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Geometry and Function

3D Geometry is essential to understand functionality

*Image from Mathieu Aubry



Research Agenda

oUnderstand similarities
oDetect important regions
oLearn structural variations

Structural
Model

3D Data

Find structure in 3D data to

Understand
Function



Exploring Collections of 3D Models using Fuzzy Correspondences. 
V. Kim, W. Li, N. Mitra, S. Chaudhuri, S. DiVerdi, T. Funkhouser,  SIGGRAPH 2012

Motivating Applications
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of Objects



Motivating Applications

ShapeSynth: Parameterizing Model Collections for Coupled Shape Exploration and Synthesis 
M. Averkiou, V. Kim, Y. Zheng, and N. Mitra, Eurographics 2014

User-created 
≈1 minute 

Database of 3D Objects
(takes hours to create a model) Learn

Structural
Variations

to Synthesize
Plausible
Shapes



Part-based Shape SynthesisMotivating Applications

ShapeSynth: Parameterizing Model Collections for Coupled Shape Exploration and Synthesis 
M. Averkiou, V. Kim, Y. Zheng, and N. Mitra, Eurographics 2014



Previous Work
Geometry analysis to understand structure: 
(self-serving overview)
oSymmetry
oCorrespondences 
oProbabilistic structural models
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Key Idea: find a symmetric conformal embedding

Symmetry

E.g., Möbius Transformations For Global Intrinsic Symmetry Analysis
V. Kim, Y. Lipman, X. Chen, and T. Funkhouser, SGP’10
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Key Idea: blend partial intrinsic maps

Correspondences

E.g., Blended Intrinsic Maps
V. Kim, Y. Lipman, and T. Funkhouser, SIGGRAPH’11
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Key Idea: blend partial intrinsic maps

Correspondences

E.g., Blended Intrinsic Maps
V. Kim, Y. Lipman, and T. Funkhouser, SIGGRAPH’11
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non-isometric surfaces



Key Ideas: represent ambiguity in mapping, leverage 
consistency and transitivity of correspondences

Correspondences in Collections

E.g, Exploring Collections of 3D Models using Fuzzy Correspondences 
V. Kim, W. Li, N. Mitra, S. DiVerdi, T. Funkhouser, SIGGRAPH’12
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Key Idea: learn deformable templates

Probabilistic Part Models

9 5

E.g., Learning Part-based Templates from Large Collections of 3D Shapes 
V. Kim, W. Li, N. Mitra, S. Chaudhuri, S. DiVerdi, T. Funkhouser, SIGGRAPH’13
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Key Idea: group related elements into hierarchies

Semantic HierarchyScene from 3D Warehouse

E.g., Creating Consistent Scene Graphs Using a Probabilistic Grammar 
T. Liu, S. Chaudhuri, V. Kim, Q. Huang, N. Mitra, and T. Funkhouser, SIGGRAPH Asia’14

Hierarchical Probabilistic Models



Two low-probability chairs



Challenge
Find common structure



Observation
Affordance is an intrinsic property of a shape
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Observation
Affordance is an intrinsic property of a shape

[Gibson’77]
Previous work: classification

Jiang et al.
Rigid poses:
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Observation
Affordance is an intrinsic property of a shape
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✓ Structural Variations
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Learn from training data
➡ Geometry of contact points
oPlausibility of poses

Affordance Model

Local Features:
- PCA features
- curvature
- height
- …
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Learn from training data
oGeometry of contact points
➡ Plausibility of poses

Affordance Model

Ball and socket joint



Learn from training data
oGeometry of contact points
➡ Plausibility of poses

Affordance Model

Hinge joint



Learn from training data
oGeometry of contact points
➡ Plausibility of poses

Affordance Model

Mixture of multi-variate Gaussians
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Learn from training data
oGeometry of contact points
➡ Plausibility of poses

Affordance Model

Mixture of multi-variate Gaussians



Affordance Model and Pose Prediction

Pose PredictionAffordance Model Learning
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Objective function for each pose-model fit: 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Key Optimization Terms

Hard Constraint
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Input
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Pose Prediction Algorithm
Output: m ✓, T

θj
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Naive Methods

Explore       :                            Explore          :

Related via inverse 
and forward kinematics
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# surface points

Too Expensive!
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Pose Prediction Algorithm
Output: m ✓, T

θj

θi

T

Contact 
Distribution Pose Prior

Key to Optimization:
Sample Independently => 
Maximize Joint Probability



Sample     : classify surface based on local features

Pose Prediction Algorithm
m

Contact Distribution



Contact Distribution

Sample       : Gaussian distributions

Pose Prediction Algorithm
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Contact Distribution

Sample       : Gaussian distributions

Pose Prediction Algorithm
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Sample       : Gaussian distributionsPick global peaks in the joint distribution

right palm

right toe
pelvis

Contact Distribution

Pose Prediction Algorithm
✓, T

End Effector DistributionCandidate pose with lower-bound on the energy
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Pick global peaks in the joint distribution

Pose Prediction Algorithm
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Run IK on best candidate poses to compute energy

Pose Prediction Algorithm

Predicted pose with the final energy

0.46
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Run IK on best candidate poses to compute energy
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Run IK on best candidate poses to compute energy

Pose Prediction Algorithm

Predicted pose with the final energy

1.11



Run IK on best candidate poses to compute energy

Pose Prediction Algorithm

Final Predicted Pose



Human-centric Model Evaluation

Chairs

Cockpits GymCarts

BipedalsBicycles



Leave-one-out Evaluation

Test Data

Training Data



Leave-one-out Evaluation
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Pose Prediction Results



Pose Prediction Results



Shape Correspondence Results
%

 S
uc
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ss

Pose-aware 
correspondence

State-of-the-art
Shape Correspondences



Salience Estimation Results

Mesh Saliency [Lee et al. 2005]



Salience Estimation Results

Human-centric Saliency [Our method]



Shape Retrieval Results
Query Most Similar

ride sitting
up-right

ride leaning
forward
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Correspondences
Find Structure in 3D data to infer Function
➡ Better structural models

Symmetry Axis Correspondence
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Symmetry And Correspondence Probabilistic Correspondence

with T. Liu and T. Funkhouser, SGP 2012

with M. Averkiou and N. Mitra, CGF 2015 (conditional) with A. Nguyen, J. Solomon, L. Guibas



Probabilistic Part Model
Find Structure in 3D data to infer Function
➡ Better structural models
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An on-going project with M. Sung, R. Angst, L. Guibas
Handle partial observations
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Semantic Shape Network
Find Structure in 3D data to infer Function
➡ Additional input to understand function

An on-going project with L. Yi, I. Shen, H. Su, Q. Huang, A. Sheffer, L. Guibas

Leverage crowdsourcing to detect functional 
relations among MILLIONS of 3D models
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oActive



Semantic Shape Network
Desiderata
➡ Crowdsourced
oSemi-supervised
oHandle diverse data
oActive

user-painted 
region

select tool: 
brush or eraser

erase all 
annotations

Simple 2D interface



Semantic Shape Network
Desiderata
oCrowdsourced
➡ Semi-supervised
oHandle diverse data
oActive

Leverage geometry matching
to propagate semantic information

Local Shape Features Global Correspondences



Semantic Shape Network
Desiderata
oCrowdsourced
oSemi-supervised
➡ Handle diverse data
oActive

Learn a network structure for
propagating annotations



Semantic Shape Network
Desiderata
oCrowdsourced
oSemi-supervised
oHandle diverse data
➡ Active

preliminary 
results on 

10K models

Crowd
Query VerifyClassify

…



Model Dynamic Interactions
Find Structure in 3D data to infer Function
➡ Additional input to understand function

*image from: “Design of Everyday Things”, D. Norman

An on-going project with K. Gibson, B. Araujo, K. Singh
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Furniture Design
Find Structure in 3D data to infer Function
➡ Designing manufacturable objects



Design Mechanical Assemblies
Find Structure in 3D data to infer Function
➡ Designing manufacturable objects

Mo7va7on&

Create&a&tool&for&designing&func7onal&objects&
that&fit&prescribed&body&mo7on&

?&

An on-going project with N. Mitra, M. Averkiou



Garment Design
Find Structure in 3D data to infer Function
➡ Designing manufacturable objects

An on-going project with A. Bartle, A. Sheffer, F. Bertouzoz

User-created GarmentsDatabase 
of Garment Designs
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Research Agenda
Find Structure in 3D data to infer Function
oBetter structural models
oAdditional input to understand function
oDesigning manufacturable objects
➡ Scene understanding

– Reason about function and semantics using 3D CG data
– Advantages: known lighting, camera, objects, functionality*

Real Rendered



Beyond Geometry Analysis
Model object classes from large collections
oGeometry
oSemantics
oFunction
oAppearance
oMaterials
oManufacturing

complexity
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garment design
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datasets
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Large collections of 3D models are available  
(and more are coming!)
o3D modeling repositories, Kinect scans, Google Streetview,  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Finding structure in large 3D collections is useful to 
predict functional attributes

 
Understanding functionality is essential for
oExploring and organizing the data
oDigital design
oScene understanding



Explore, Analyze and Create Data
 
 
  
(v
o   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Understanding functionality is essential for
oExploring and organizing the data
oDigital design
oScene understanding

Scans of Cities Medical Data CAD Models
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Shape Models

[SIGGRAPH’14] [SIGGRAPH Asia’14] [SIGGRAPH’13]

Exploration 
and Synthesis

[SIGGRAPH’12]

[EG’14]

Shape Correspondence

[SIGGRAPH’11] [SGP’12] [SGP’10]

Recognition

[ICCV’09]

Images and Textures

[ToG’12][ToG’12]

Human-centric Hierarchical Part-based

Blended maps Symmetry maps Intrinsic symmetry

Urban point cloud Symmetry-guided Quasi-conformal

Exploration via
Fuzzy Correspondence

Coupled  
Exploration and Synthesis

Courses

Structure-aware
[SIGGRAPH’14]

[SIGGRAPH Asia’14]


