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Make 3D modeling more accessible to non-experts
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Discover repeating patterns
and represent them
with a concise model

Make 3D modeling more accessible to non-experts



Challenges

Discover common structure




Challenges

Discover common structure

@ TURBOSOUID

2 3D Warehouse
shapeways
Thingiverse

SMAPERET

& Prgject Tango
Scale



Challenges

Discover common structure
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Part-based Template

Probabilistic shape model

Template is learned from segmented objects
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Part-based Template

Template is learned from segmented objects

Per-point classifiers

Pairwise part relations




Part-based Template

Template is learned from segmented objects

e
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Each part is a local coordinate system
Represent all other parts in this coordinate system
Probabilistic distribution (e.g., Gaussian)

Pairwise part relations
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Fitting template for structure inference
® Input

= |nitialization

® Part labels and orientations
® Point segmentation

® Pose optimization
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Structure Inference

Fitting template for structure inference
® Input

® |nitialization

® Part labels and orientations

® Point segmentation
= Pose optimization
® Additional part candidates

Opt: Gradient Descent

b = Epnt =+ Edist =+ Epart




Structure Inference

Fitting template for structure inference

= Additional part candidates

Opt: greedy sampling

b = Epnt =+ Edist =+ Epart

nput
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2ose optimization




Structure Inference

Fitting template for structure inference
nput

nitialization

Part labels and orientations
2oint segmentation

"ose optimization
® Additional part candidates

Final Result:
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Hierarchical Templates

Use probabilistic grammars for hierarchies
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Evaluation
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Comparisons

Accuracy  Completeness

Shape Completion

OurS 85% 780/0
Podolak’06] (symmetry)  99% 69%
Shen’12] (closest parts)  62% 50%

Scene Completion

Qurs 62% 82%
[Gupta’15] (closest object) 57% 52%



Exploration & Synthesis

Using part-based templates for synthesis
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Efficiency



Training Data

Where do we get segmented shapes?

® Active learning for labeling [Wang'12]
- Dataset: 1090 meshes, 2-5 parts per mesh, watertight manifold

Accuracy

not every model is verified
by a human

requires an expert Eificiency
does not directly optimize efficiency
(active learning objective: train the best classifier)
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Where do we get segmented shapes?
® Active learning for labeling [W-
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Training Data

Where do we get segmented shapes?

® Active learning for labeling [Wang'12]
- Dataset: 1090 meshes, 2-5 parts per mesh, watertight manifold

® Manual annotation [Chen'09]
- Dataset: 380 meshes, 19 parts per mesh, watertight manifold

Verify ali Accuracy
results!

ManuallAnnotation

Efficiency



Training Data

Where do we get segmented shapes?

® Active learning for labeling [Wang'12]
- Dataset: 1090 mesh

® Manual annotation
- Dataset: 380 meshe

Verify ali
results!

Acc

Instruction: Please pick up the images whose back is NOT highlighted correctly. Please
use the example images as a reference. Remember to click on the bad images!

Notice images without back and at the same time without any part highlighted should be
treated as good images and you should NOT click on them. Images with back but at the
same time without any part highlighted should be treated as bad images and you should
click on them.




Training Data

Where do we get segmented shapes?

® Active learning for labeling [Wang'12]
- Dataset: 1090 meshes, 2-5 parts per mesh, watertight manifold

® Manual annotation [Chen'09]
- Dataset: 380 meshes, 19 parts per mesh, watertight manifold

Accuracy

Manual notation

Algorithm Prediction

Efficiency



Our Approach

Verity algorithmic predictions

feature-based
alignment-based

Label Propagate  Verify



Our Approach

Verity algorithmic predictions

feature-based
«---» alignment-based

Label Propagate  Verify

Which models to label & which labels to verify?
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Utility Function

label propagation
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Utility Function

1 = tannotation (A) + tveriﬁcation(va {Q})
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Utility Function

1= tannota,tion (A) T tveriﬁcation(va {q})
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Tidentification ~ 0.3s/label

Tannotation ~> 308 / label

Telick ~ 1.1s/label
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Utility Function

Ngood

T

{q} is not known before selecting Aand V

Estimate probability) and use expectation
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Algorithm behavior
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Utility Function

argmin
AV
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Select Annotation Set: Beam Search

Select Verification Set: Greedy Search




Results

Data Set airplane (4027) earphone (73) cap (56) motorbike (336)

¢ 30,000 shapes .* é “ ’
B wheel
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Results

Dataset

® 30,000 shapes
¢ 90,000 parts

motorbikes

gas tank wheel [seat light handle

airplanes
b= o = o

Y < r T !

Jshade base | tube body = wing [flengine [ tail
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Comparison on manifold shapes

® Chen'09 (manual) : about x12 more expensive
®\Nang'12 (active) : about x2 more expensive



Time Saving

Comparison on manifold shapes

® Chen’09 (manual) : about x12 more expensive
®\Wang'12 (active) : about x2 more expensive

Compag(i)%on on data "in the wild”

Manual Annotation Our



Summary

Large collections of 3D models are available

(and more are coming!)
® 3D modeling repositories

® 3D printing datasets
e Kinect scans

® | aser scans of cities,
® Online shopping catalogues
® Medical imaging data

® Protein databases
‘ e o o
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Summary

Large collections of 3D models are available
(and more are coming!)

Part-based models are powerful, but need data

Getting veritied results might save you time
® if you verify automatic labels



Future Work

Beyond geometry

e Understand function

® Consider physical materials that make up objects

® Model mechanics and articulations
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Beyond geometry

= Understand function
® Consider physical materials that make up objects

® Model mechanics and articulations




Future Work

Better structural models
® Geometry processing layers in deep neural networks
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