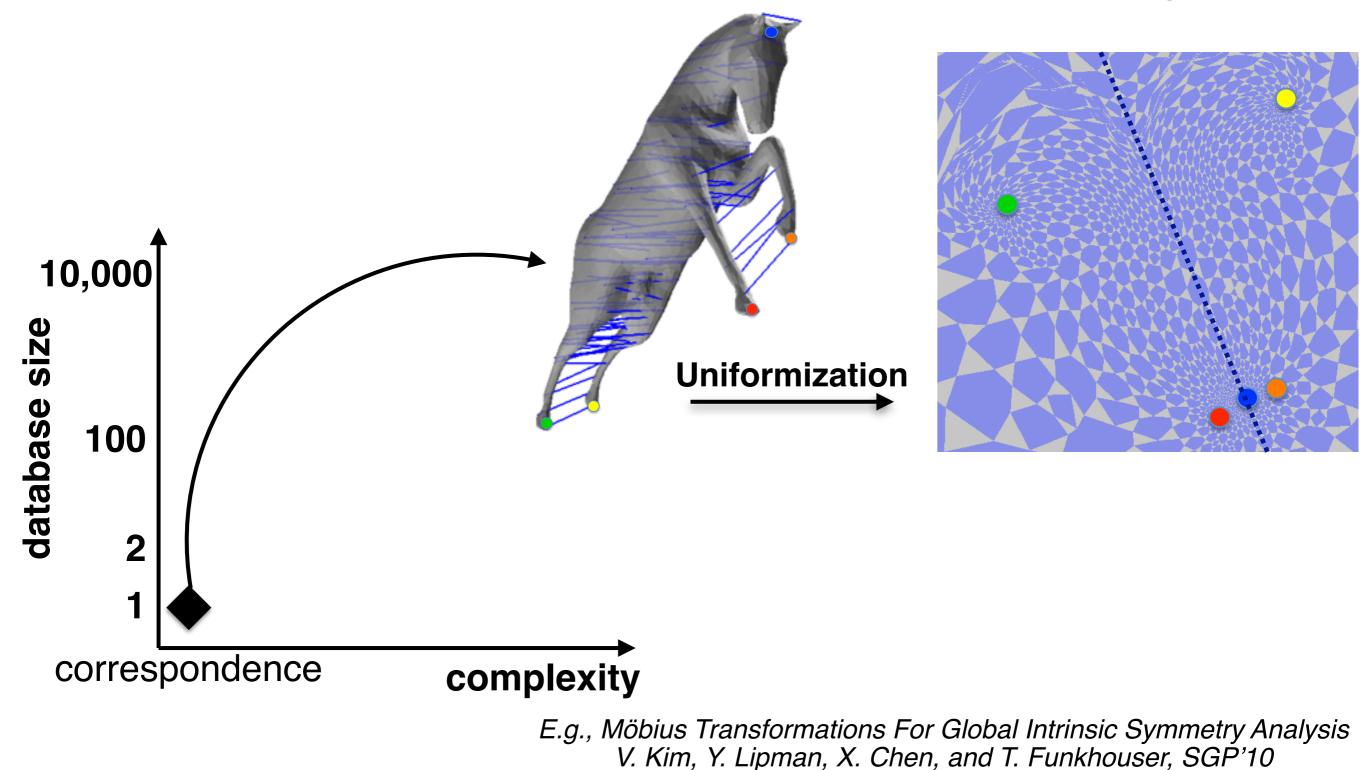
complexity

- (self-serving overview)
- o Symmetry
- \circ Correspondences
- Probabilistic structural models



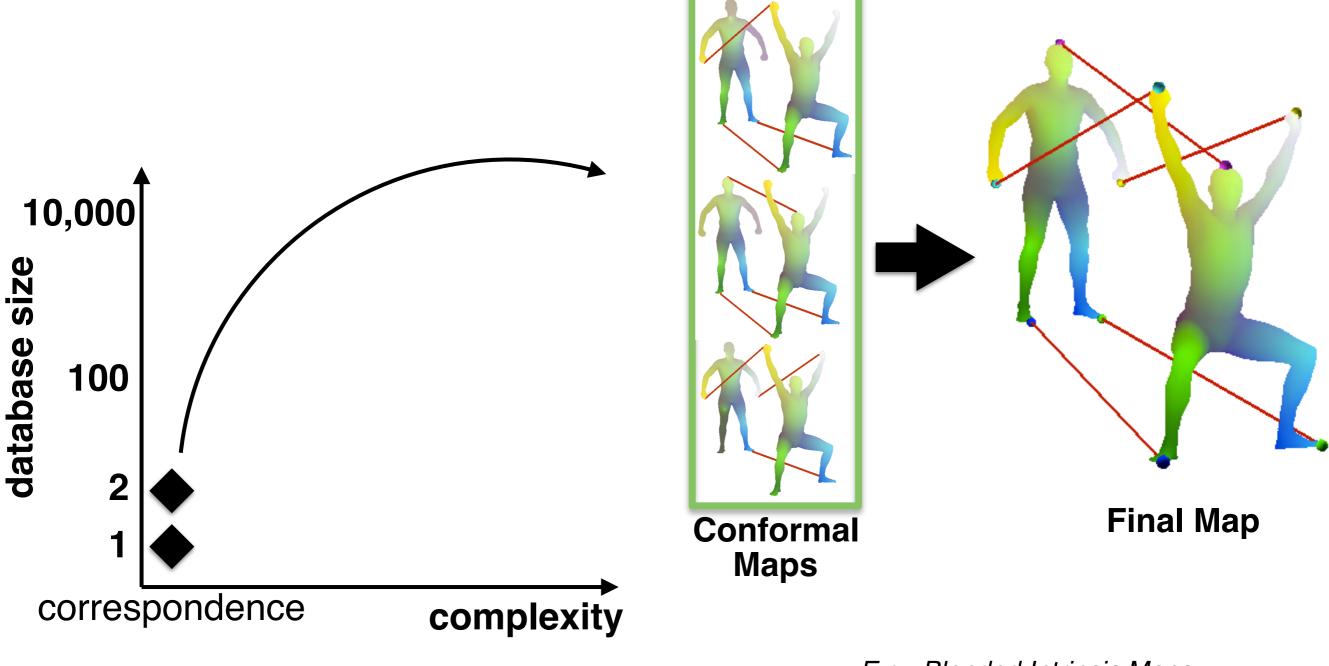
Symmetry

Key Idea: find a symmetric conformal embedding



Correspondences

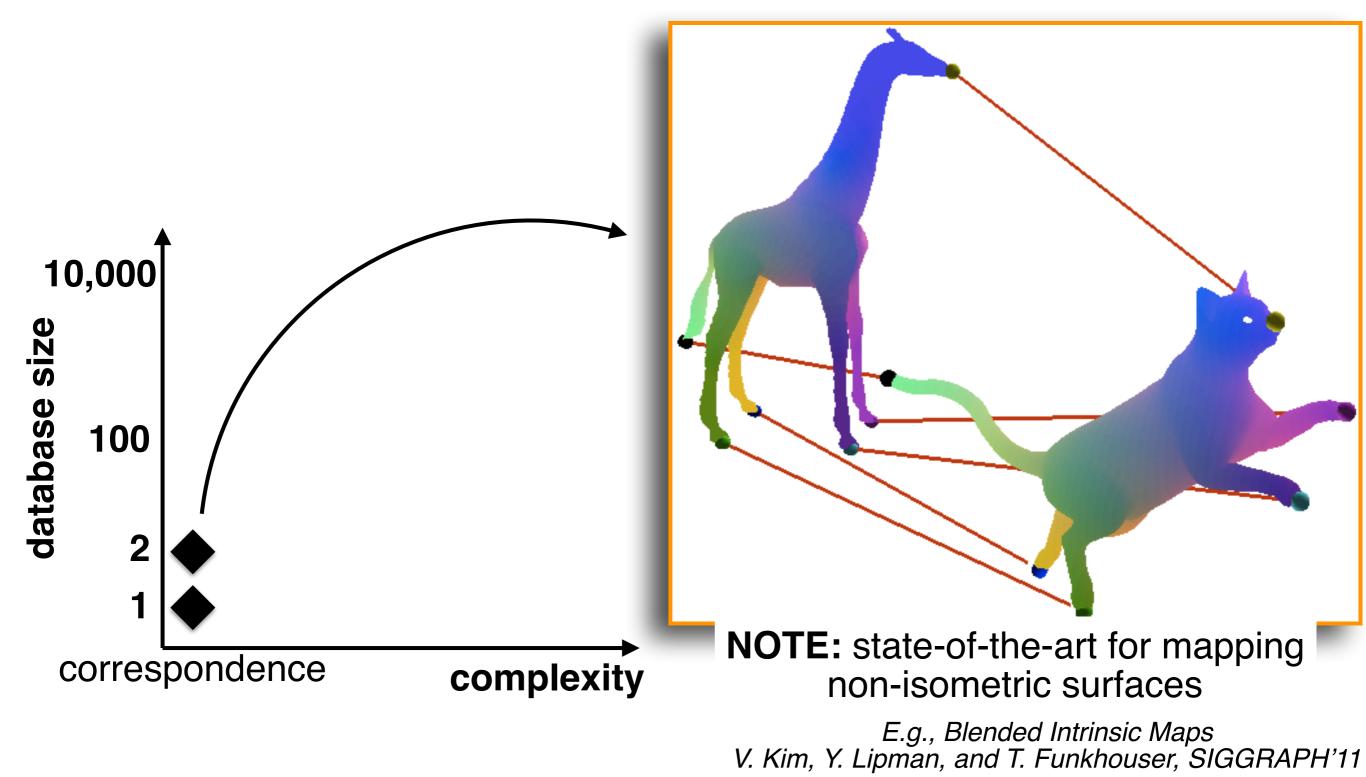
Key Idea: blend partial intrinsic maps



E.g., Blended Intrinsic Maps V. Kim, Y. Lipman, and T. Funkhouser, SIGGRAPH'11

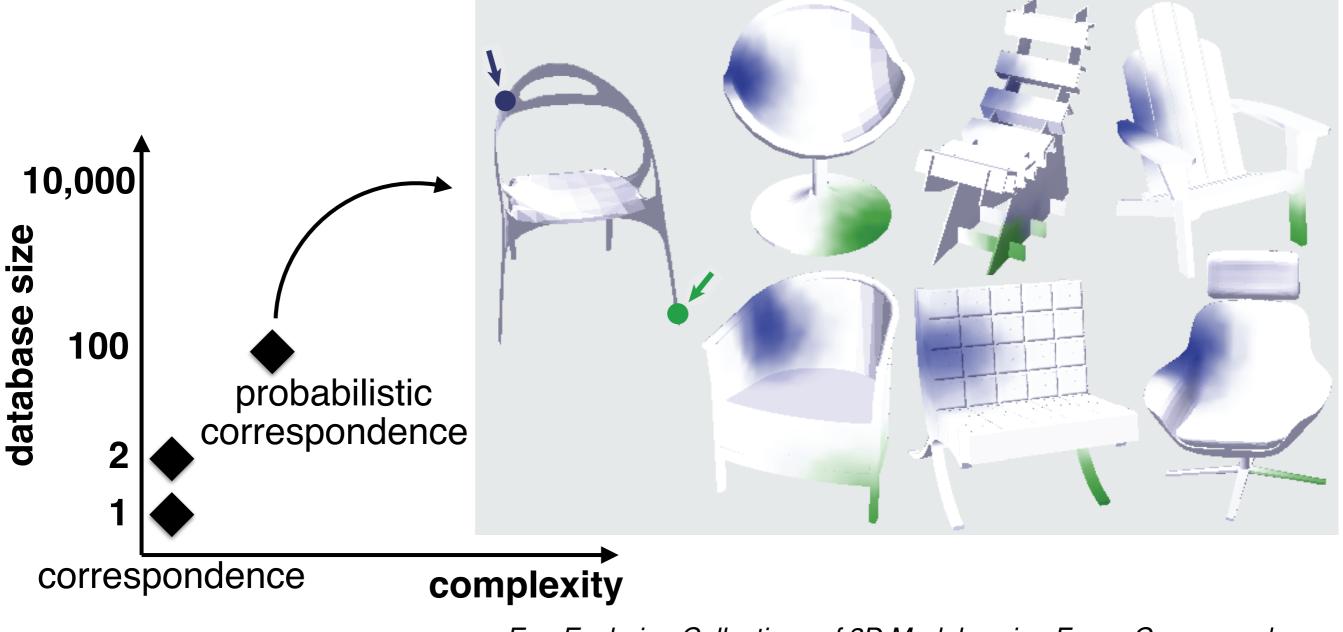
Correspondences

Key Idea: blend partial intrinsic maps



Correspondences in Collections

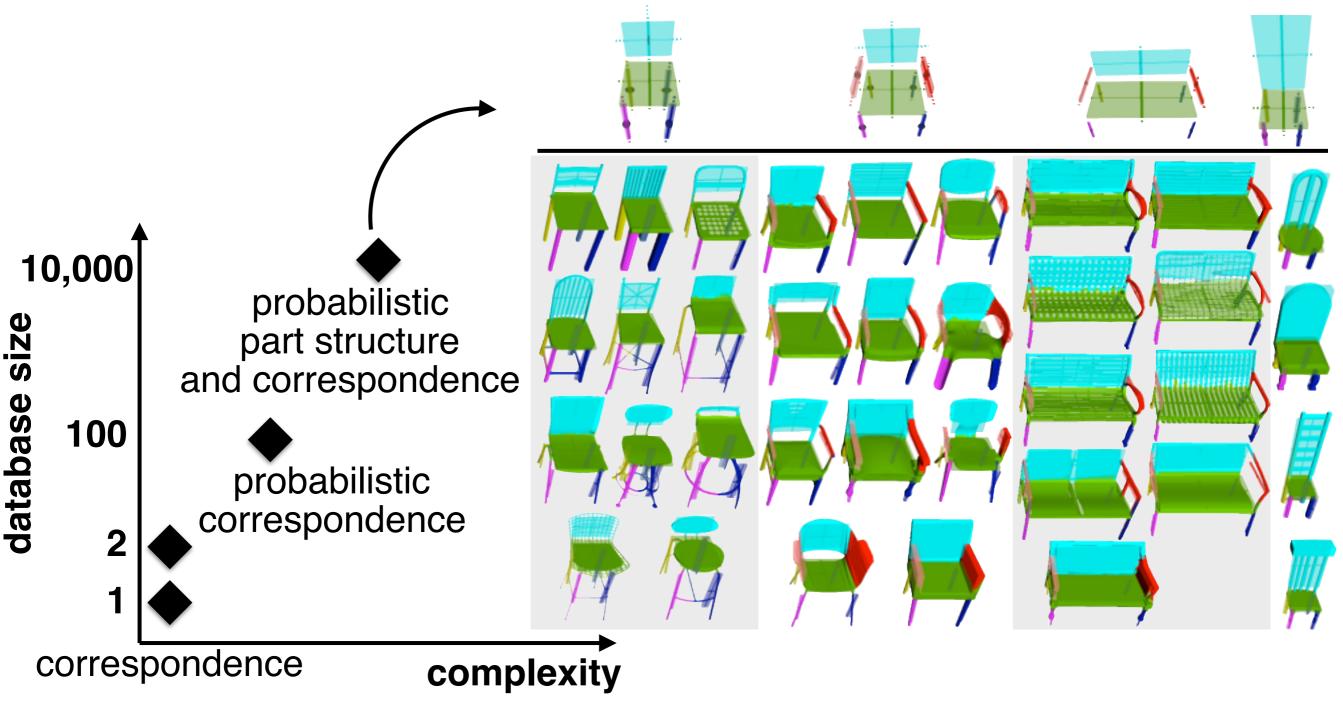
Key Ideas: represent ambiguity in mapping, leverage consistency and transitivity of correspondences



E.g, Exploring Collections of 3D Models using Fuzzy Correspondences V. Kim, W. Li, N. Mitra, S. DiVerdi, T. Funkhouser, SIGGRAPH'12

Probabilistic Part Models

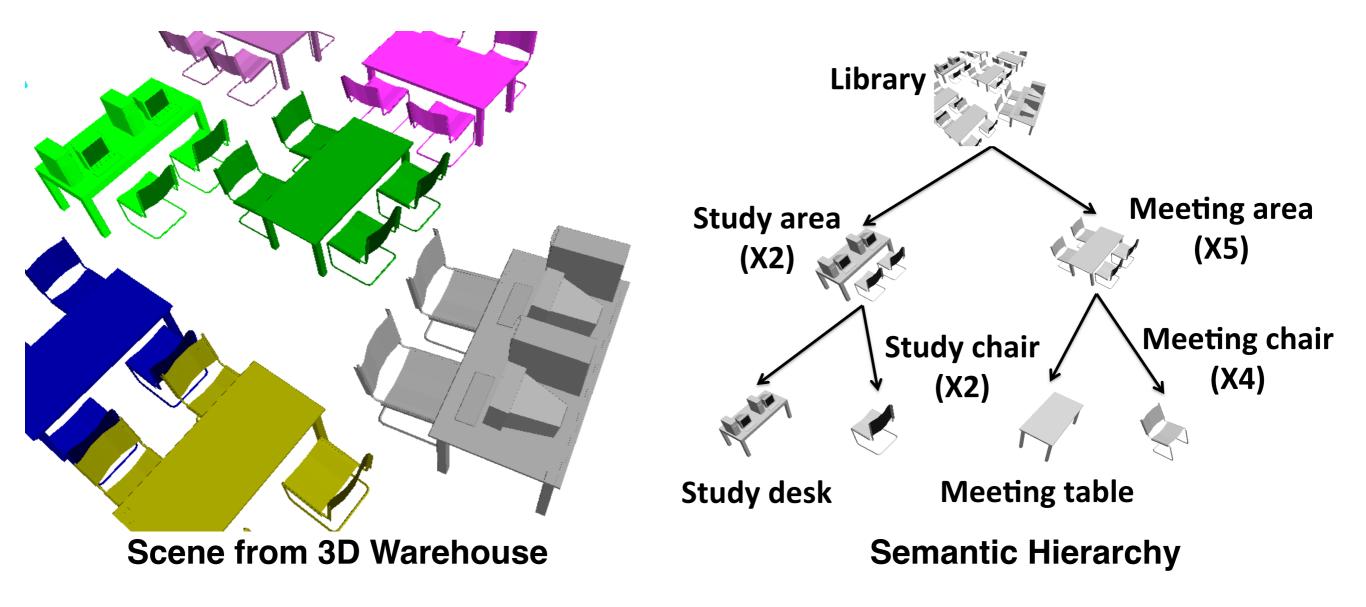
Key Idea: learn deformable templates



E.g., Learning Part-based Templates from Large Collections of 3D Shapes V. Kim, W. Li, N. Mitra, S. Chaudhuri, S. DiVerdi, T. Funkhouser, SIGGRAPH'13

Hierarchical Probabilistic Models

Key Idea: group related elements into hierarchies



E.g., Creating Consistent Scene Graphs Using a Probabilistic Grammar T. Liu, S. Chaudhuri, V. Kim, Q. Huang, N. Mitra, and T. Funkhouser, SIGGRAPH Asia'14

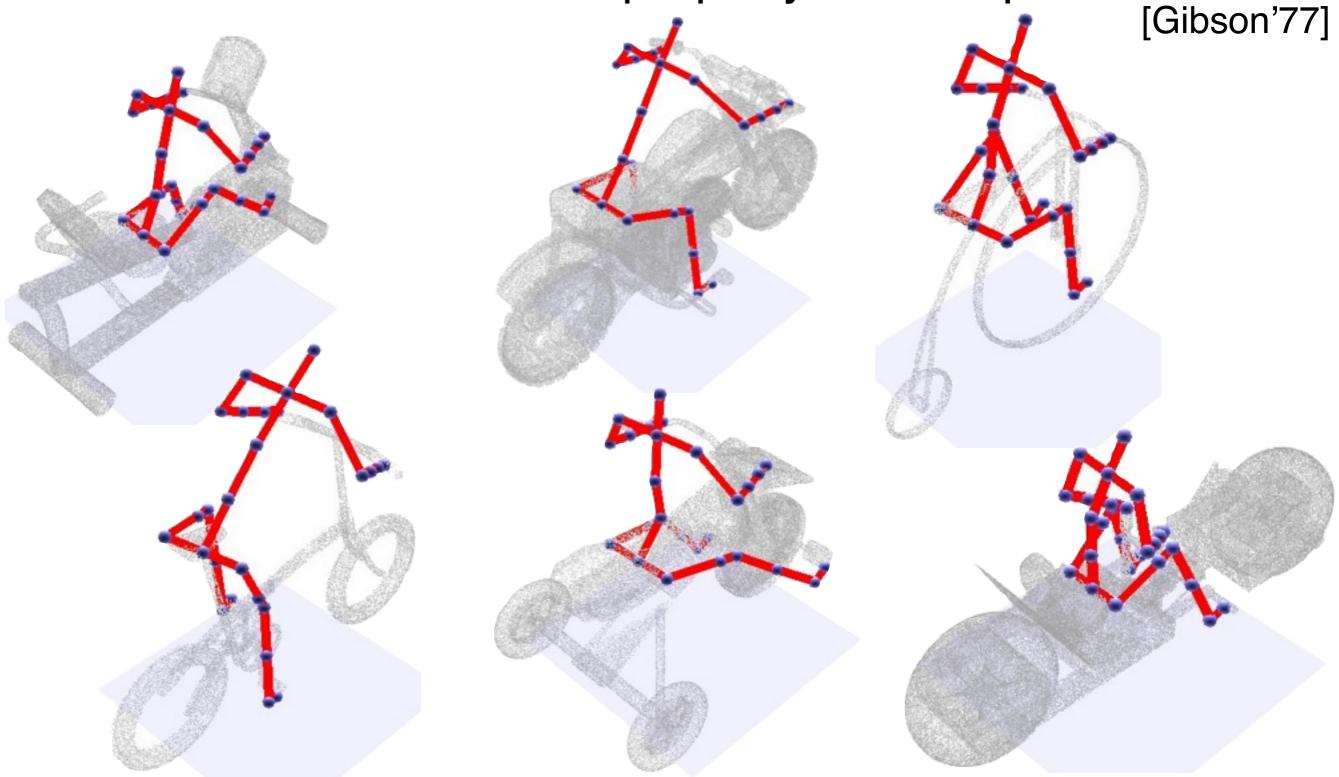
Two low-probability chairs

Challenge

Find common structure

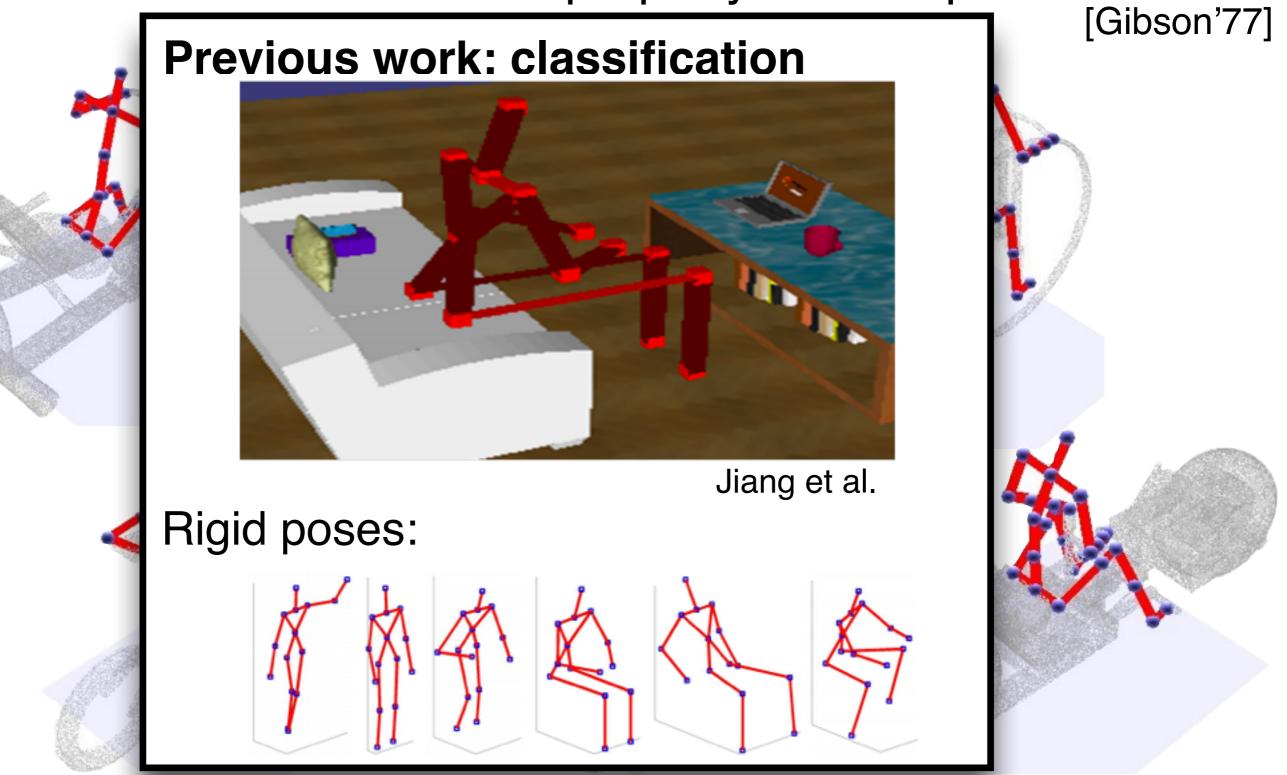
Observation

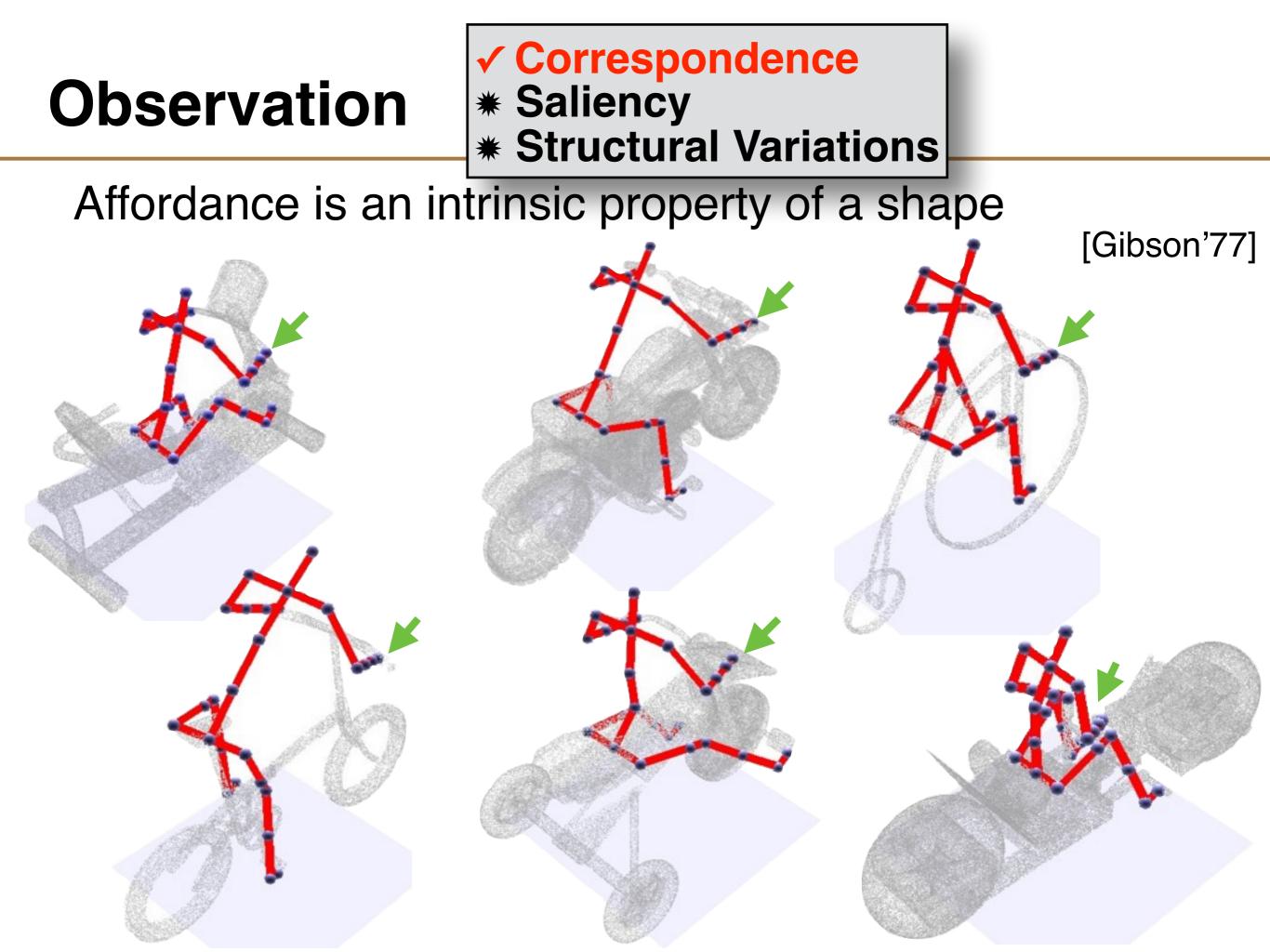
Affordance is an intrinsic property of a shape

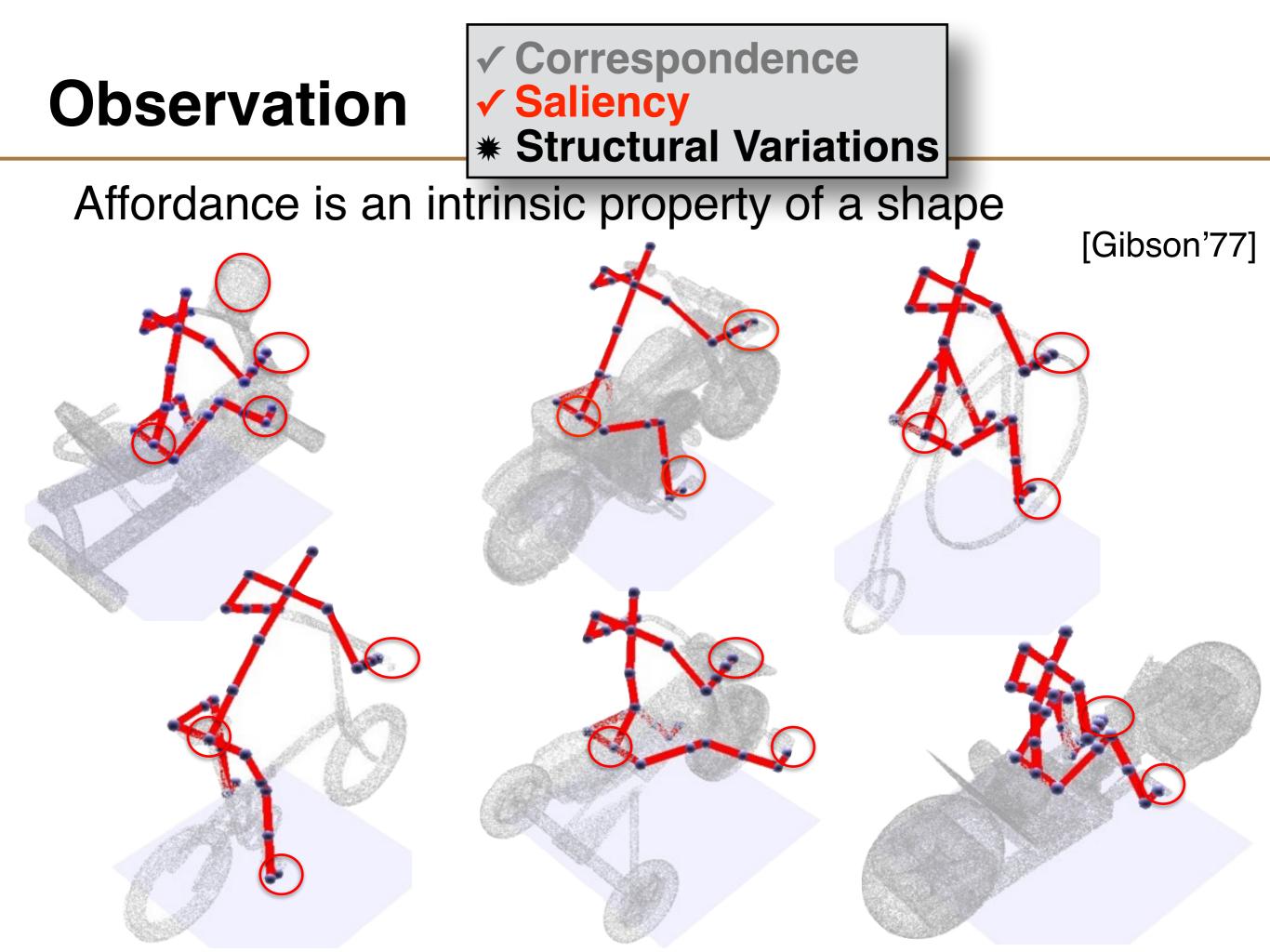


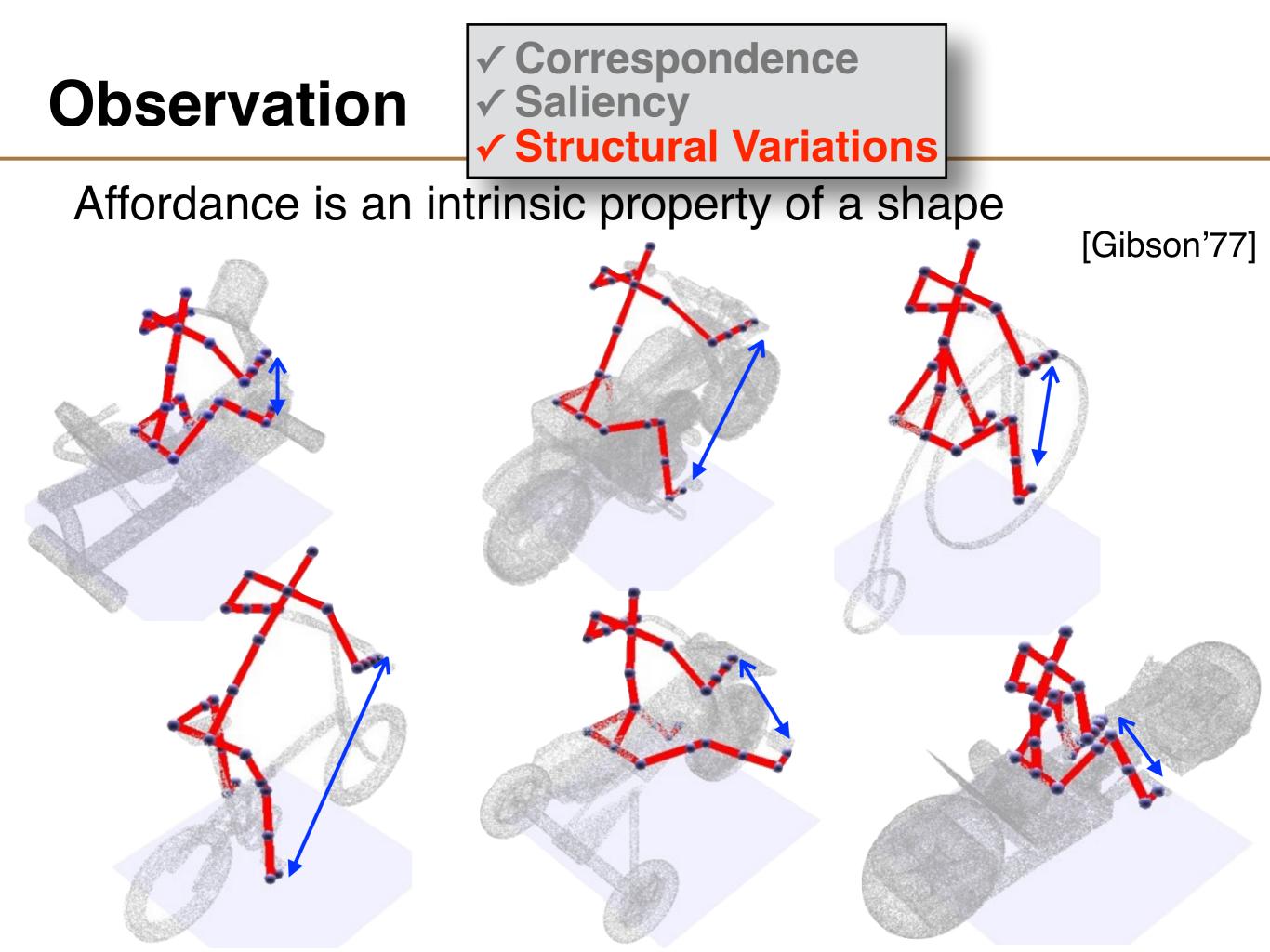
Observation

Affordance is an intrinsic property of a shape



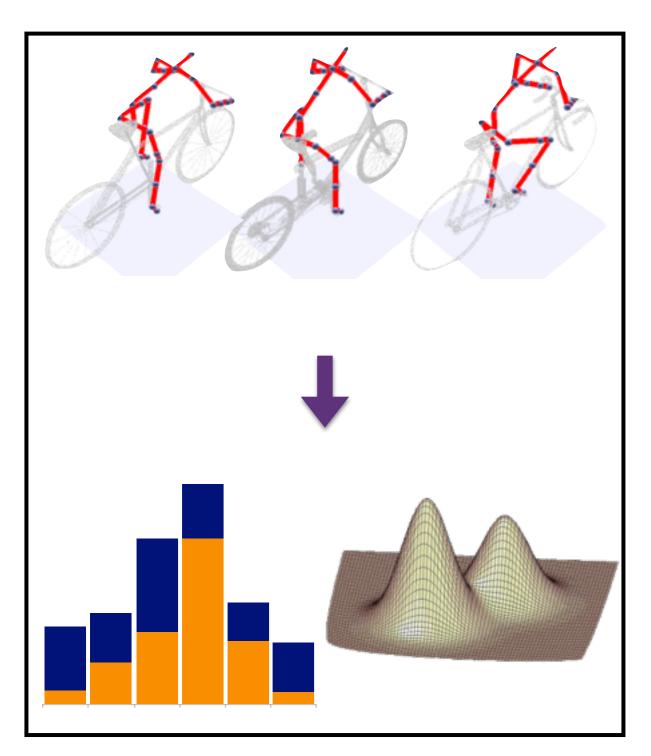




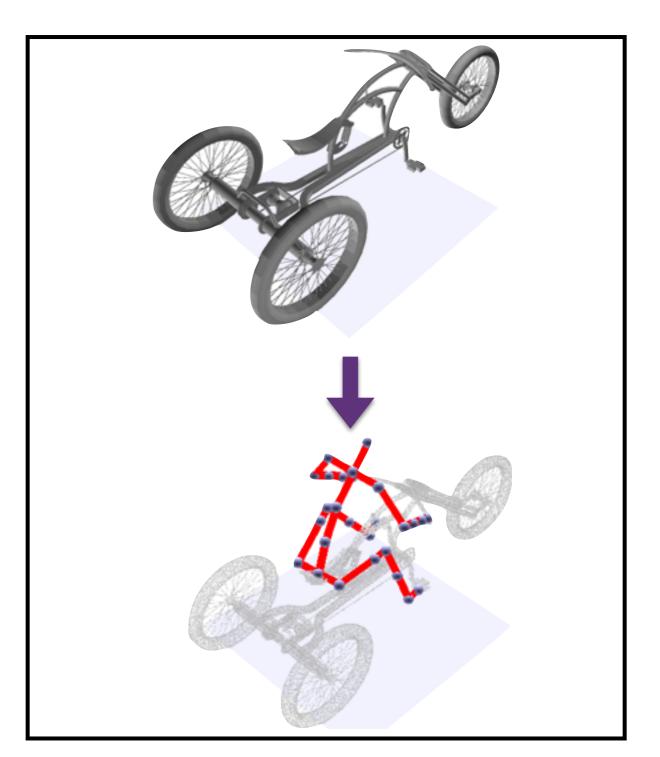


Affordance Model and Pose Prediction

Affordance Model Learning

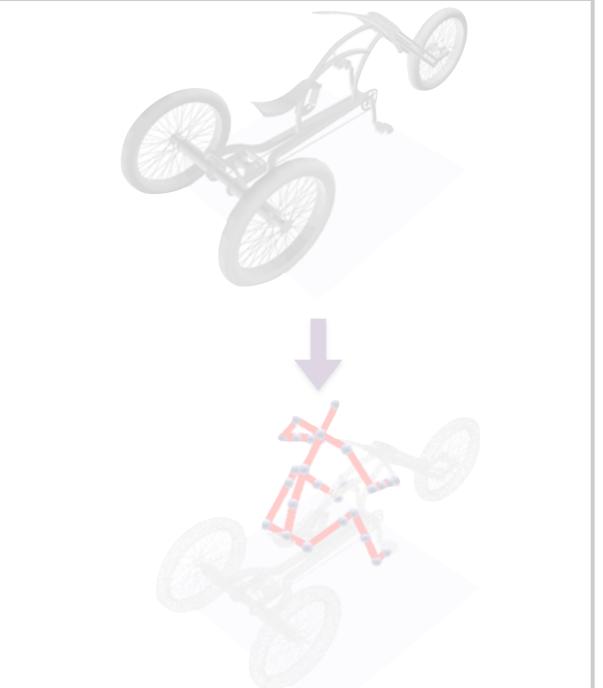


Pose Prediction



Affordance Model and Pose Prediction

Affordance Model Learning Pose Prediction

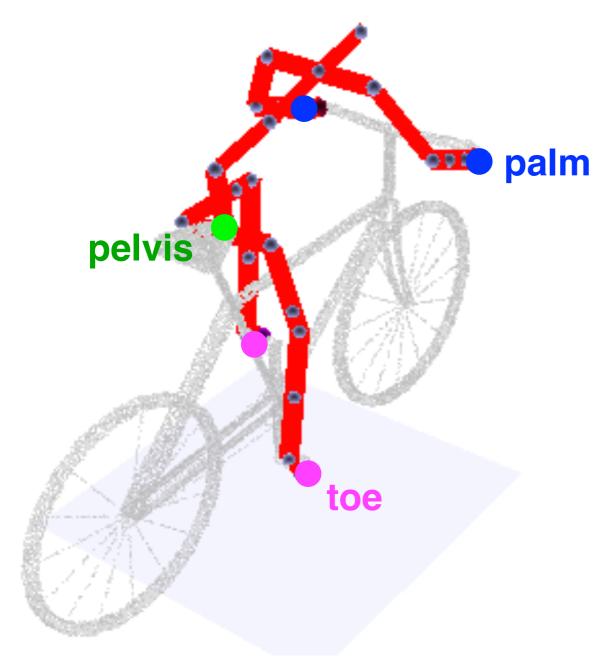


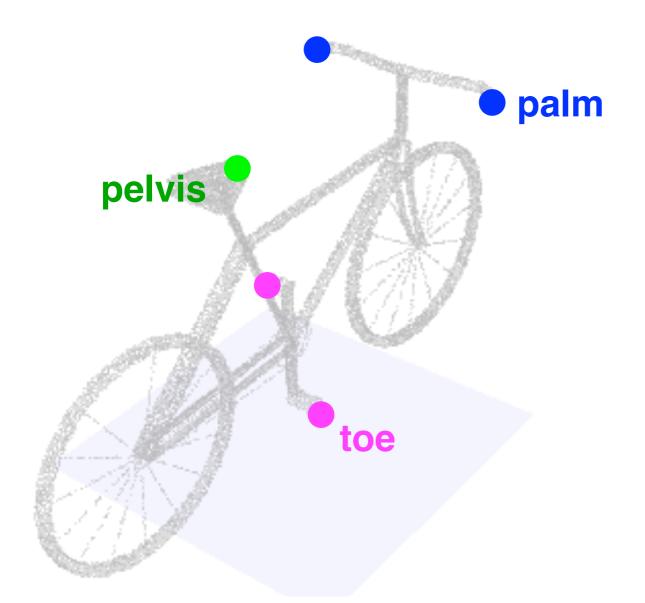
Affordance Model

Learn from training data
Geometry of contact points
Plausibility of poses

Affordance Model

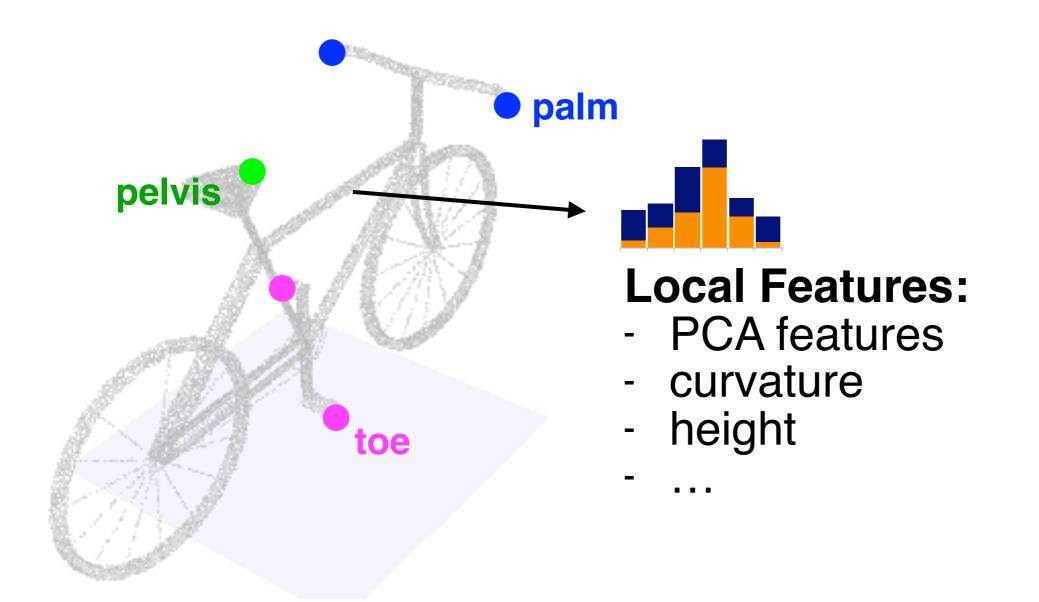
Learn from training data
Geometry of contact points
Plausibility of poses

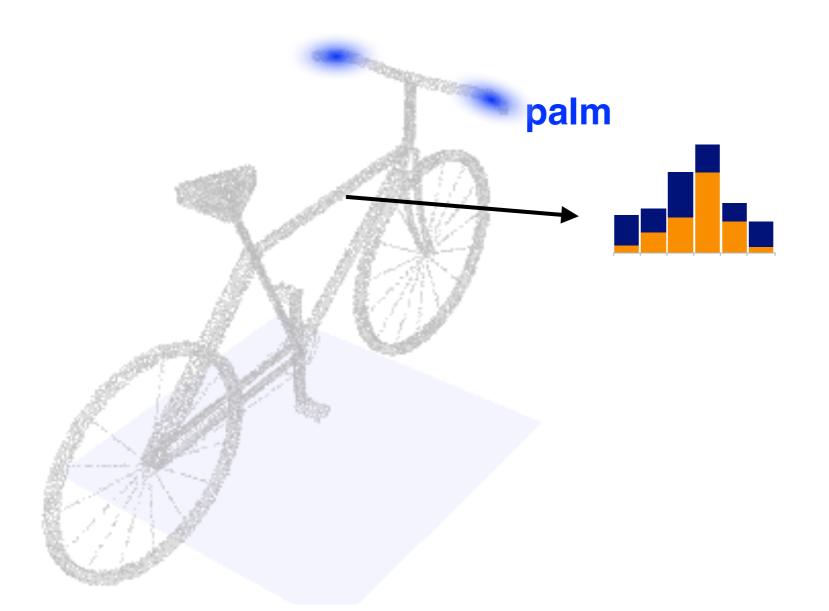


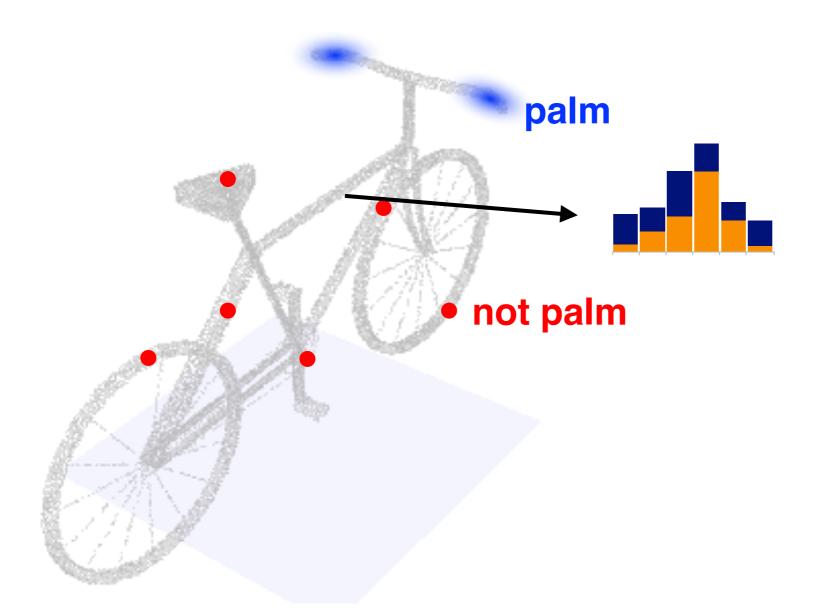


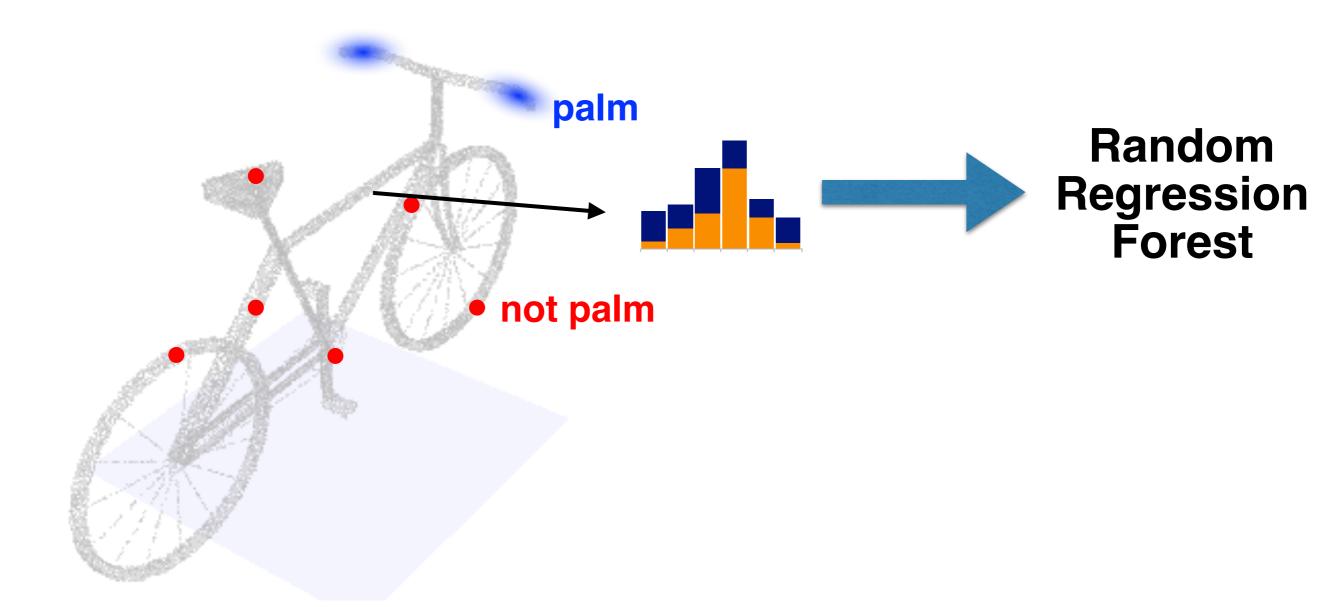
Learn from training data
 Geometry of contact points
 Plausibility of posses

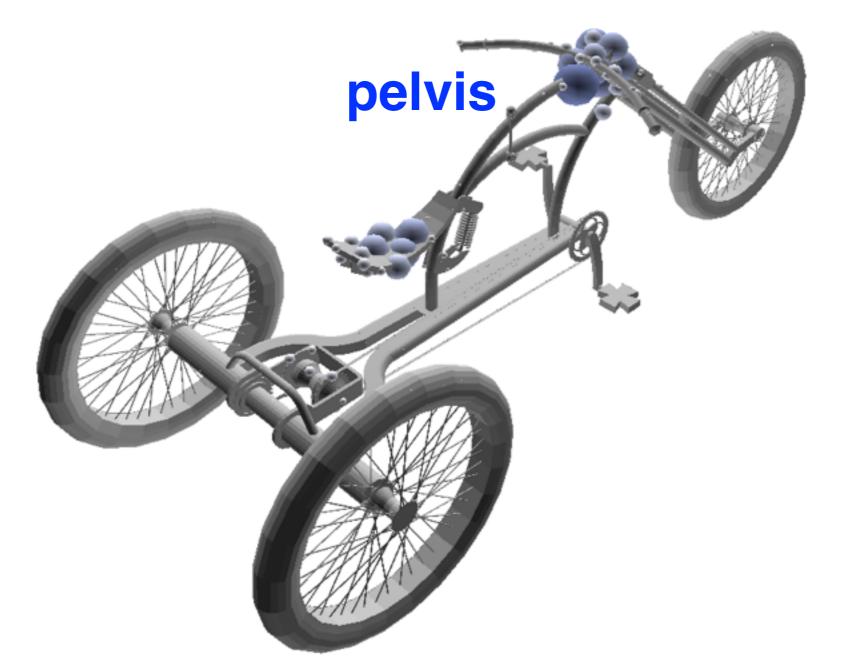
• Plausibility of poses





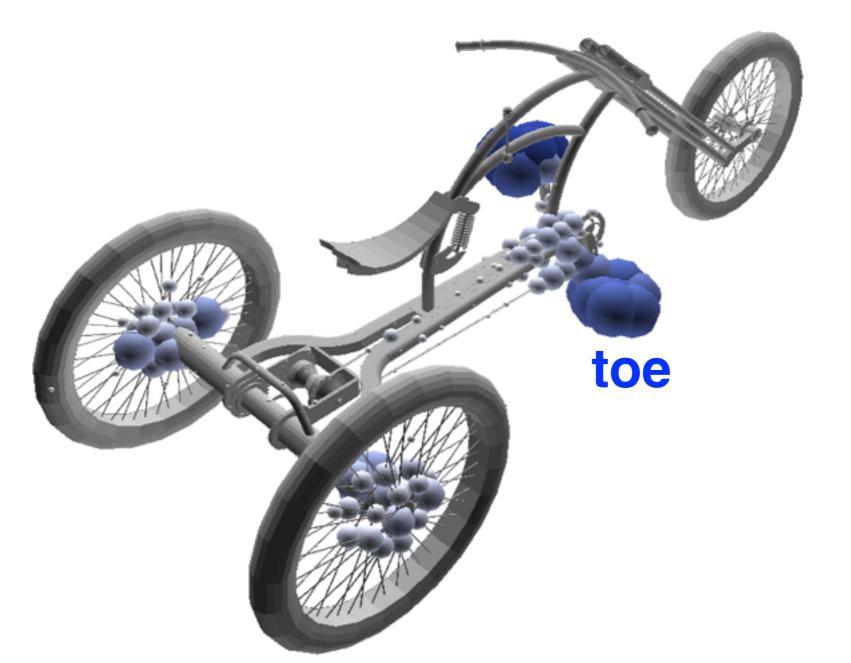






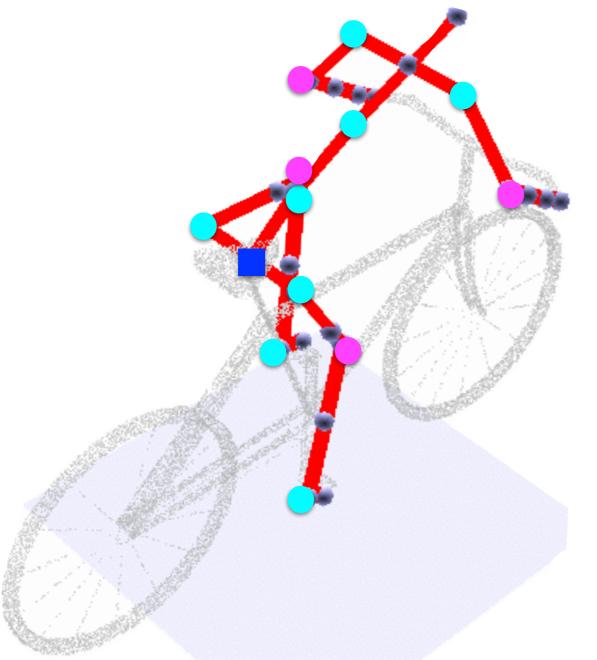
Learn from training data
Geometry of contact points
Plausibility of poses

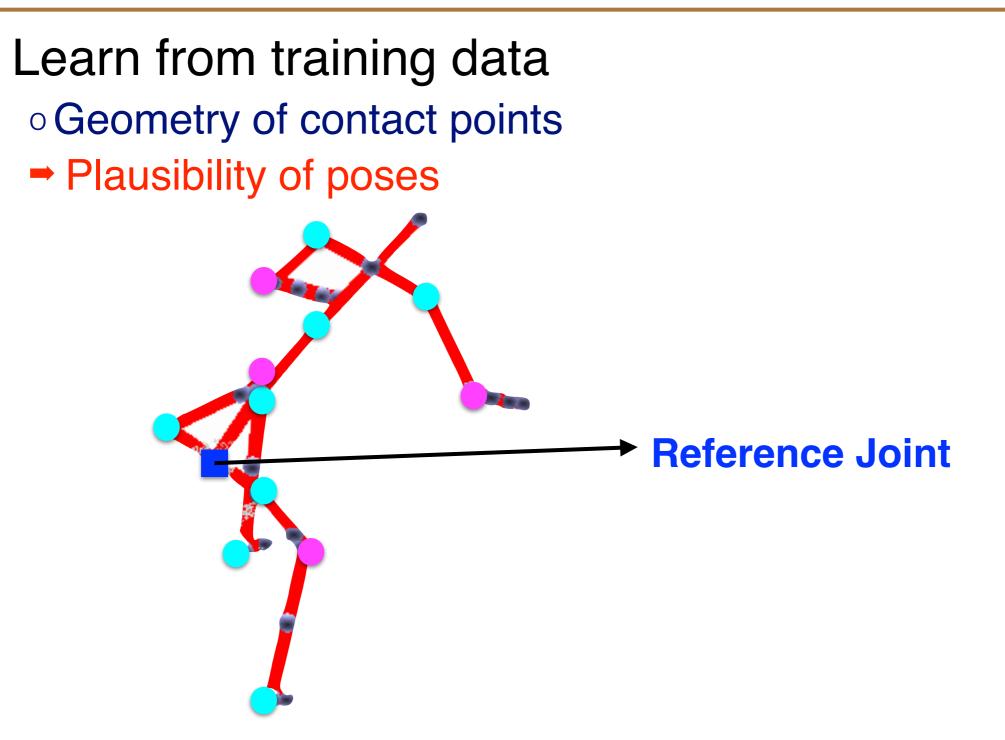
palm



Learn from training dataGeometry of contact points

Plausibility of poses





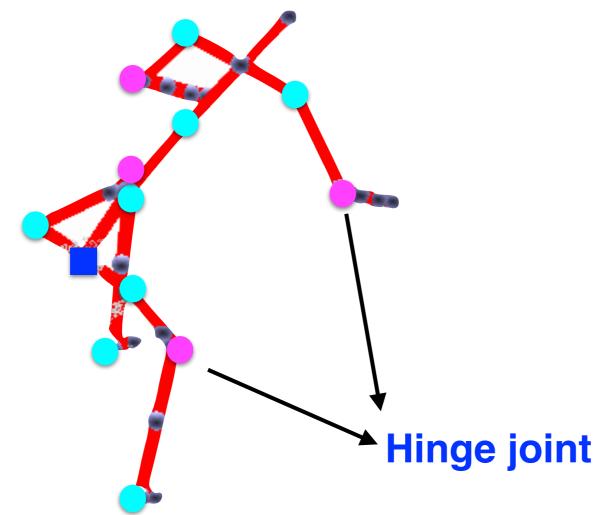
Learn from training dataGeometry of contact points

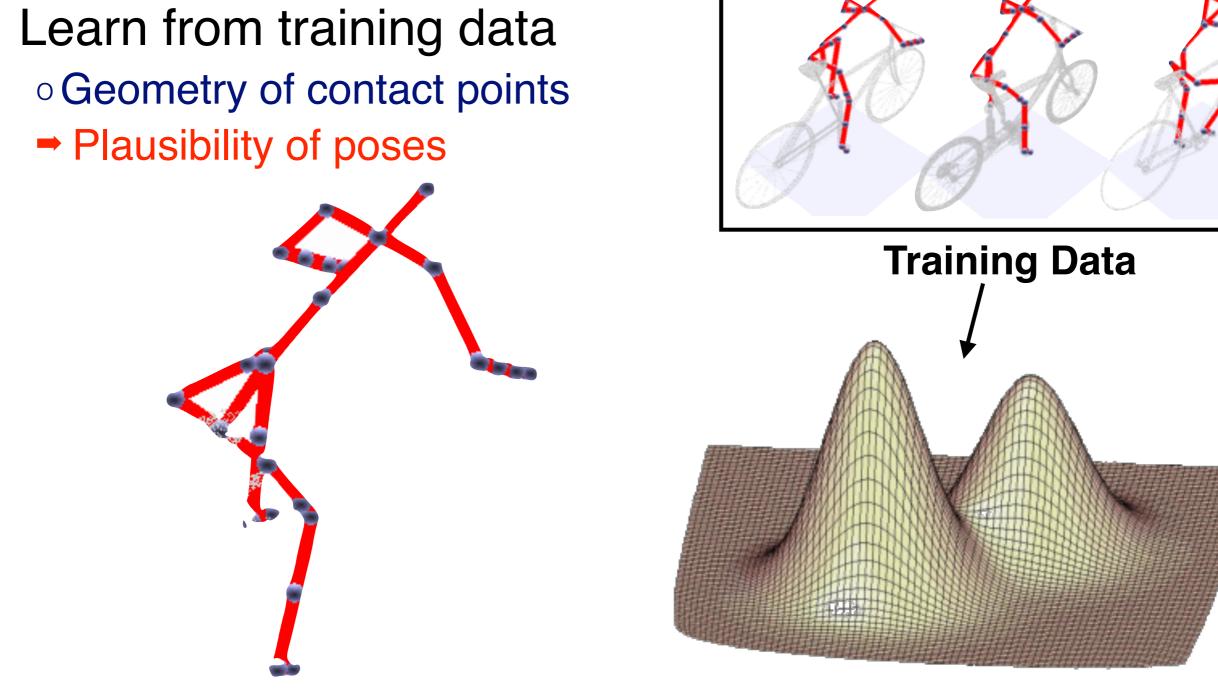
Plausibility of poses

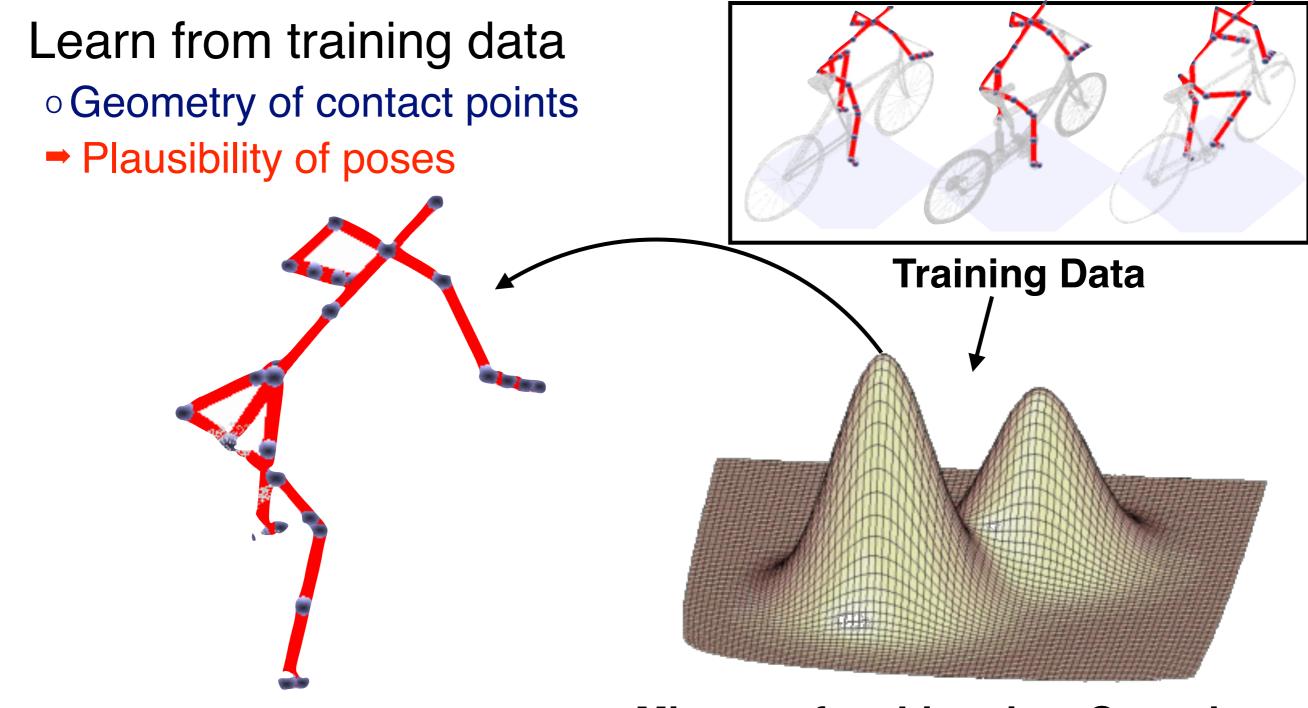
Ball and socket joint

Learn from training dataGeometry of contact points

Plausibility of poses







Learn from training dataGeometry of contact points

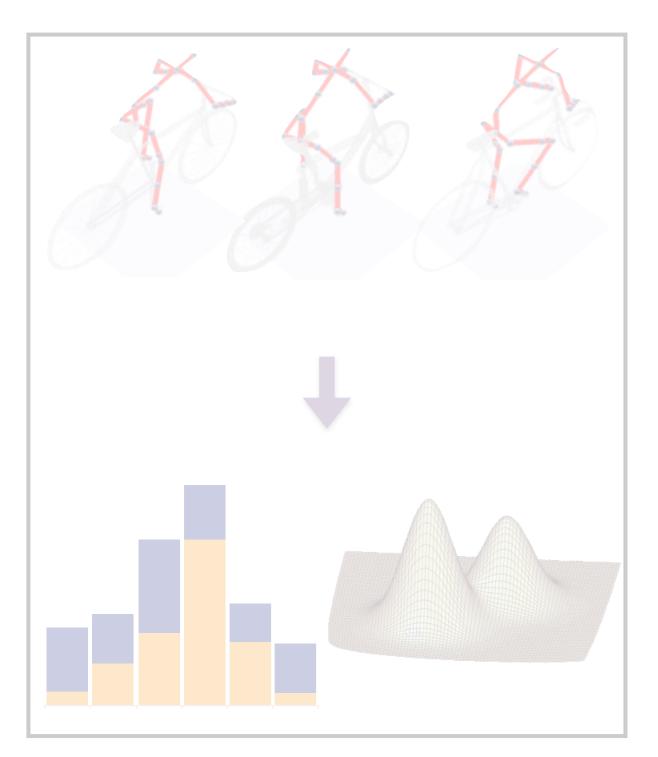
Plausibility of poses

Learn from training dataGeometry of contact points

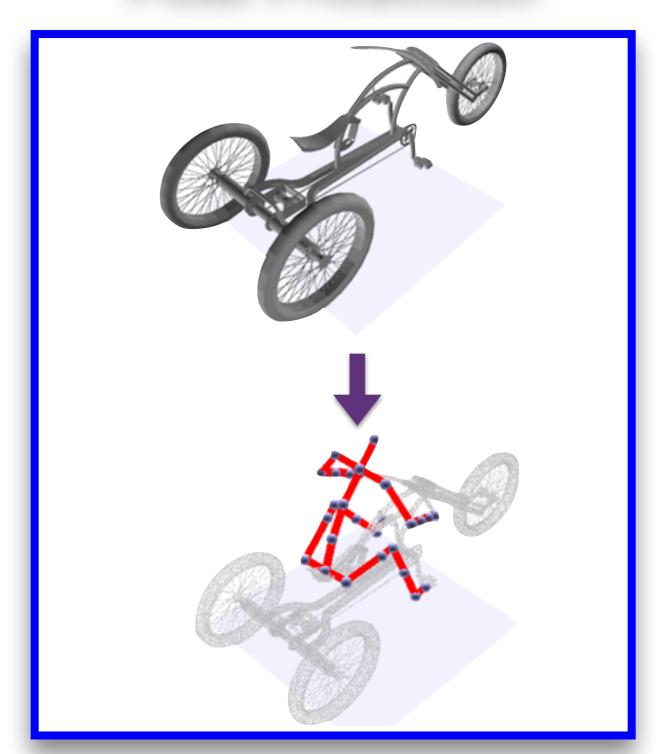
Plausibility of poses

Affordance Model and Pose Prediction

Affordance Model Learning



Pose Prediction



Objective function for each pose-model fit:

 $E = E_{\text{dist}} + E_{\text{feat}} + E_{\text{pose}} + E_{\text{symm}} + E_{\text{isect}}$

Objective function for each pose-model fit:

$$E = E_{\text{dist}} + E_{\text{feat}} + E_{\text{pose}} + E_{\text{symm}} + E_{\text{isect}}$$
$$E_{\text{dist}} = \sum_{p \in P} ||T\mathbf{p}_{\theta} - m(p)||^2$$

Objective function for each pose-model fit:

$$E = E_{\text{dist}} + E_{\text{feat}} + E_{\text{pose}} + E_{\text{symm}} + E_{\text{isect}}$$
$$E_{\text{dist}} = \sum_{p \in P} ||T\mathbf{p}_{\theta} - m(p)||^{2}$$
$$E_{\text{feat}} = \sum_{p \in P} -\log V_{p}(m(p))$$
Regression Model

Objective function for each pose-model fit:

$$E = E_{\text{dist}} + E_{\text{feat}} + E_{\text{pose}} + E_{\text{symm}} + E_{\text{isect}}$$
$$E_{\text{dist}} = \sum_{p \in P} ||T\mathbf{p}_{\theta} - m(p)||^{2}$$
$$E_{\text{feat}} = \sum_{p \in P} -\log V_{p}(m(p))$$
Regression Model
$$E_{\text{pose}} = \min_{l \in L} \sum_{i}^{40} \frac{|\theta_{i} - \mu_{l}^{l}|^{2}}{(\sigma_{i}^{l})^{2}}$$

Objective function for each pose-model fit:

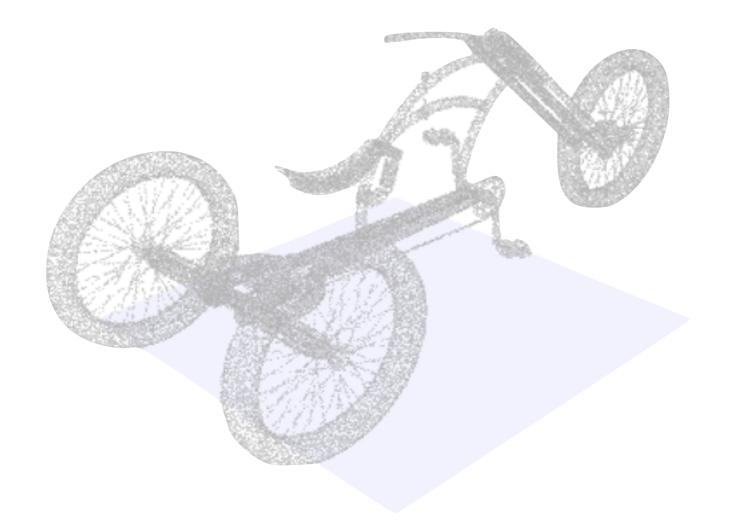
$$E = \frac{E_{\text{dist}} + E_{\text{feat}} + E_{\text{pose}}}{E_{\text{dist}}} + \frac{E_{\text{feat}}}{E_{\text{feat}}} = \sum_{p \in P} ||T\mathbf{p}_{\theta} - m(p)||^{2} \qquad \text{Hard Constraint}$$

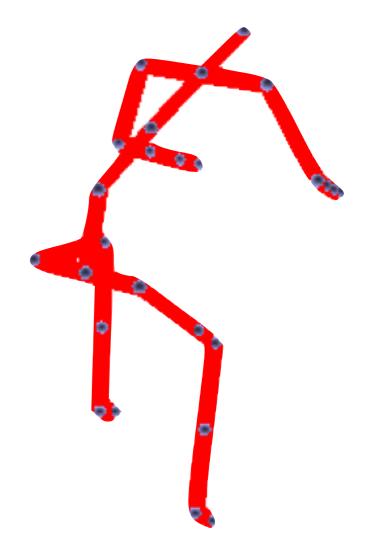
$$E_{\text{feat}} = \sum_{p \in P} -\log V_{p}(m(p))$$

$$Regression \text{Model}$$

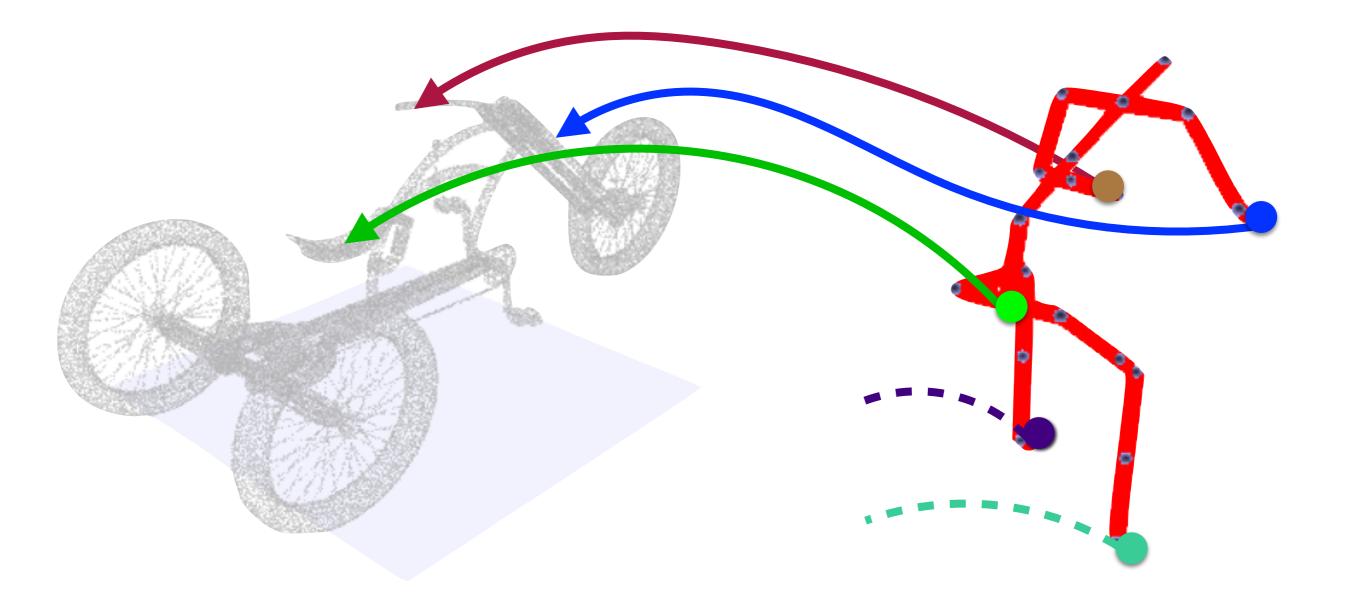
$$E_{\text{pose}} = \min_{l \in L} \sum_{i}^{40} \frac{|\theta_{i} - \mu_{l}^{l}|^{2}}{(\sigma_{i}^{l})^{2}} \qquad \text{Key Optimization Terms}$$

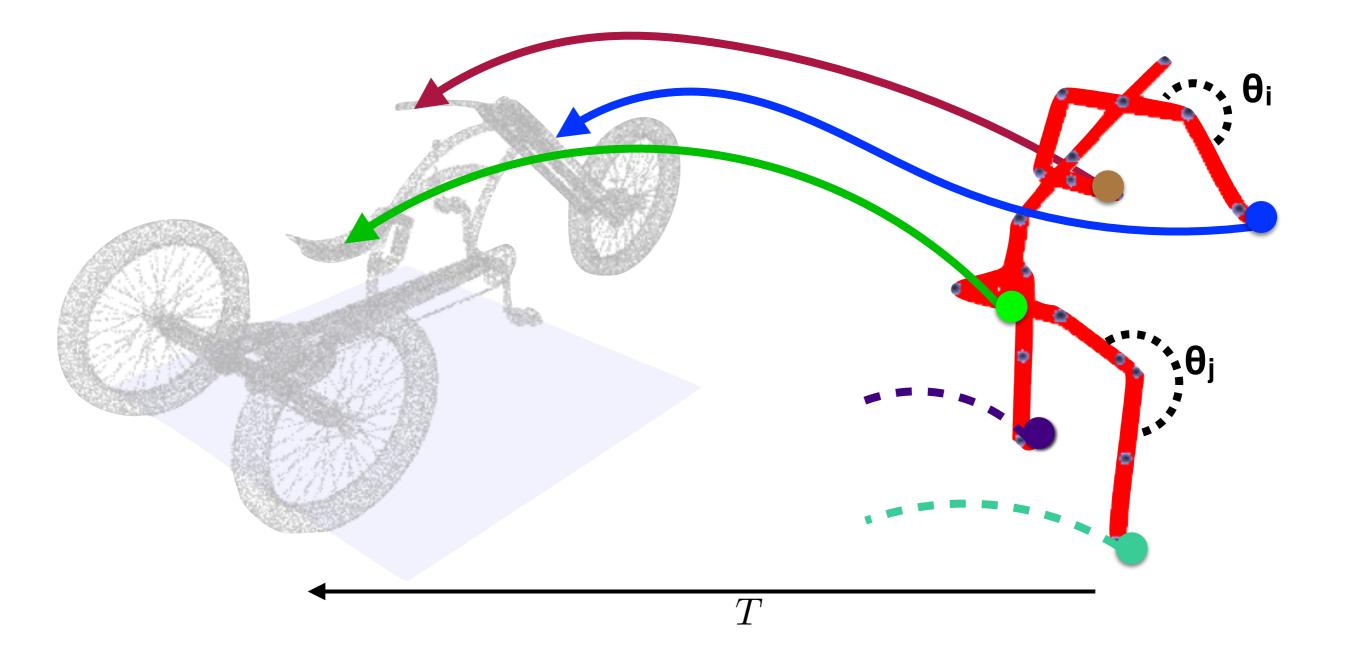
Input

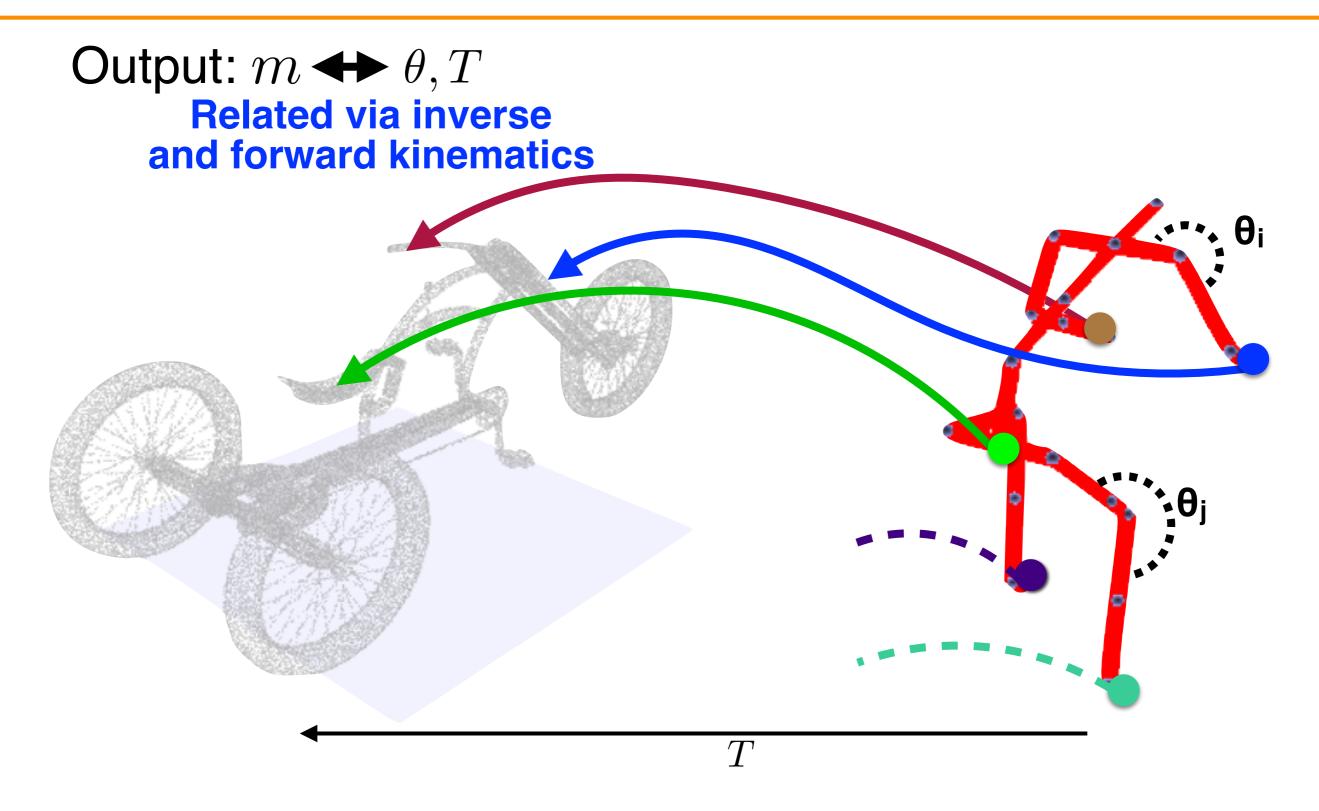


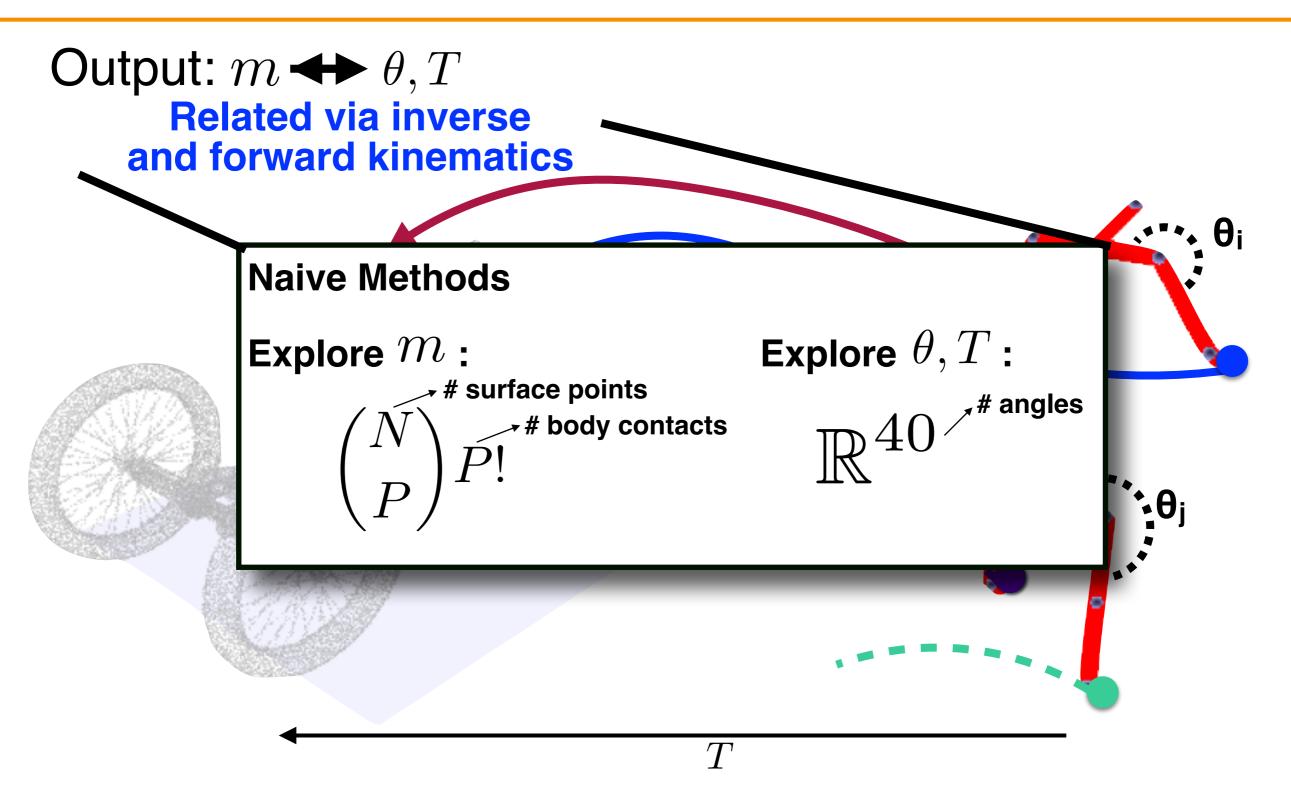


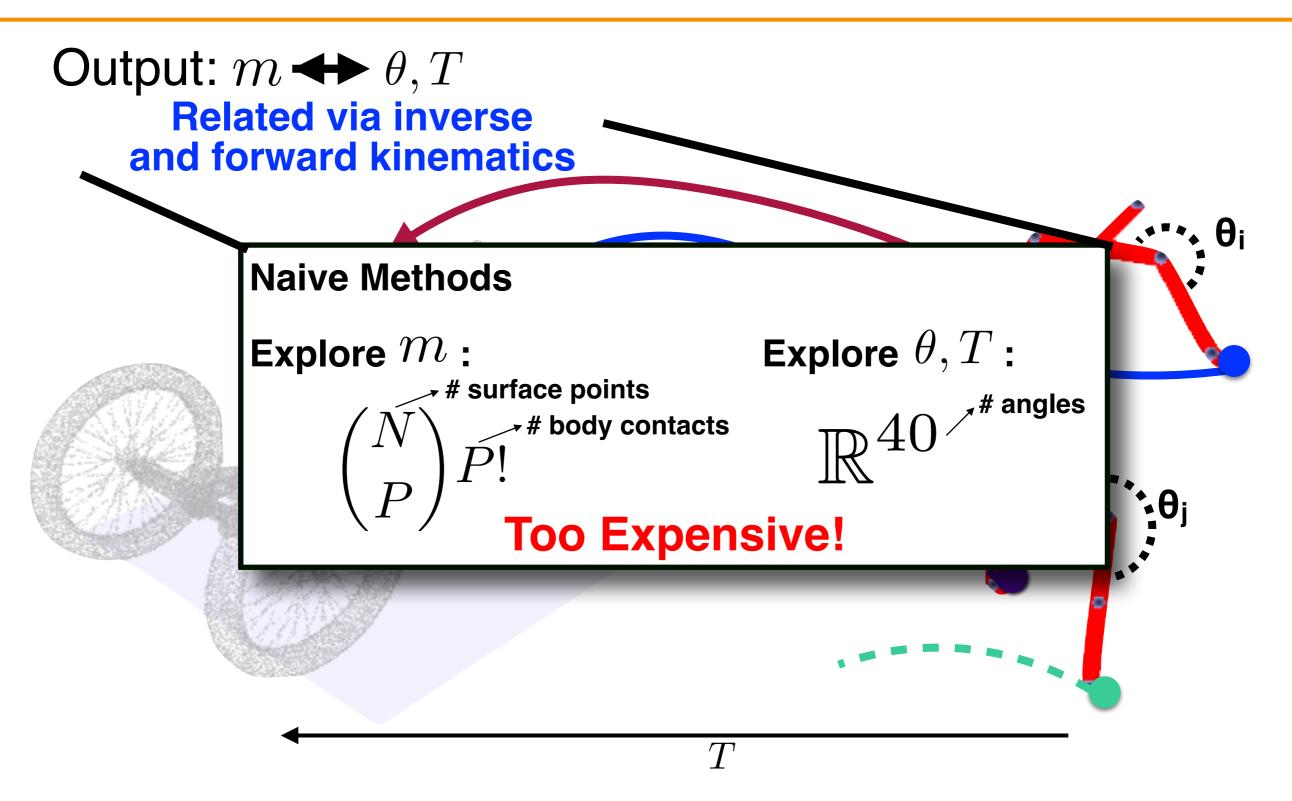
Output: *m*

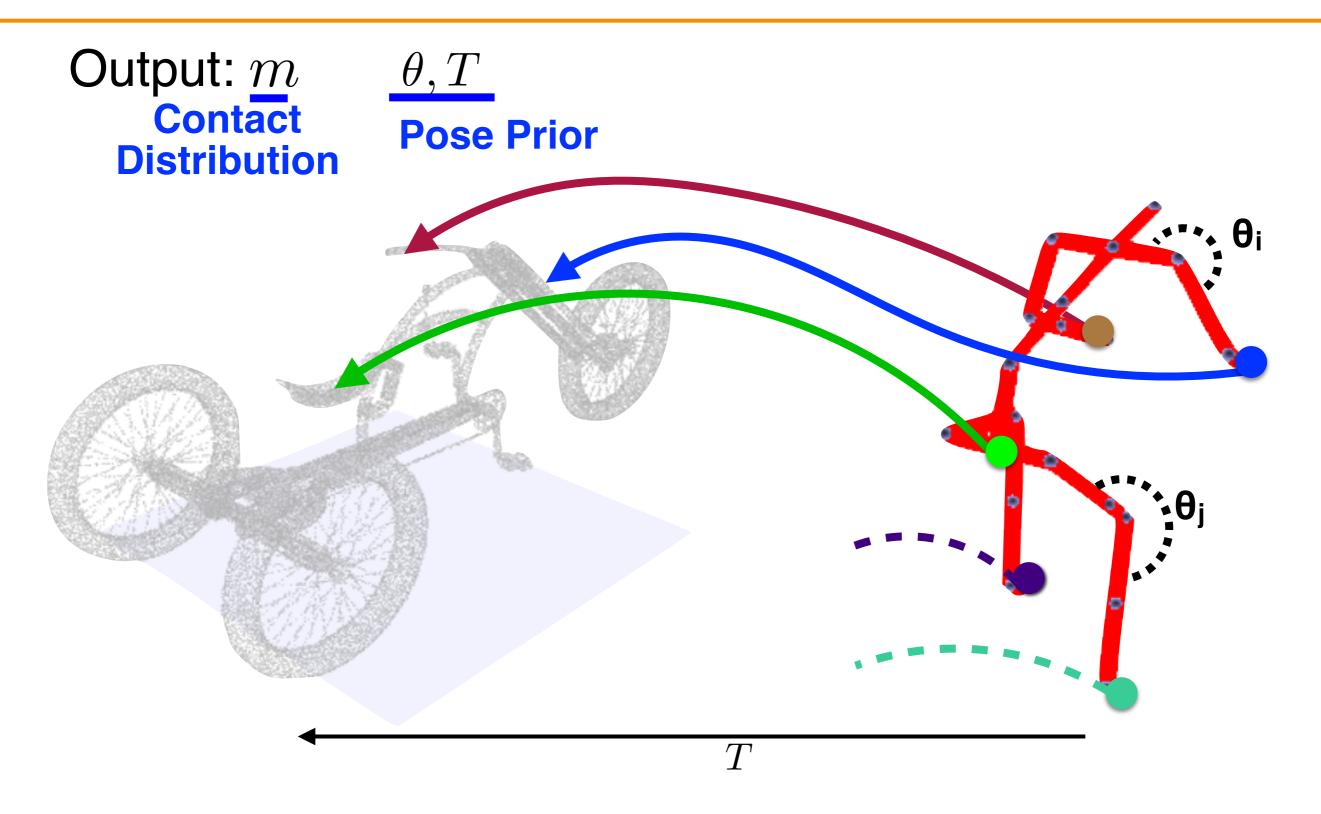


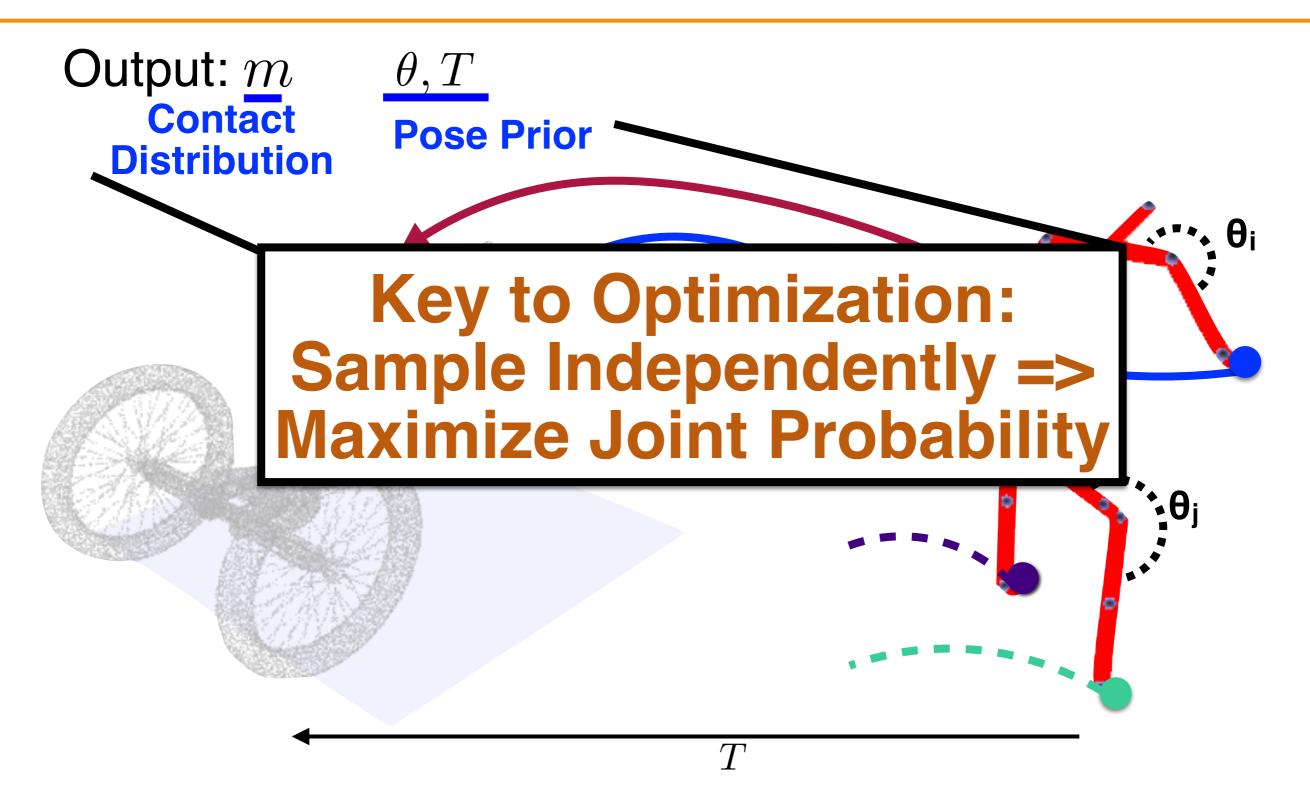




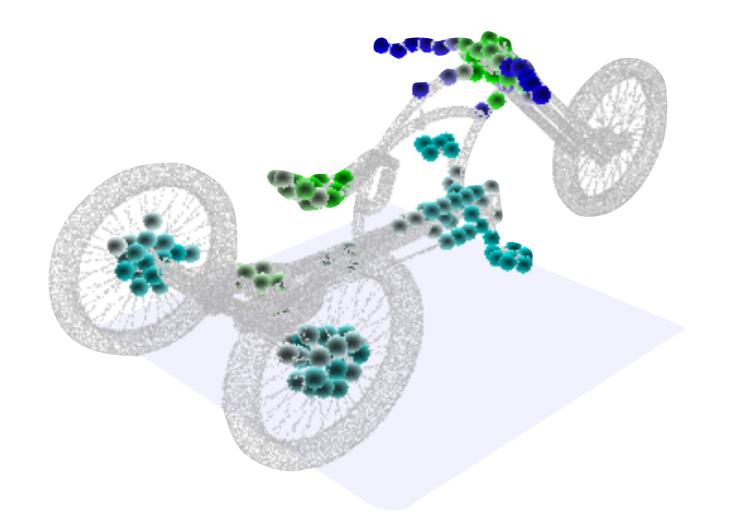


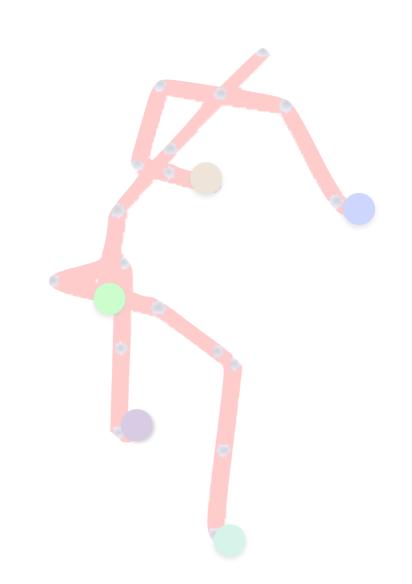






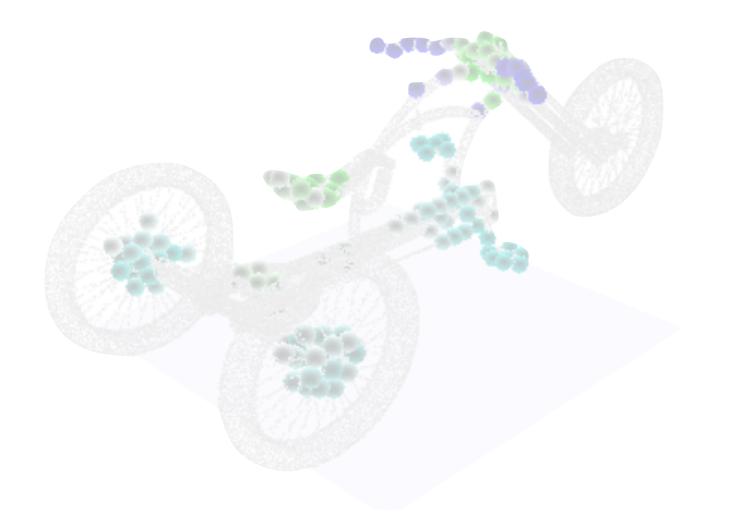
Sample m: classify surface based on local features

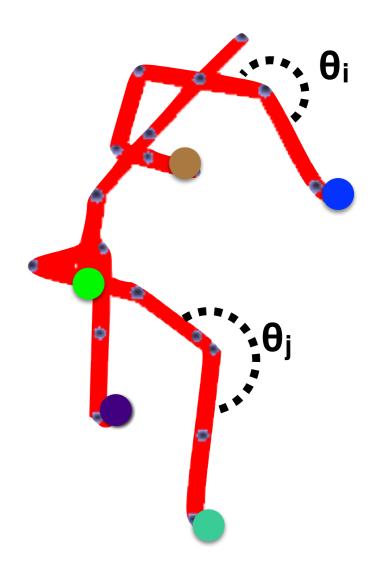




Contact Distribution

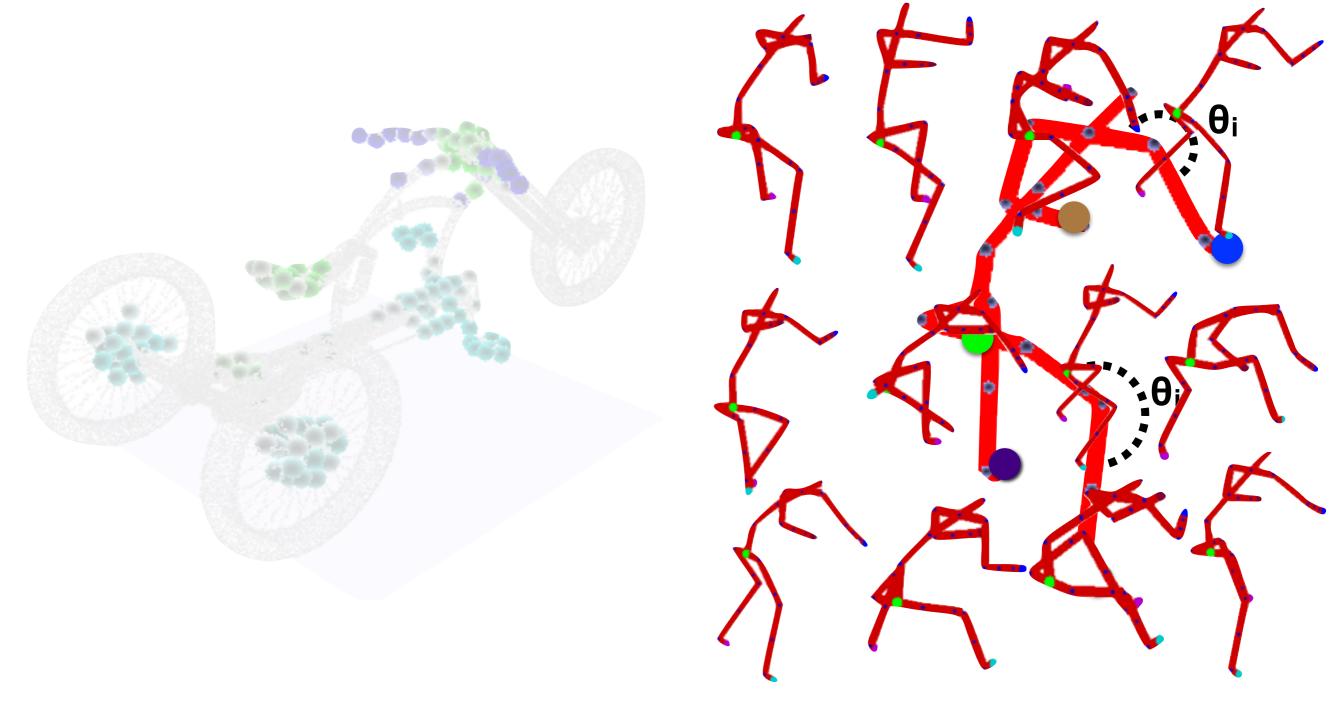
Sample θ, T : Gaussian distributions





Contact Distribution

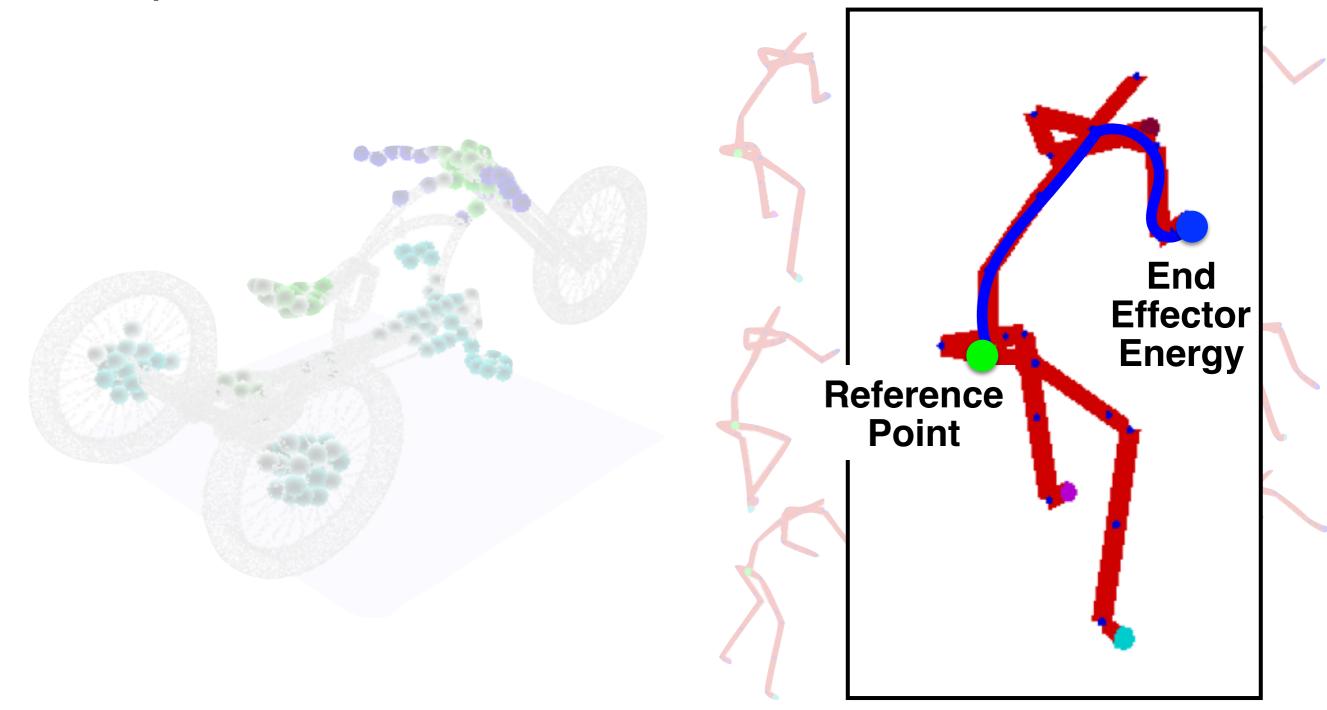
Sample θ, T : Gaussian distributions



Contact Distribution

Sampled Poses

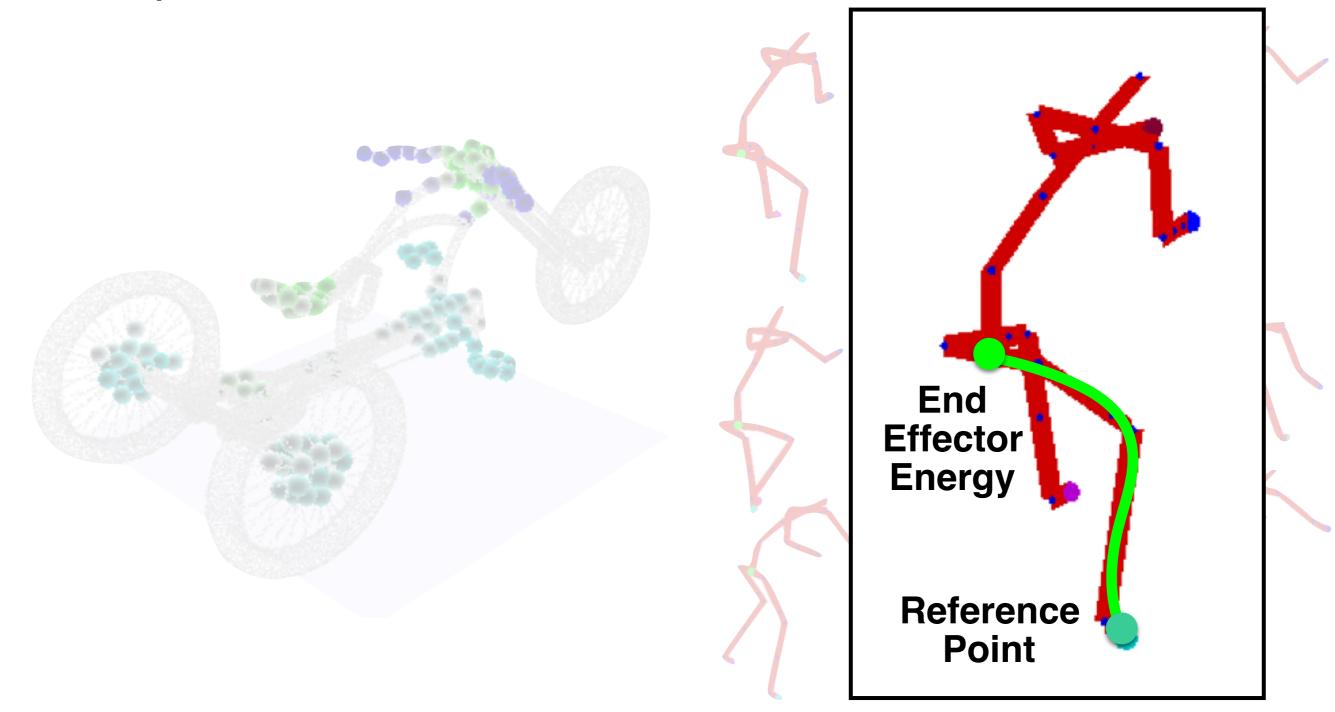
Sample θ, T : Gaussian distributions



Contact Distribution

Sampled Poses

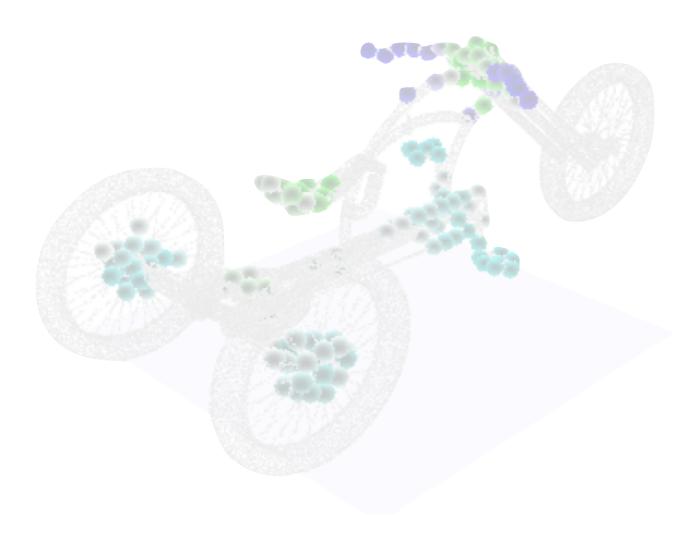
Sample θ, T : Gaussian distributions

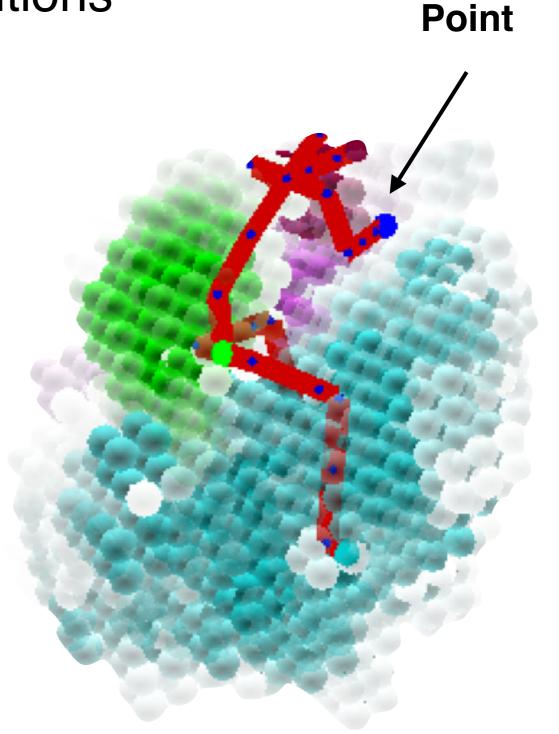


Contact Distribution

Sampled Poses

Sample θ, T : Gaussian distributions



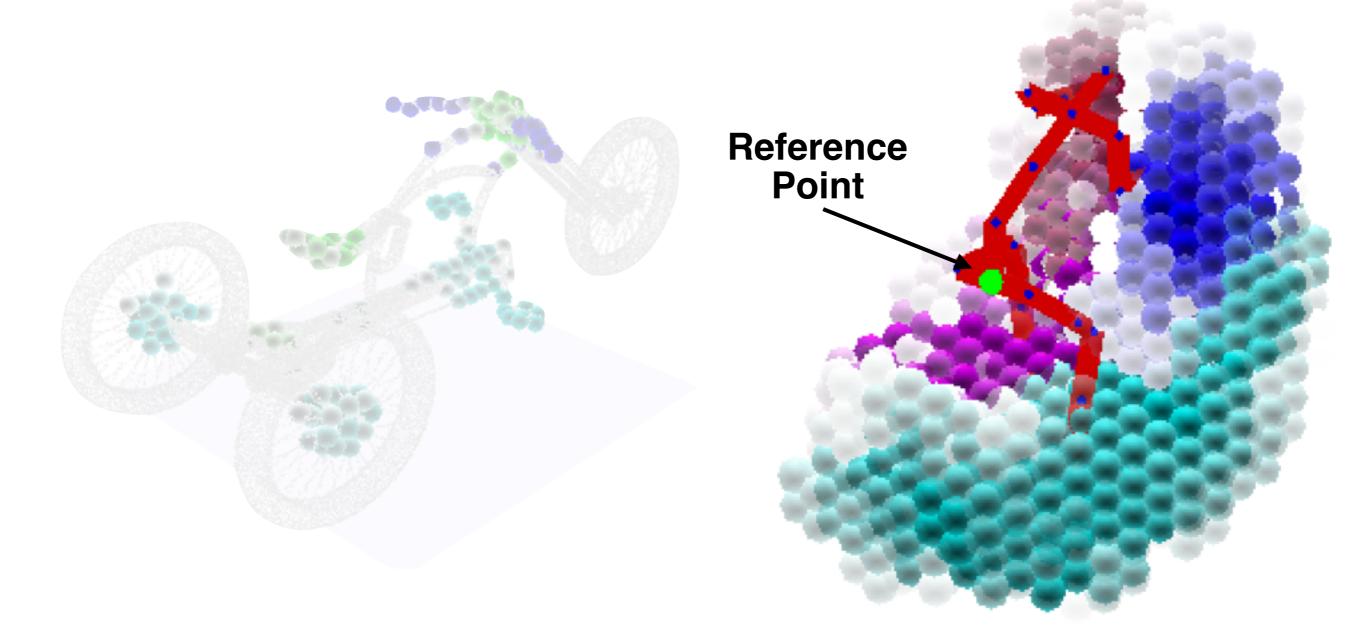


Reference

Contact Distribution

End Effector Distribution

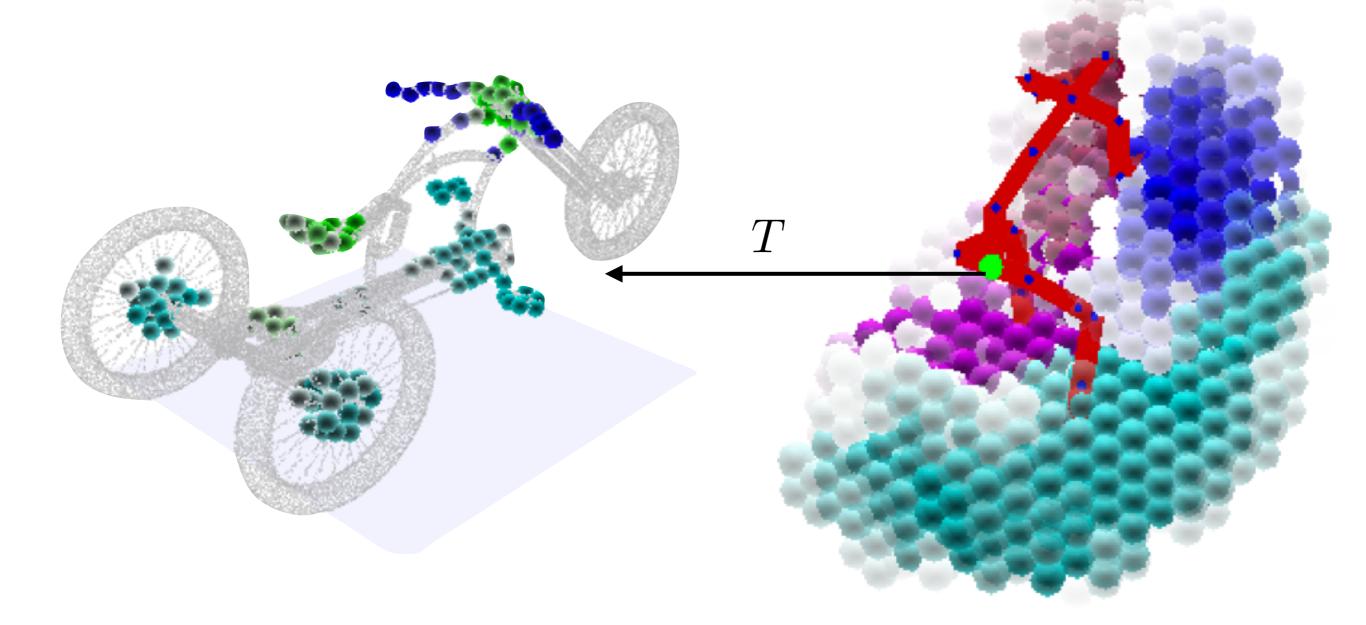
Sample θ, T : Gaussian distributions



Contact Distribution

End Effector Distribution

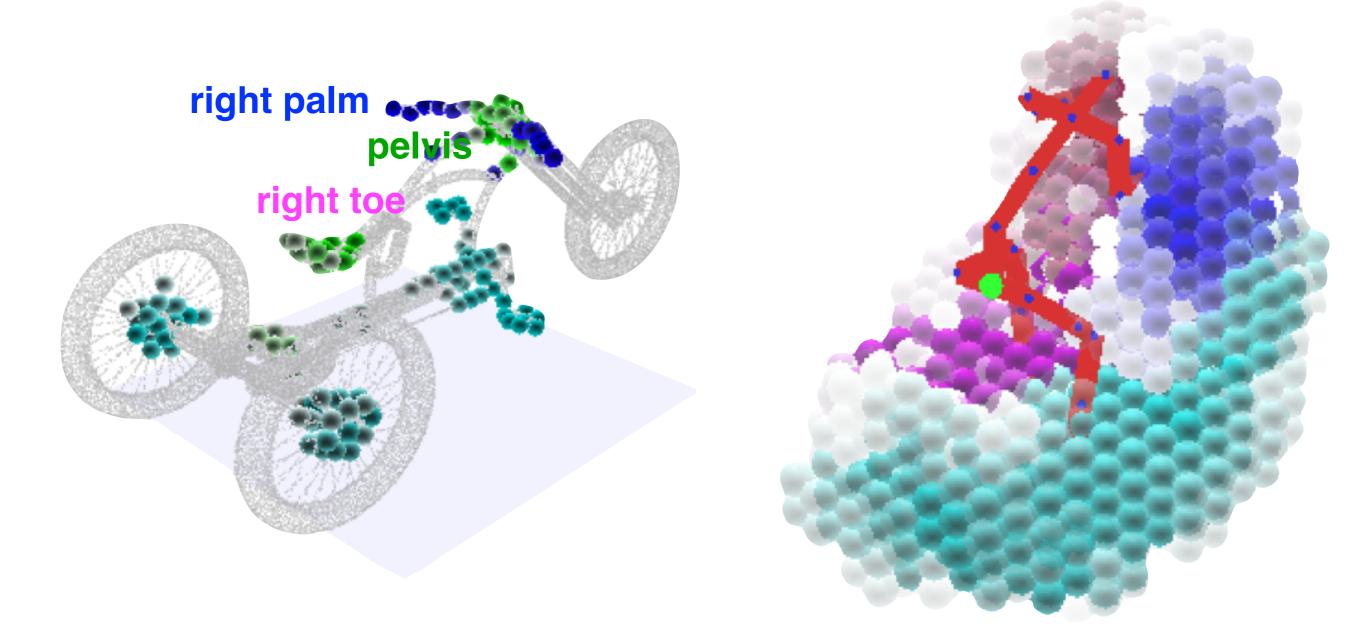
Sample θ, T : Gaussian distributions



Contact Distribution

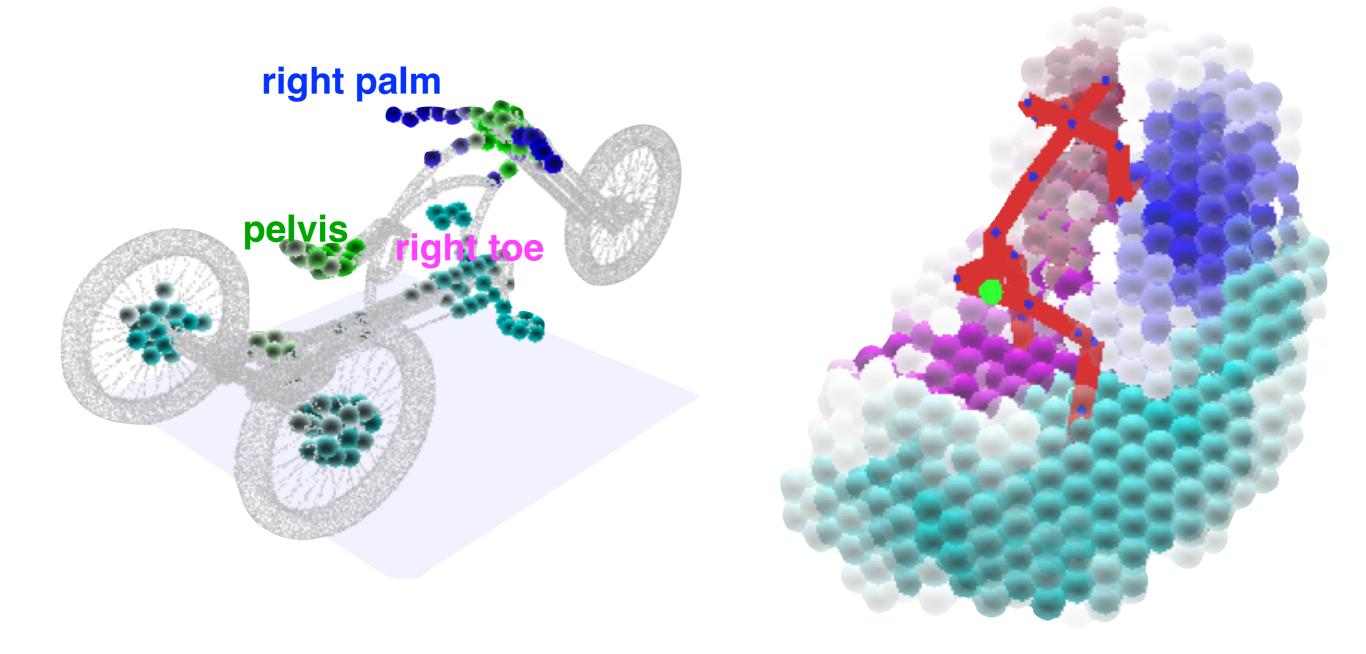
End Effector Distribution

Biomin ple ball peaks in a medisimibuli stories ution



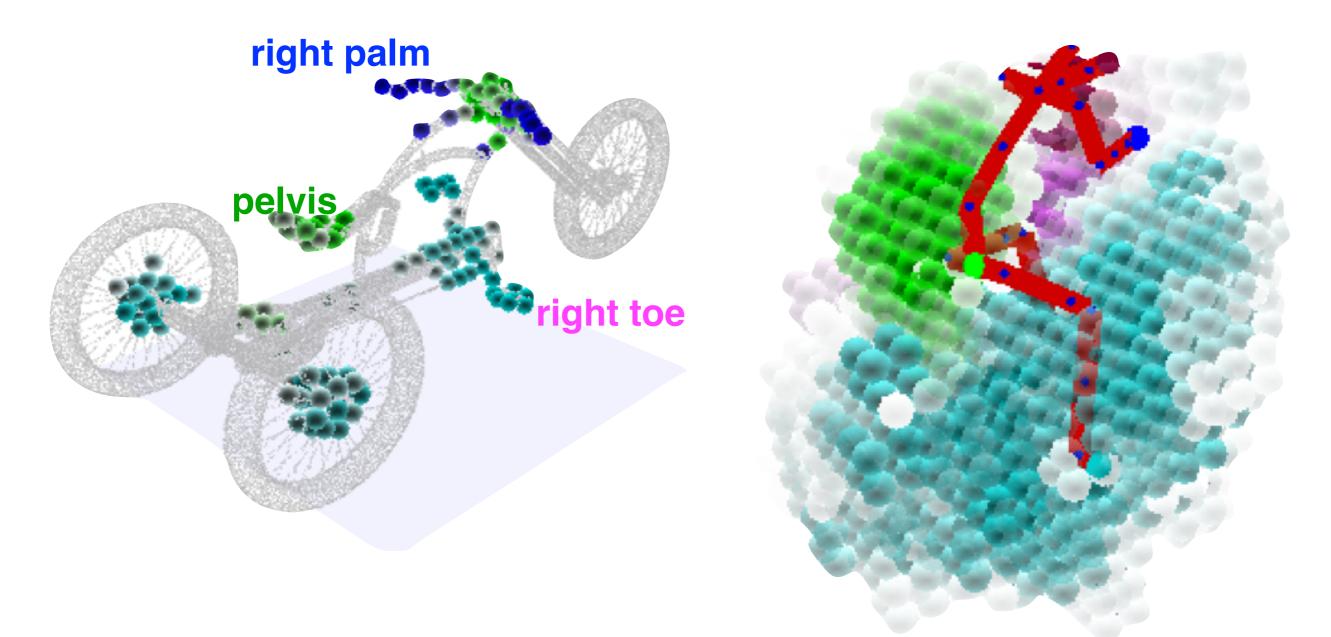
Confractionate pose with lower-bound prector Distribution

Pick global peaks in the joint distribution



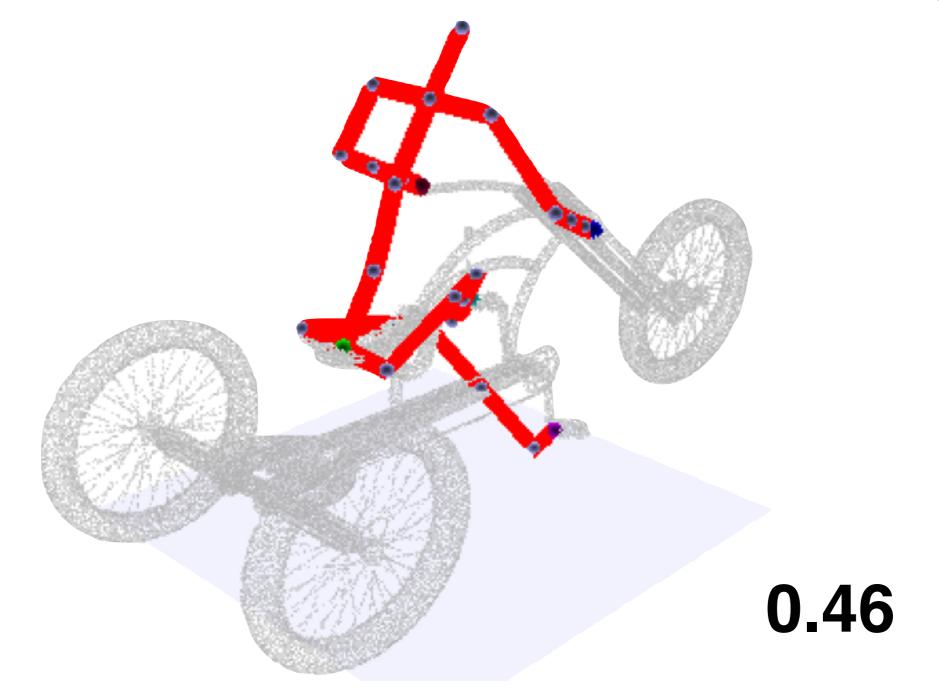
Candidate pose with lower-bound on the energy

Pick global peaks in the joint distribution

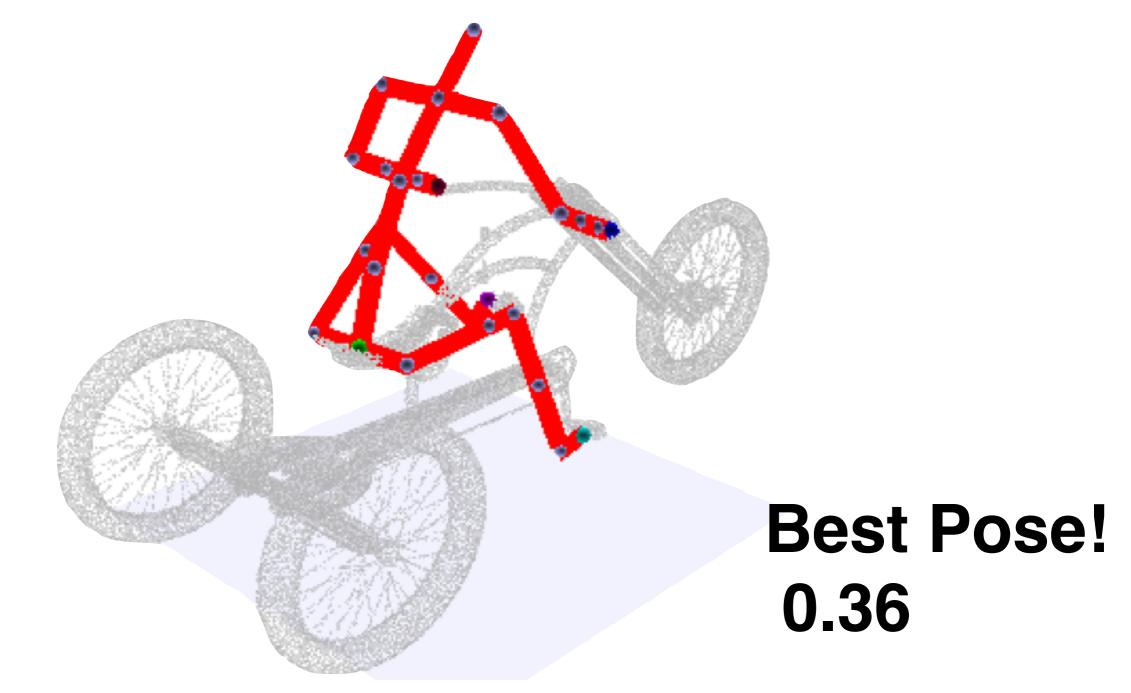


Candidate pose with lower-bound on the energy

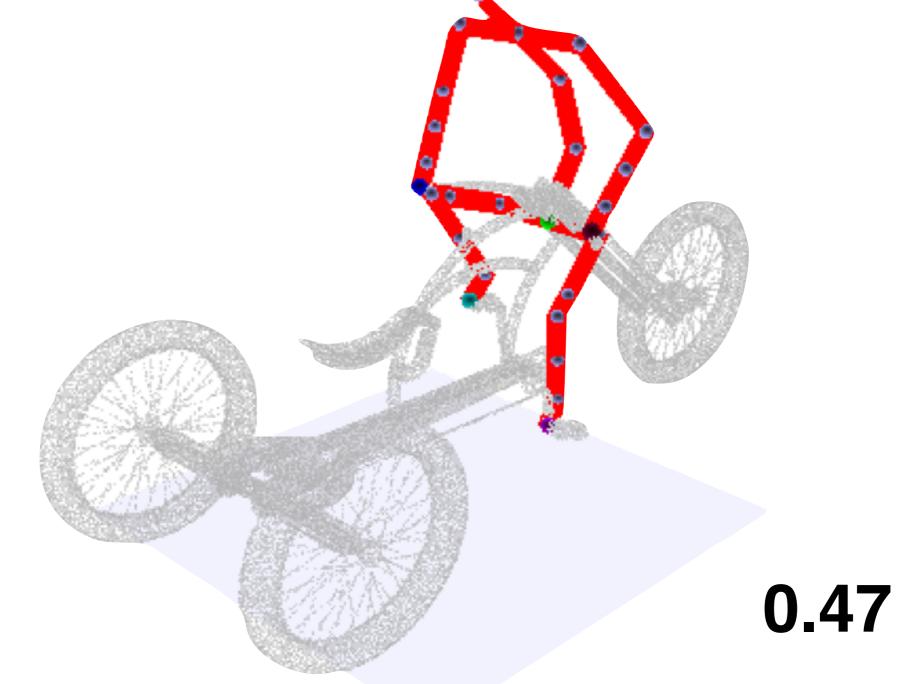
Run IK on best candidate poses to compute energy



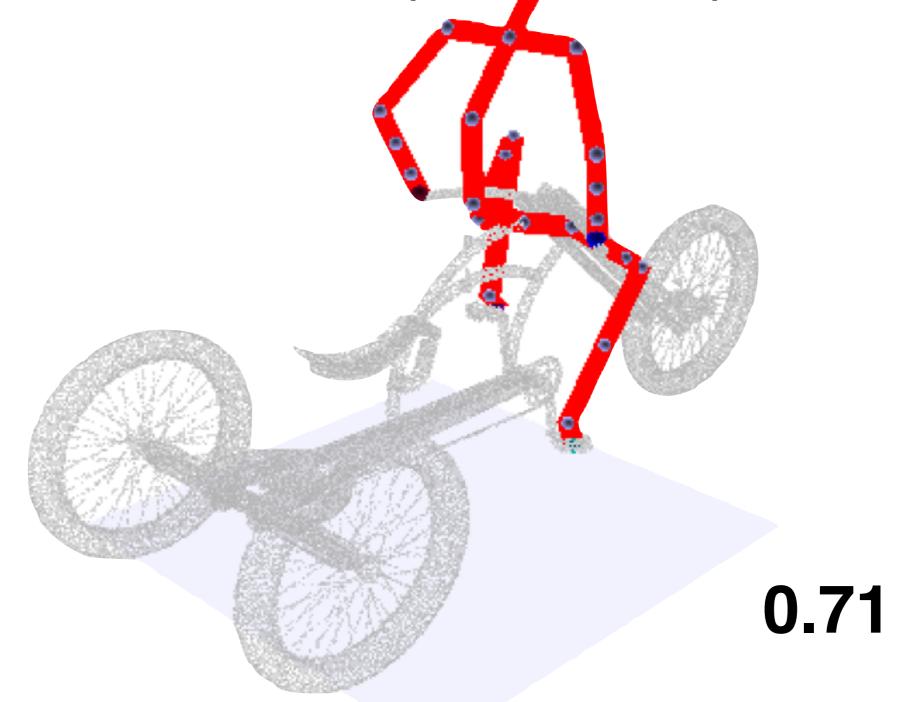
Run IK on best candidate poses to compute energy



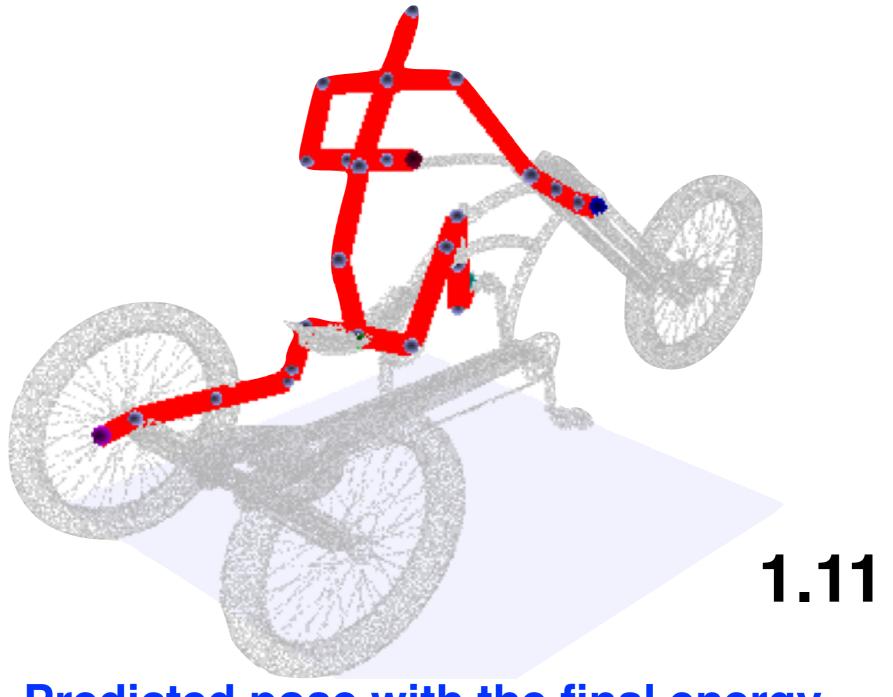
Run IK on best candidate poses to compute energy



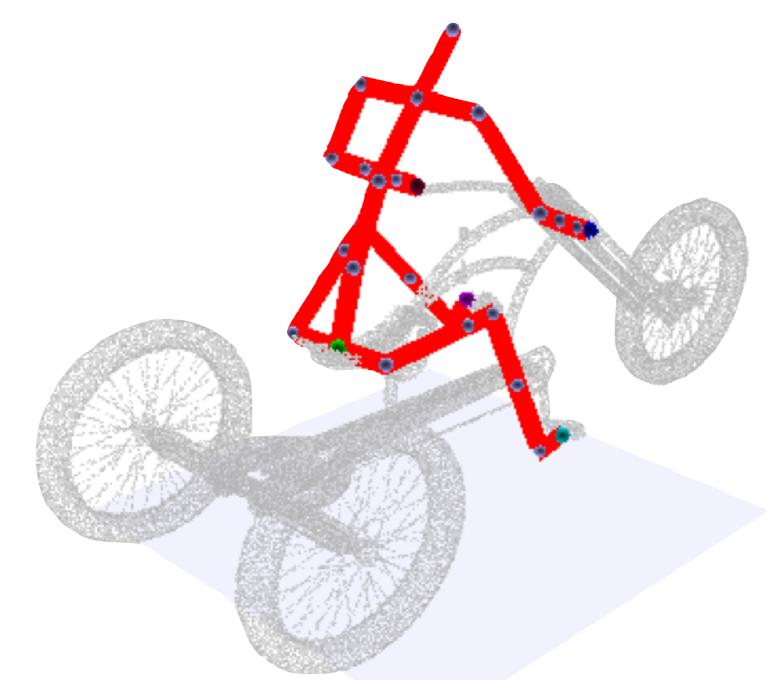
Run IK on best candidate pose to compute energy



Run IK on best candidate poses to compute energy

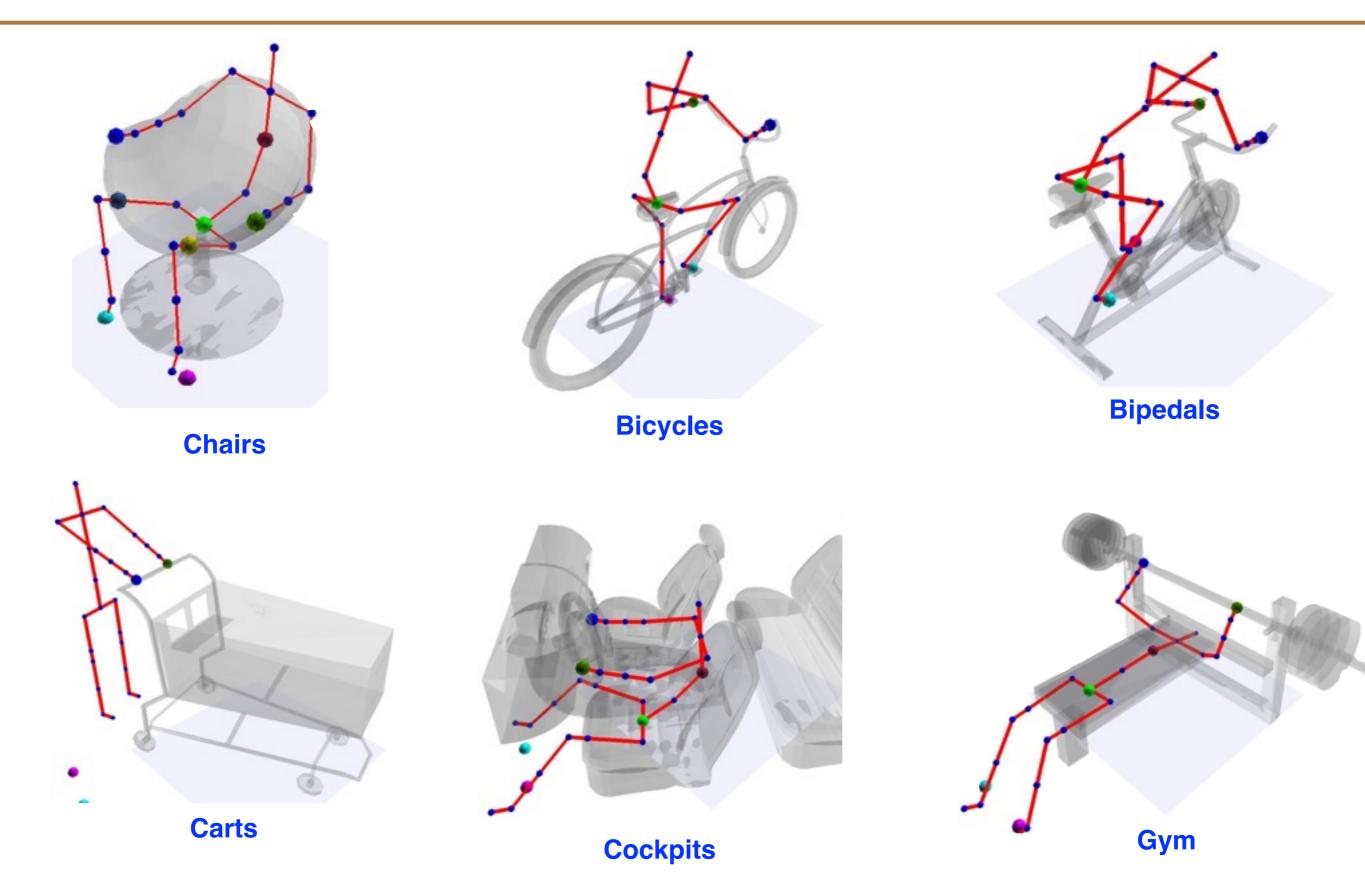


Run IK on best candidate poses to compute energy

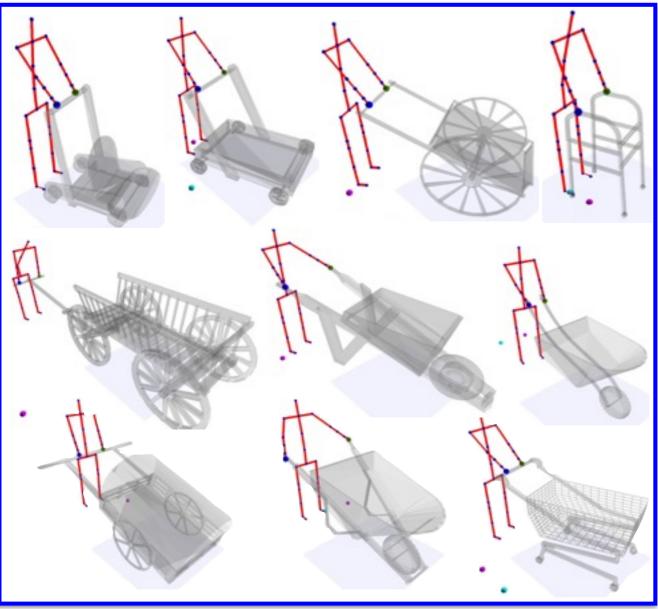


Final Predicted Pose

Human-centric Model Evaluation

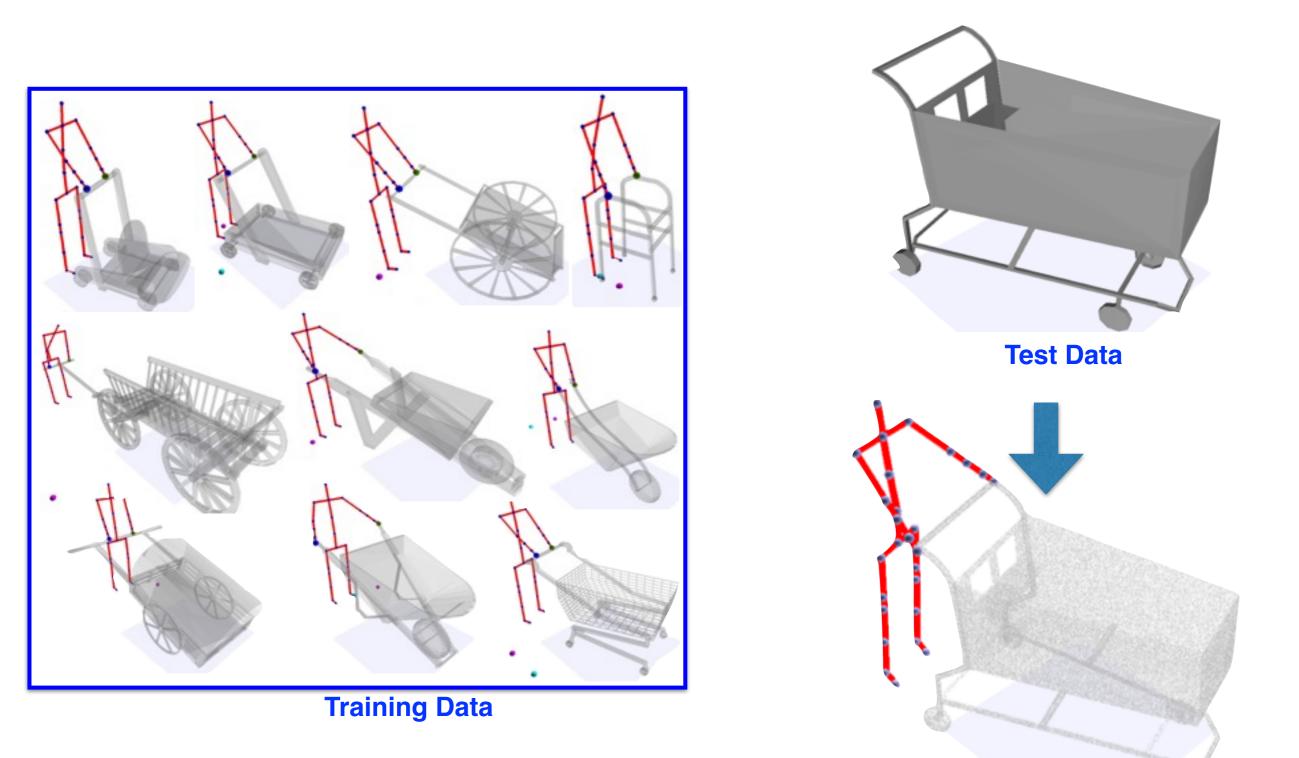


Leave-one-out Evaluation

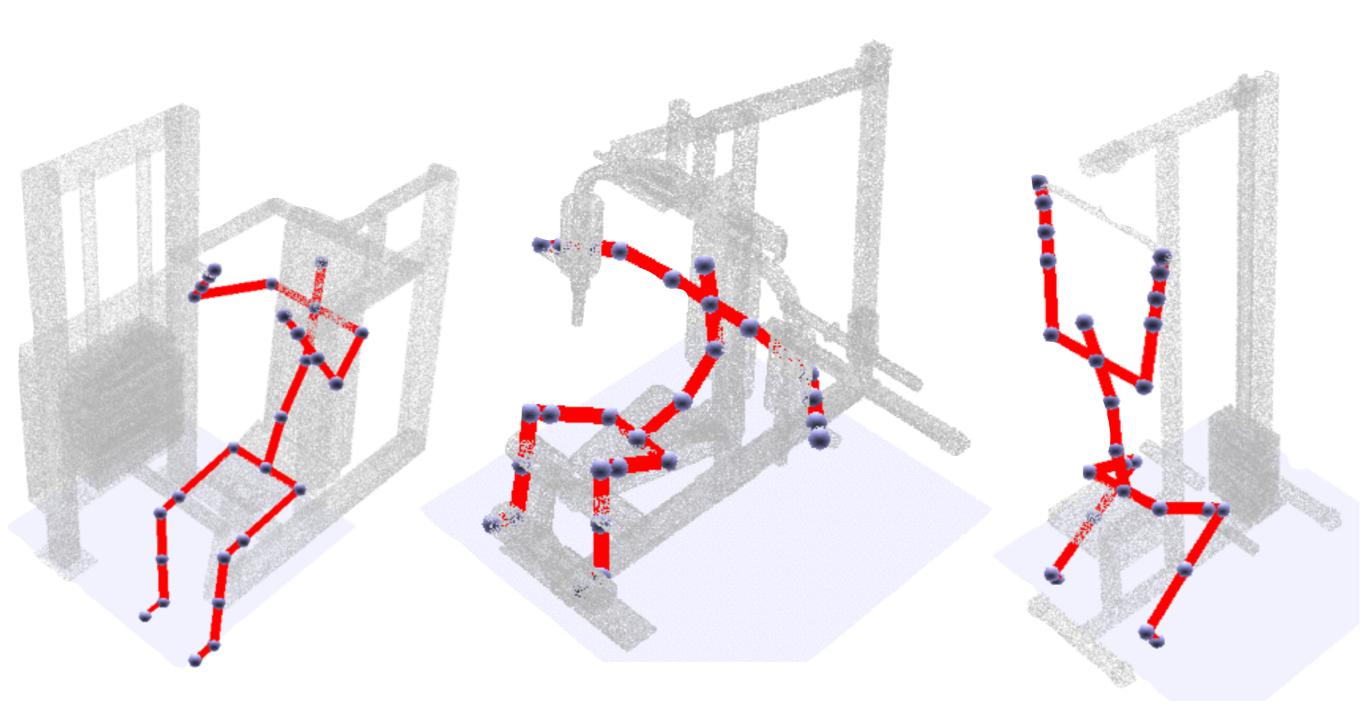


Training Data

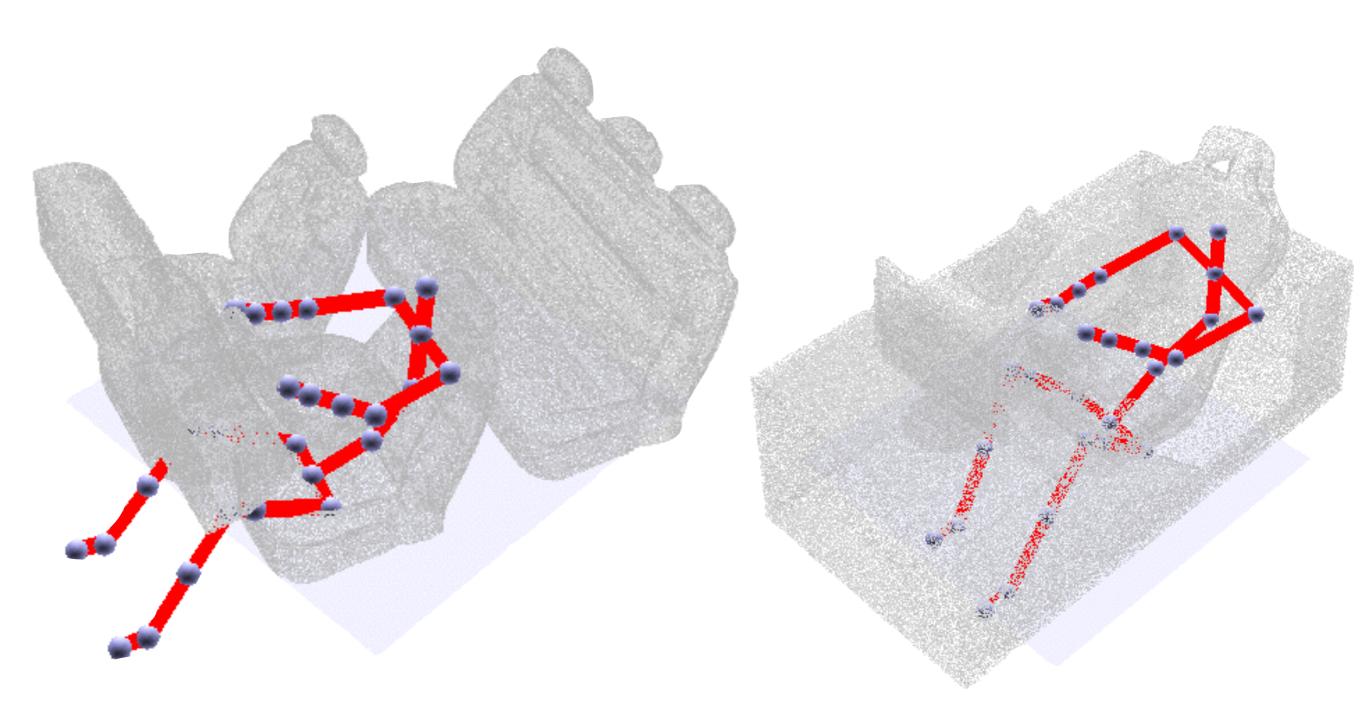
Leave-one-out Evaluation



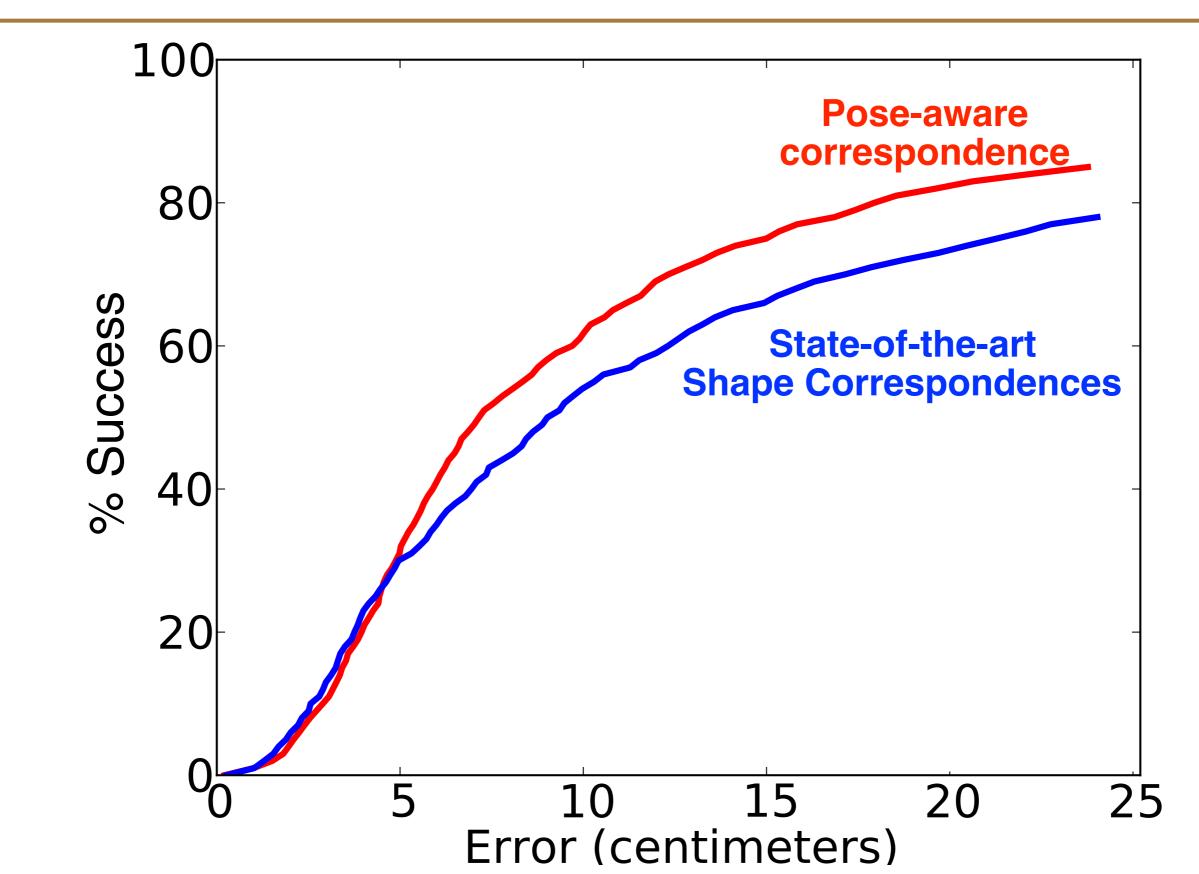
Pose Prediction Results



Pose Prediction Results



Shape Correspondence Results



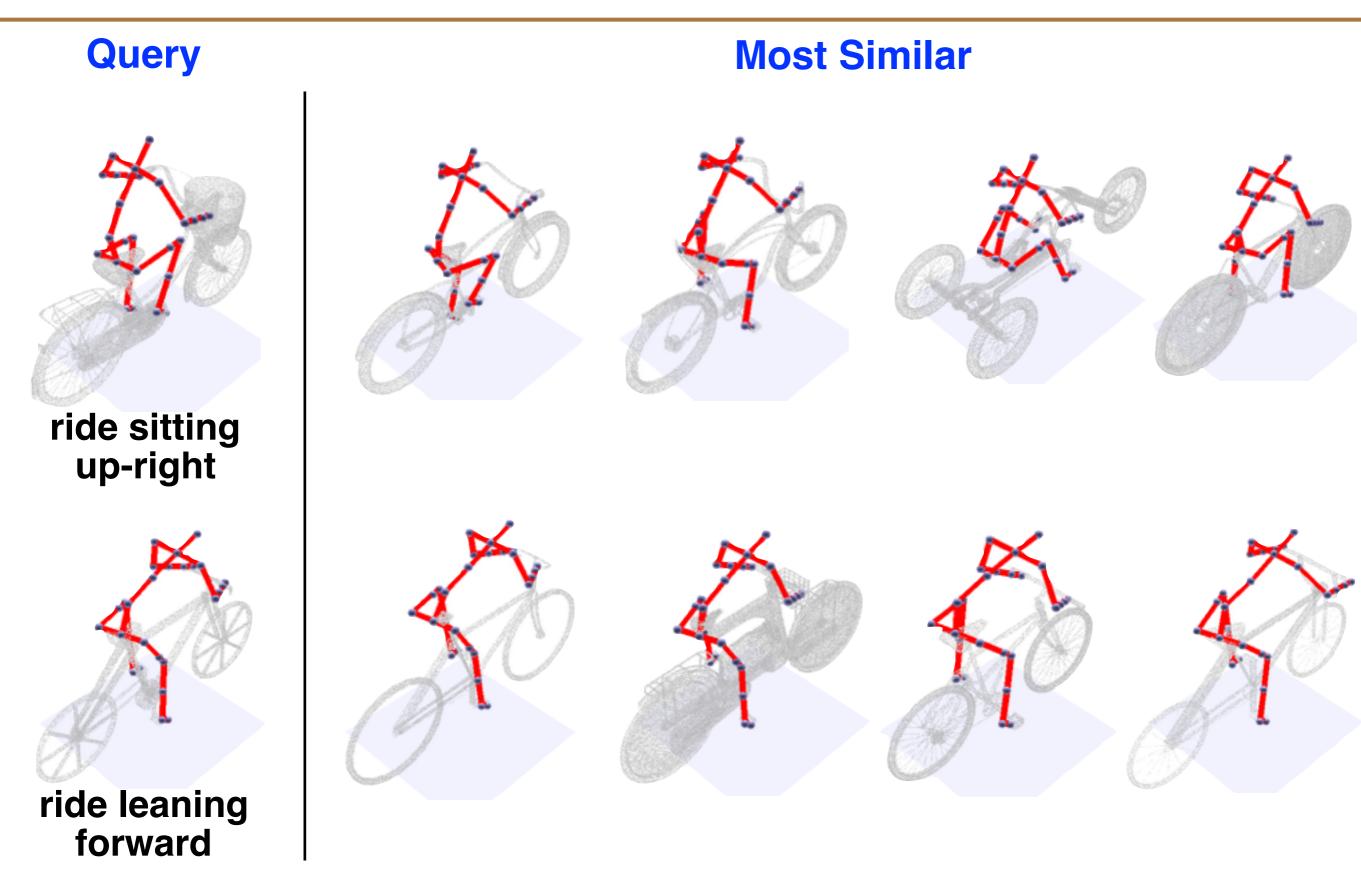
Salience Estimation Results

Mesh Saliency [Lee et al. 2005]

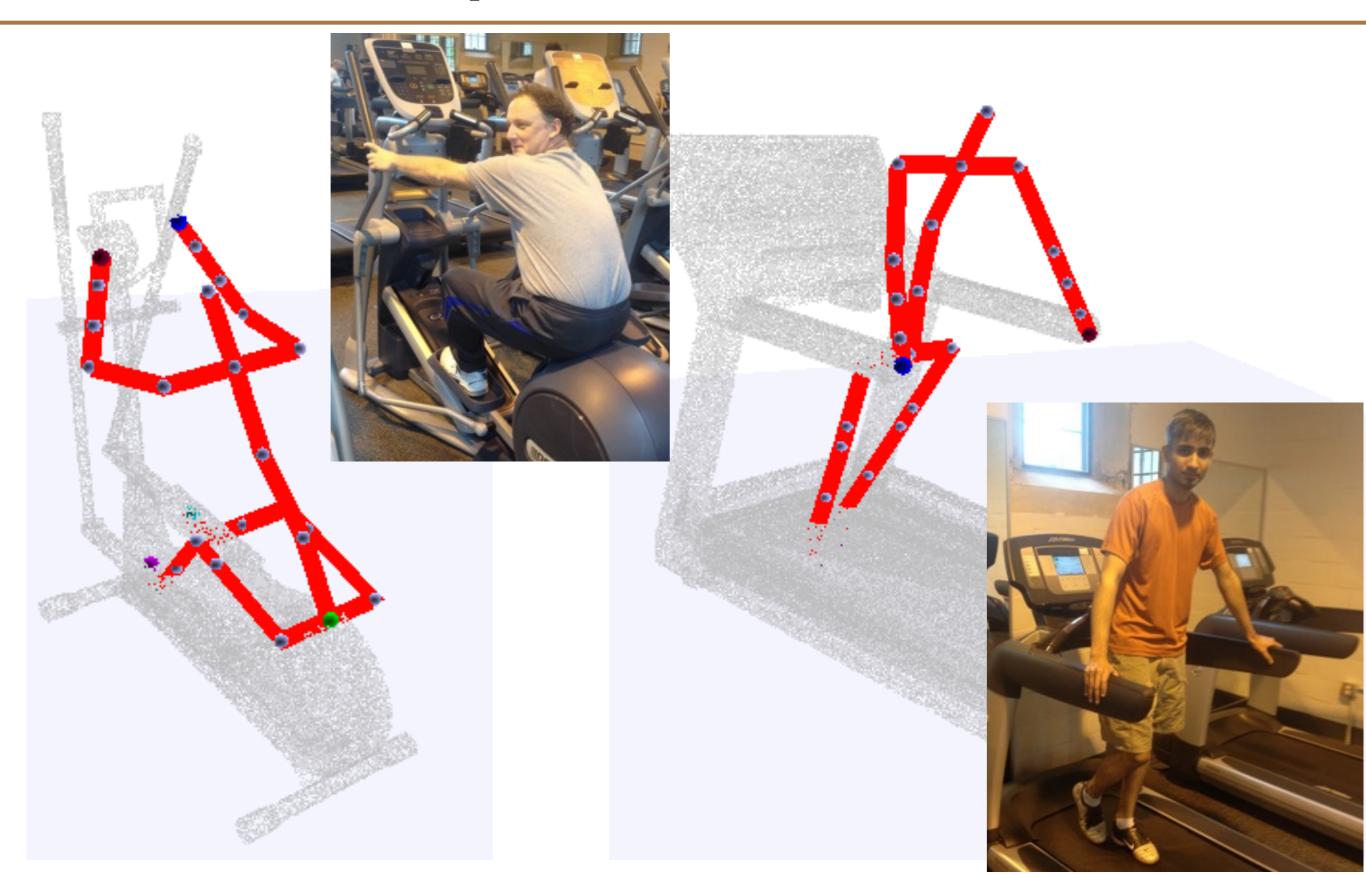
Salience Estimation Results

Human-centric Saliency [Our method]

Shape Retrieval Results



Failure Examples



Failure Examples

Research Agenda

Find Structure in 3D data to infer Function

- Better structural models
- Additional input to understand function
- Designing manufacturable objects
- Scene understanding

Research Agenda

Find Structure in 3D data to infer Function

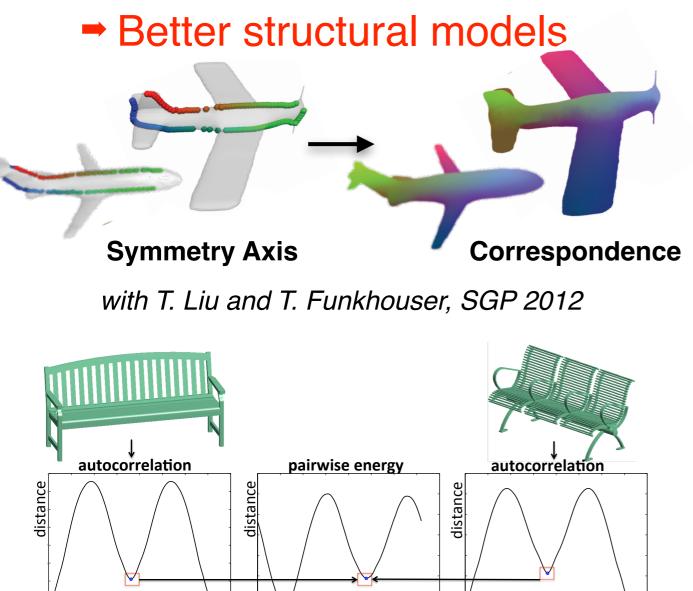
- Better structural models
- Additional input to understand function
- Designing manufacturable objects
- Scene understanding

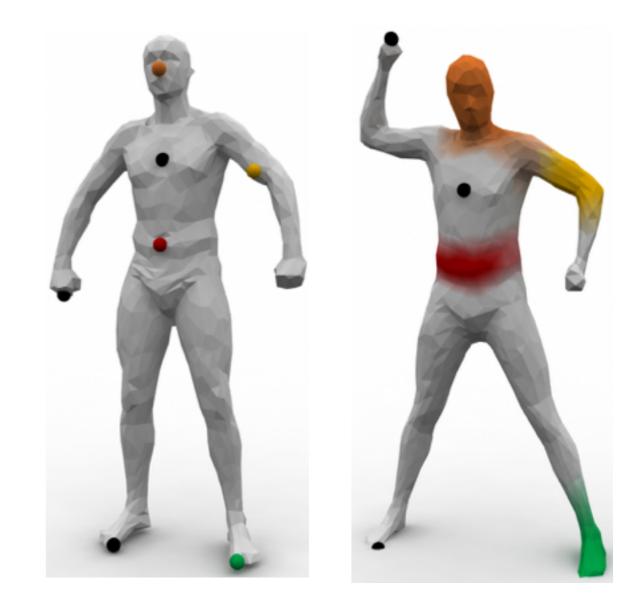
Correspondences

Find Structure in 3D data to infer Function

relative angle

Correspondence





with A. Nguyen, J. Solomon, L. Guibas

Probabilistic Correspondence

Symmetry And Correspondence

with M. Averkiou and N. Mitra, CGF 2015 (conditional)

relative angle

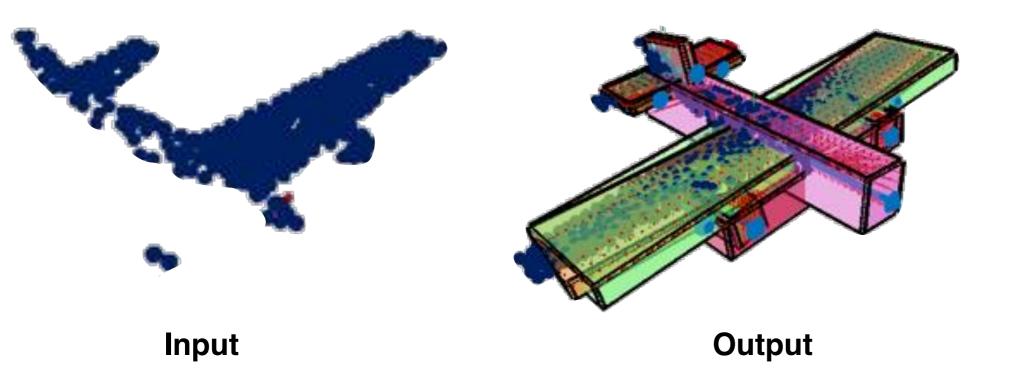
relative angle

Autocorrelation

Probabilistic Part Model

Find Structure in 3D data to infer Function

Better structural models



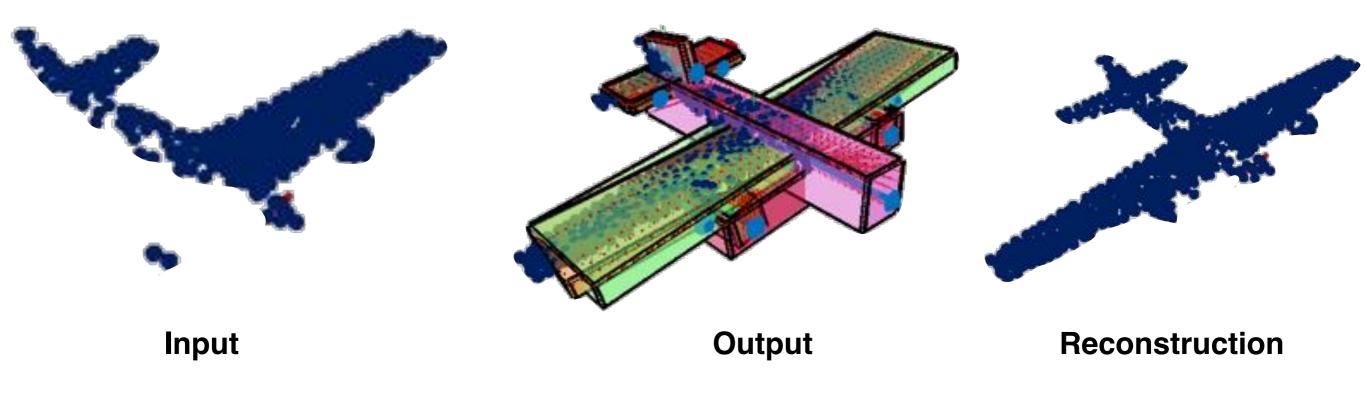
Handle partial observations

An on-going project with M. Sung, R. Angst, L. Guibas

Probabilistic Part Model

Find Structure in 3D data to infer Function

Better structural models



Handle partial observations

An on-going project with M. Sung, R. Angst, L. Guibas

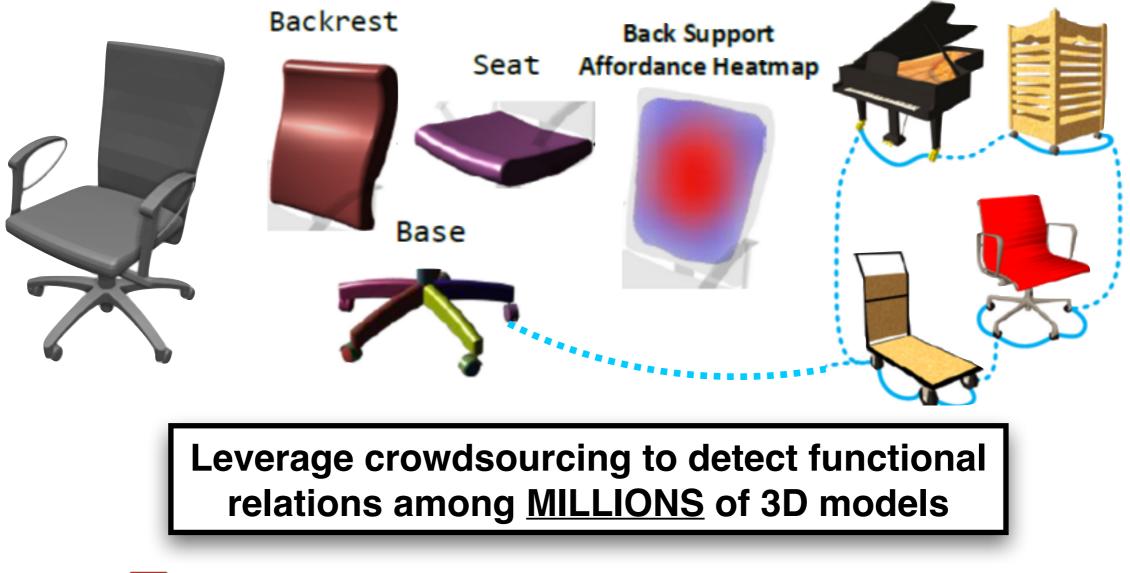
Research Agenda

Find Structure in 3D data to infer Function

- Better structural models
- Additional input to understand function
- Designing manufacturable objects
- Scene understanding

Find Structure in 3D data to infer Function

Additional input to understand function

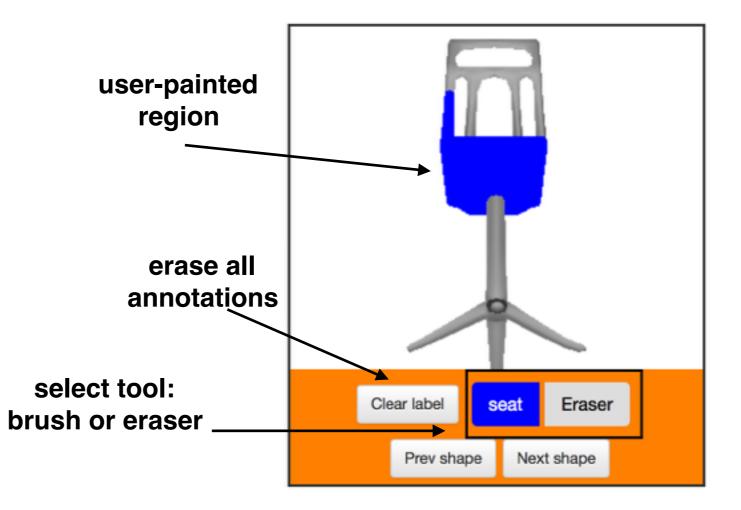


An on-going project with L. Yi, I. Shen, H. Su, Q. Huang, A. Sheffer, L. Guibas

- Desiderata
 - \circ Crowdsourced
 - Semi-supervised
 - Handle diverse data
 - Active

Desiderata

- Crowdsourced
- Semi-supervised
 Handle diverse data
 Active

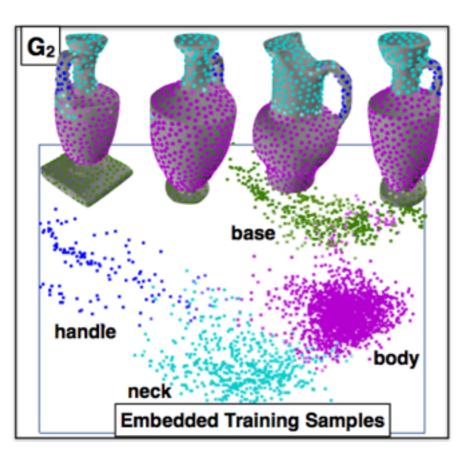


Simple 2D interface

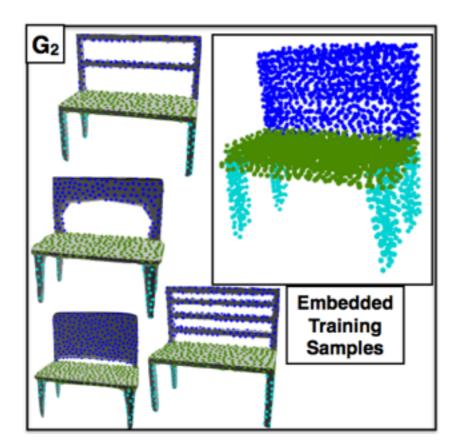
Desiderata

- Crowdsourced
- Semi-supervised
 Handle diverse data
 Active

Leverage geometry matching to propagate semantic information



Local Shape Features

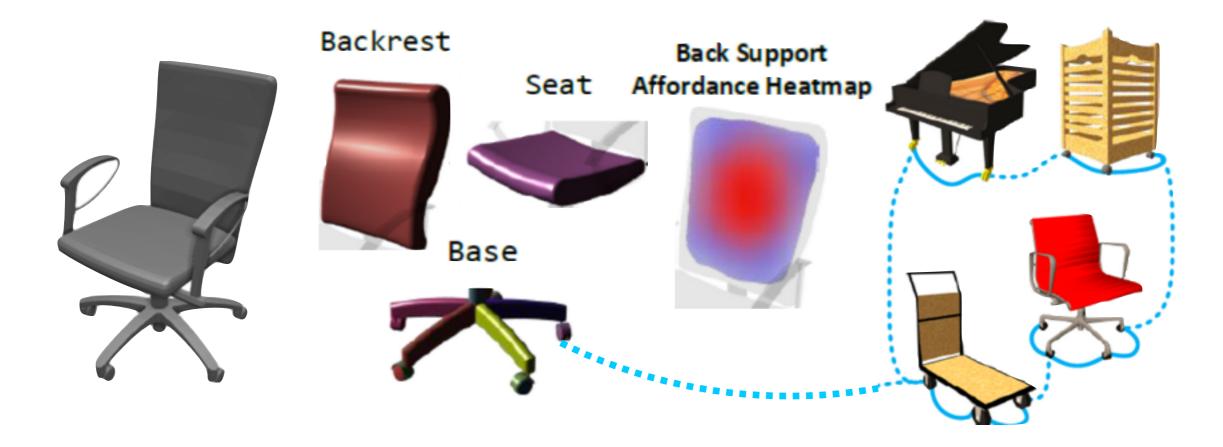


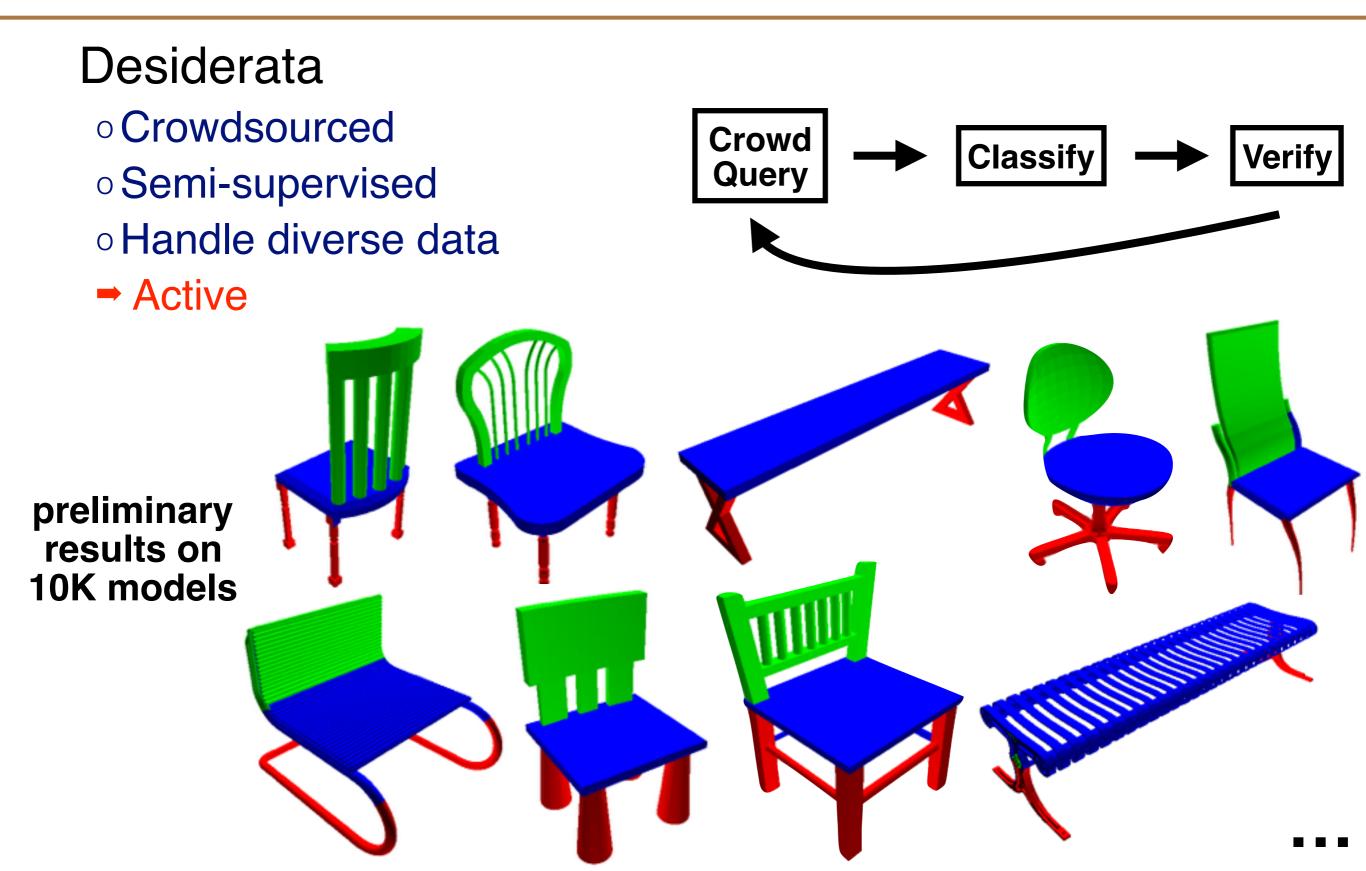
Global Correspondences

Desiderata

- \circ Crowdsourced
- Semi-supervised
- Handle diverse data
- Active

Learn a network structure for propagating annotations





Model Dynamic Interactions

Find Structure in 3D data to infer Function

Additional input to understand function

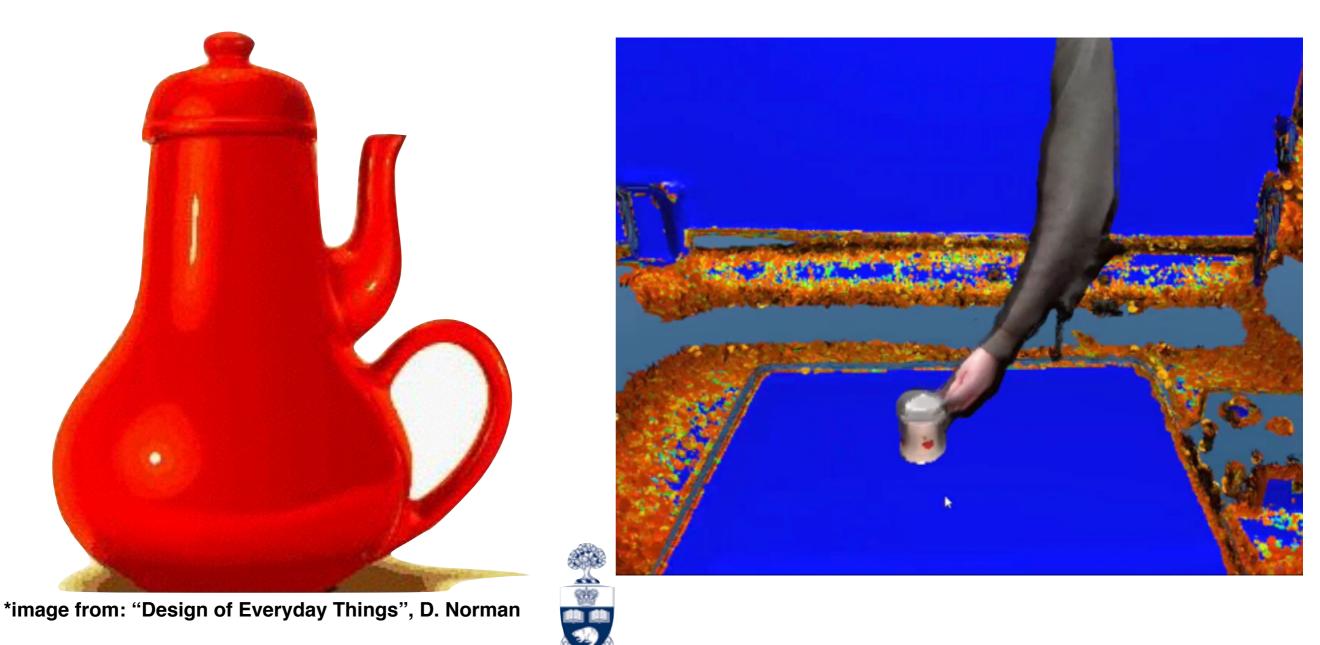
*image from: "Design of Everyday Things", D. Norman

An on-going project with K. Gibson, B. Araujo, K. Singh

Model Dynamic Interactions

Find Structure in 3D data to infer Function

Additional input to understand function



An on-going project with K. Gibson, B. Araujo, K. Singh

Research Agenda

Find Structure in 3D data to infer Function

- Better structural models
- Additional input to understand function
- Designing manufacturable objects
- Scene understanding

Furniture Design

Find Structure in 3D data to infer Function Designing manufacturable objects

Design Mechanical Assemblies

Find Structure in 3D data to infer Function

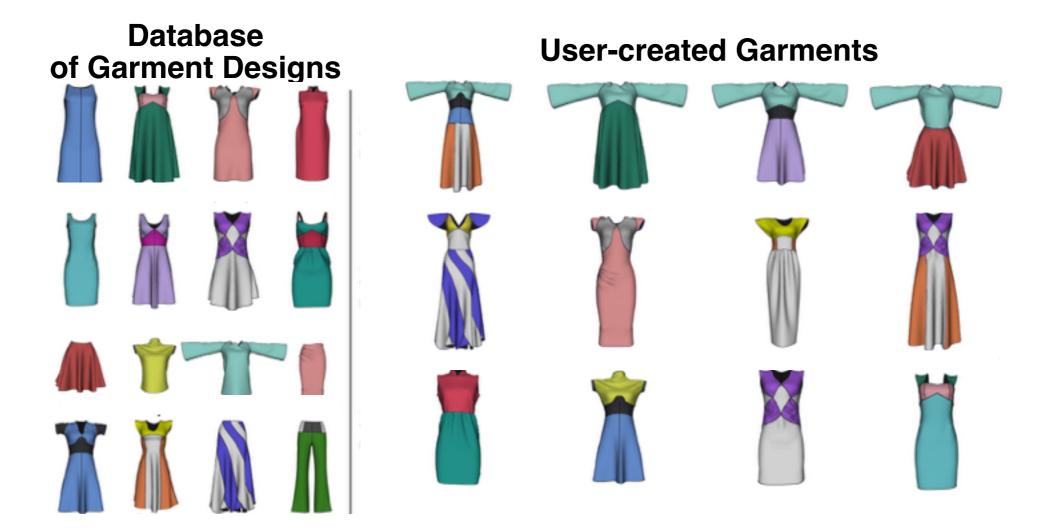
Designing manufacturable objects



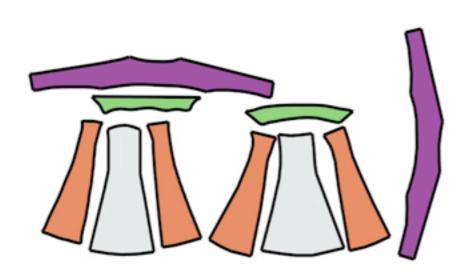
≜UCL

Find Structure in 3D data to infer Function

Designing manufacturable objects



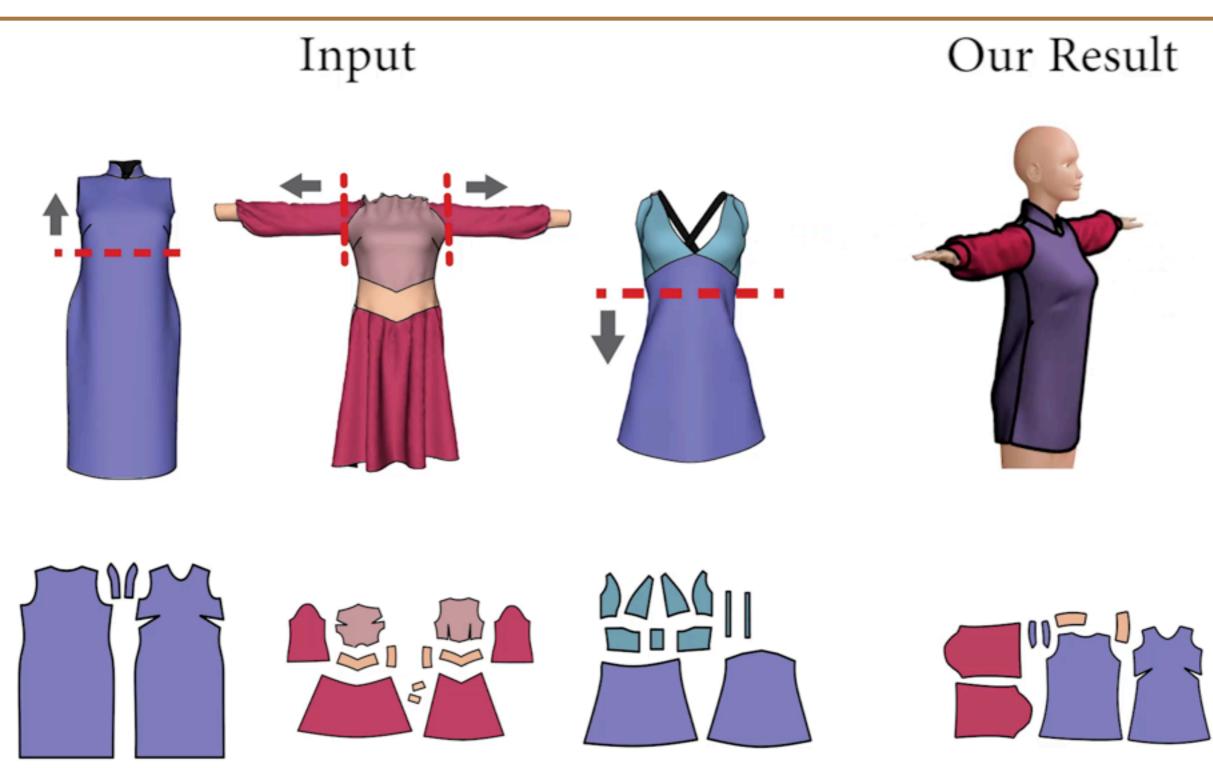
An on-going project with A. Bartle, A. Sheffer, F. Bertouzoz



Pattern

Simulated

Manufactured



User study

Research Agenda

Find Structure in 3D data to infer Function

- Better structural models
- Additional input to understand function
- Designing manufacturable objects
- Scene understanding

Research Agenda

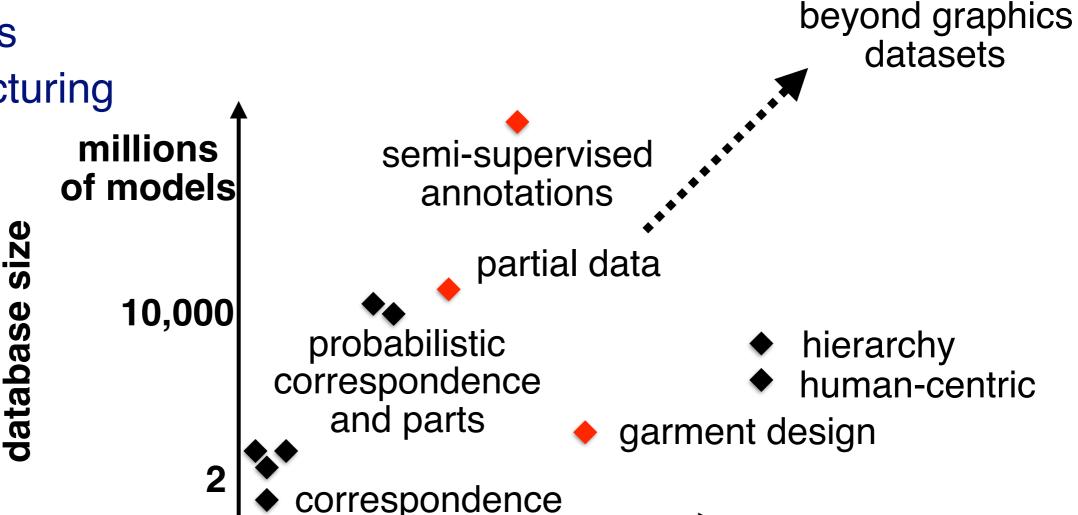
Find Structure in 3D data to infer Function

- Better structural models
- Additional input to understand function
- Designing manufacturable objects
- Scene understanding
 - Reason about function and semantics using 3D CG data
 - Advantages: known lighting, camera, objects, functionality*

Beyond Geometry Analysis

Model object classes from large collections

- o Geometry
- Semantics
- Function
- Appearance
- Materials
- Manufacturing



complexity

Summary

Large collections of 3D models are available (and more are coming!)

 OB modeling repositories, Kinect scans, Google Streetview, online shopping catalogues, scientific datasets

Summary

Large collections of 3D models are available (and more are coming!)

 OB modeling repositories, Kinect scans, Google Streetview, online shopping catalogues, scientific datasets

Finding structure in large 3D collections is useful to predict functional attributes

Summary

Large collections of 3D models are available (and more are coming!)

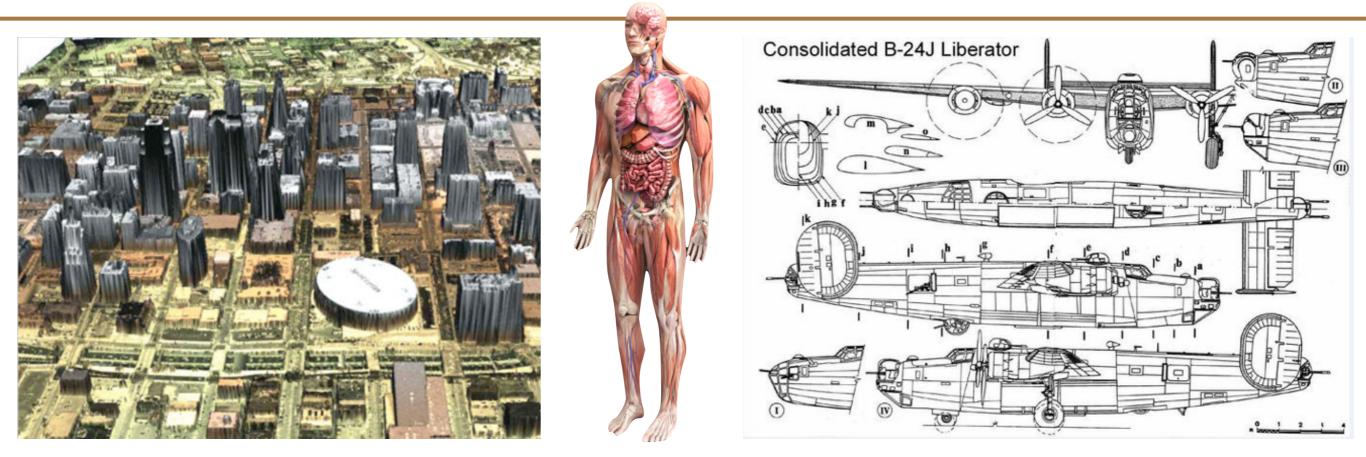
 OB modeling repositories, Kinect scans, Google Streetview, online shopping catalogues, scientific datasets

Finding structure in large 3D collections is useful to predict functional attributes

Understanding functionality is essential for

- Exploring and organizing the data
- Digital design
- Scene understanding

Explore, Analyze and Create Data



Scans of Cities

Medical Data

CAD Models

Understanding functionality is essential for

- Exploring and organizing the data
- o Digital design
- Scene understanding

Collaborators

Leonidas Guibas

Roland Angst

Minhyuk Sung

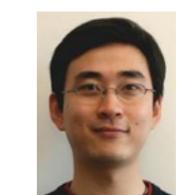
Li Yi

Princeton University

Thomas Funkhouser

Siddhartha Chaudhuri

Tianqiang Liu



Xiaobai Chen

Aleksey Golovinskiy

Wilmot Li

Li Floraine Berthouzoz

Stephan

DiVerdi

Niloy Mitra

Melinos Averkiou

Collaborators

University of British Columbia

Alla Sheffer

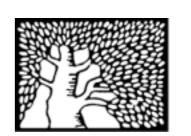
I-Chao Shen

Qi-xing Huang

Karan Singh

Bruno Rodrigues De Araujo

Kevin Gibson

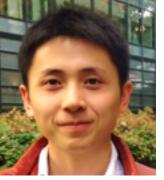


Weizmann Institute of Science

Yaron Lipman

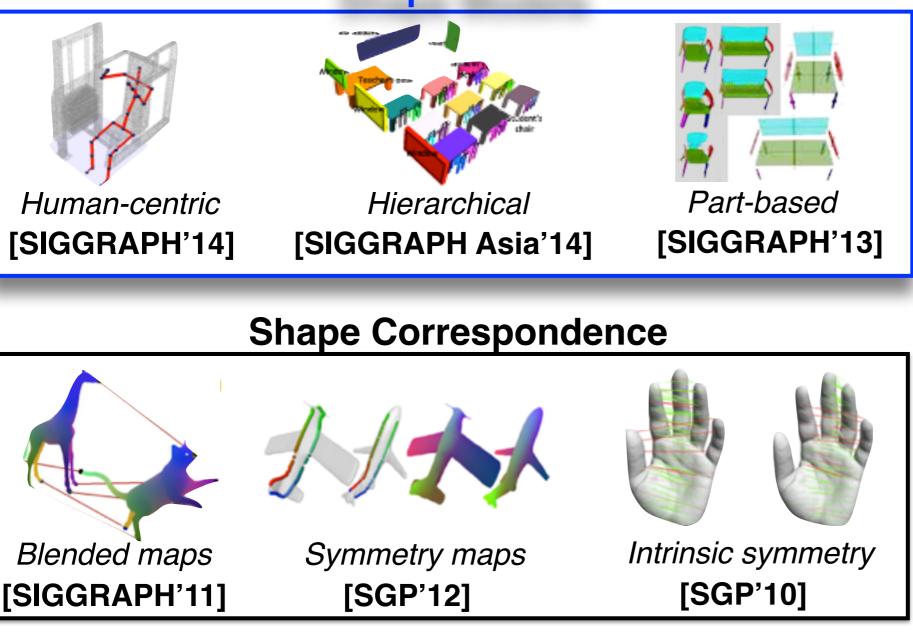
Yale

University



Youyi Zheng

Shape Models



Exploration and Synthesis

 Query
 Most Similar

 Exploration via

 Fuzzy Correspondence

 [SIGGRAPH'12]

Coupled Exploration and Synthesis [EG'14]

