Finding Structure in Large Collections of 3D Models

Vladimir Kim

Adobe Research

Explore, Analyze, and Create Geometric Data

Real

Virtual

Explore, Analyze, and Create Geometric Data

Personal data

(image from naked.fit)

Explore, Analyze, and Create Geometric Data

Scans of environments

Personal data

(image from naked.fit)

Explore, Analyze, and Create Geometric Data

Personal data

(image from naked.fit)

Scans of environments

Medical Imaging

Explore, Analyze, and Create Geometric Data

CG data (image from 3dwarehouse.sketchup.com)

Explore, Analyze, and Create Geometric Data

CG data (image from 3dwarehouse.sketchup.com)

3D printing data (image from thingiverse.com/)

Explore, Analyze, and Create Geometric Data

CAD models

Organize and explore large collections of shapes

3D Data

Understand and label novel geometric data

Make 3D modeling more accessible to non-experts

Make 3D modeling more accessible to non-experts

Challenges

Discover similarities in unorganized geometry

Diversity

Thingiverse

SAPERET

Scale

Point-to-point

Region-to-region

Challenges

Discover similarities in unorganized geometry

💿 TURBO SQUID

Thingiverse

SHAPERET

Scale

Point-to-point

Region-to-region

Challenges

Discover similarities in unorganized geometry

Diversity

Thingiverse

SAPERET

Scale

Point-to-point

Region-to-region

Talk Outline

Discover similarities to model structure

- Discover similarities
 - Blended intrinsic maps
 - Soft maps
- Model the structure
 - Learning deformable templates
 - Learning hierarchical templates

Talk Outline

Discover similarities to model structure

Discover similarities

- Blended intrinsic maps
- Soft maps
- Model the structure
 - Learning deformable templates
 - Learning hierarchical templates

Correspondence as Metric Alignment

Correspondence as Metric Alignment

Correspondence as Metric Alignment

Correspondence as Metric Alignment

Observation:

isometric = area-preserving+ conformal

Sample $\gamma \gg$ Pick best

Correspondence as Metric Alignment

combinatorial! **Observation:** isometric = area-preserving

Sample $\gamma \rightarrow$ Pick best

+ conformal

Correspondence as Metric Alignment

Observation:

isometric = area-preserving

Sample $\gamma \gg$ Pick best

+ conformal

polynomial!

Conformal Maps Correspondence as Metric Alignment Sample $\gamma >>$ Pick best q) $\gamma(p)$ conformal map defined by 3 points $\arg \min \|D(p,q) - D(\gamma(p),\gamma(q)\|)\|$ a good map:

Conformal Maps

Correspondence as Metric Alignment Sample $\gamma \gg$ Pick best

conformal map

defined by 3 points

Blended Conformal Maps

Conformal Maps

Weights

Blended Map

Blended Conformal Maps

Non-isometric shapes

Limitations

What is the correct point-to-point map?

Limitations

What is the correct point-to-point map?

Soft Maps

Soft Maps

Correspondence as Metric Alignment Sample $\gamma >>$ Pick best

a b c

mass transport point-to-distribution

a good map:

Soft Maps

Correspondence as Metric Alignment Sample $\gamma >>$ Pick best

a good map:

mass transport point-to-distribution

 $\arg\min \|D(p,q) - D(a,b)\|^2 \gamma(p,a) \gamma(q,b)$

Entropic Regularization

Make γ as sparse as possible $(\gamma) = -\alpha < \gamma, \ln \gamma > 1$

Source surface

Target surface ($\alpha = 8 \times 10^{-3}$)

Target surface ($\alpha = 7 \times 10^{-4}$)

Soft Map Results

Soft Map Results

Consistency

Low-rank (cycle consistency) in collections of

 \mathbf{A}

 $\mathbf{A}^{ op}$

 \mathbf{G}

Consistency

Low-rank assumption can help in discovering parts

Additional terms: local shape cues for part boundaries

Talk Outline

Discover similarities to model structure

- Discover similarities
 - Blended intrinsic maps
 - Soft maps

Model the structure

- Learning deformable templates
- Learning hierarchical templates

Meta-algorithm

- ➡ Shape-shape corrs.
- Build templates
- Shape-template corrs.
- Update templates

Meta-algorithm • Shape-shape corrs. Build templates • Shape-template corrs. Update templates

Deformable Template

Meta-algorithm

- Shape-shape corrs.
- Build templates
- ➡ Shape-template corrs.
- Update templates

Meta-algorithm

- Shape-shape corrs.
- Build templates
- ➡ Shape-template corrs.
- Update templates

Deformable Template

Meta-algorithm

- Shape-shape corrs.
- Build templates
- Shape-template corrs.
- Update templates

Deformable Template

Meta-algorithm

- Shape-shape corrs.
- Build templates
- Shape-template corrs.
 - Update templates

Hierarchical Templates

Use hierarchical templates for scenes

- Region-based exploration
- Scene completion
- 3D Modeling

- Region-based exploration
- Scene completion
- 3D Modeling

- Region-based exploration
- Scene completion
- 3D Modeling

Explore, Analyze, and Create Geometric Data Region-based exploration Scene completion 3D Modeling

Output

Input

Output

Input

υιιριι

- Region-based exploration
- Scene completion
- → 3D Modeling

Summary

Large collections of 3D models are available (and more are coming!)

- 3D modeling repositories
- o 3D printing datasets
- Kinect scans
- Laser scans of cities,
- Online shopping catalogues
- Medical imaging data
- Protein databases

0...

Summary

Large collections of 3D models are available (and more are coming!)

Discovering similarities is essential to find structure
 Need to handle: diversity, scale, and ambiguity in data

Summary

Large collections of 3D models are available (and more are coming!)

Discovering similarities is essential to find structure

Finding structure can enable novel techniques for:
Exploring and organizing the data
Scene understanding
Modeling

Future Work

Beyond geometry

- Understand <u>function</u>
- Obtain human supervision to capture what is <u>semantically</u> <u>salient</u>
- Consider physical <u>materials</u> that make up objects
- Model <u>mechanics</u> and articulations

Future Work

Beyond geometry

- Understand <u>function</u>
- Obtain human supervision to capture what is <u>semantically</u> <u>salient</u>
- Consider physical <u>materials</u> that make up objects
- Model <u>mechanics</u> and articulations

Predict human-object interaction pose for shape analysis

Collaborators

- R. Angst Q. Huang S. DiVerdi L. Guibas Y. Lipman
- G. Peyre
- S. Sra
- Y. Zheng

- M. Averkiou
 - S. Chaudhuri
- T. Funkhouser
- W. Li
- N. Mitra
 - J. Solomon
 - M. Sung

References

Blended Intrinsic Maps, V. Kim et al., SIGGRAPH 2011

Entropic Metric Alignment for Correspondence Problems

J. Solomon et al. SIGGRAPH 2016

Learning Part-based Templates from Large Collections of 3D Shapes V. Kim et al., SIGGRAPH 2013 ShapeSynth: Parameterizing Model Collections for Coupled Shape Exploration and Synthesis M. Averkiou et al. Eurographics 2014

using Fuzzy Correspondences

V. Kim et al., SIGGRAPH 2012

Creating Consistent Scene Graphs Using a Probabilistic Grammar T. Liu et al., SIGGRAPH Asia 2014

Data-Driven Structural Priors for Shape Completion

M. Sung et al. SIGGRAPH Asia 2015

Shape2Pose: Human-Centric Shape Analysis V. Kim et al., SIGGRAPH 2014