Part Structures in Large Collections of 3D Models

Vladimir Kim

Adobe Research

Explore, Analyze, and Create Geometric Data

Real

Virtual

Explore, Analyze, and Create Geometric Data

Personal data

(image from naked.fit)

Explore, Analyze, and Create Geometric Data

(image from naked.fit)

Scans of environments

Explore, Analyze, and Create Geometric Data

Personal data

(image from naked.fit)

Scans of environments

Medical Imaging

Explore, Analyze, and Create Geometric Data

CG data (image from 3dwarehouse.sketchup.com)

Explore, Analyze, and Create Geometric Data

CG data (image from 3dwarehouse.sketchup.com)

3D printing data (image from thingiverse.com/)

Explore, Analyze, and Create Geometric Data

CAD models

3D Data

Organize and explore large collections of shapes

Understand and label novel geometric data

Make 3D modeling more accessible to non-experts

Make 3D modeling more accessible to non-experts

Challenges

Discover common structure

Diversity

Thingiverse

SAPERET

Scale

Region-to-region

Challenges

Discover common structure

Diversity

Thingiverse

SAPERET

Scale

Region-to-region

Challenges

Discover common structure

Diversity

Thingiverse

SAPERET

Scale

Region-to-region

Part-based Template

Template is learned from segmented objects

Part-based Template

Template is learned from segmented objects

Per-point classifiers

Pairwise part relations

Part-based Template

Template is learned from segmented objects

Fitting template for structure inference

- → Input
- Initialization
- Part labels and orientations
 - Point segmentation
- Pose optimization
 - Additional part candidates

Fitting template for structure inference

- → Input
- Initialization
- Part labels and orientations
 - Point segmentation
- Pose optimization
 - Additional part candidates

$$E = E_{pnt} + E_{dist} + E_{part}$$

Classifiers Template Part
distance Relations

Fitting template for structure inference

• Input

Initialization

- Part labels and orientations
 - Point segmentation
- Pose optimization
 - Additional part candidates

Opt: Clustering

$$E = \boxed{E_{\text{pnt}}} + E_{\text{dist}} + E_{\text{part}}$$

Fitting template for structure inference

- Input
- Initialization

Part labels and orientations

- Point segmentation
- Pose optimization
 - Additional part candidates

Opt: CRF (at segment level)

$$E = E_{\rm pnt} + E_{\rm dist} + E_{\rm part}$$

Fitting template for structure inference

- Input
- Initialization
- Part labels and orientations
- Point segmentation
- Pose optimization
 - Additional part candidates

Opt: CRF (at point level)

$$E = E_{\rm pnt} + E_{\rm dist} + E_{\rm part}$$

Fitting template for structure inference

- Input
- Initialization
- Part labels and orientations
 - Point segmentation
- Pose optimization
 - Additional part candidates

Opt: Gradient Descent

$$E = E_{\rm pnt} + E_{\rm dist} + E_{\rm part}$$

Fitting template for structure inference

- Input
- Initialization
- Part labels and orientations
 - Point segmentation
- Pose optimization
 - Additional part candidates

Opt: greedy sampling

$$E = E_{\rm pnt} + E_{\rm dist} + E_{\rm part}$$

Fitting template for structure inference

- Input
- Initialization
- Part labels and orientations
 - Point segmentation
- Pose optimization
 - Additional part candidates

Final Result:

Shape Completion

Shape Completion

Shape Completion

Hierarchical Templates

Use probabilistic grammars for hierarchies

Scene Completion

Evaluation

Comparisons

	Accuracy	Completeness
Shape Completion		
Ours	85%	78%
[Podolak'06] (symmetry)	99%	69%
[Shen'12] (closest parts)	62%	60%
Scene Completion		
Ours	62%	82%
[Gupta'15] (closest objec	t) 57%	52%

Exploration & Synthesis

Using part-based templates for synthesis

- Active learning for labeling [Wang'12]
 - Dataset: 1090 meshes, 2-5 parts per mesh, watertight manifold

- Active learning for labeling [Wang'12]
 - Dataset: 1090 meshes, 2-5 parts per mesh, watertight manifold

- Active learning for labeling [Wang'12]
 - Dataset: 1090 meshes, 2-5 parts per mesh, watertight manifold
- Manual annotation [Chen'09]
 - Dataset: 380 meshes, 19 parts per mesh, watertight manifold

- Active learning for labeling [Wa
 - Dataset: 1090 meshes, 2-5 parts
- Manual annotation [Chen'09]
 - Dataset: 380 meshes, 19 parts pe

- Active learning for labeling [Wang'12]
 - Dataset: 1090 meshes, 2-5 parts per mesh, watertight manifold
- Manual annotation [Chen'09]
 - Dataset: 380 meshes, 19 parts per mesh, watertight manifold

Where do we get segmented shapes?

- Active learning for labeling [Wang'12]
 - Dataset: 1090 mesh
- Manual annotation

Verify all

results!

- Dataset: 380 meshe

Instruction: Please pick up the images whose back is NOT highlighted correctly. Please use the example images as a reference. Remember to click on the bad images! Notice images without back and at the same time without any part highlighted should be treated as good images and you should NOT click on them. Images with back but at the same time without any part highlighted should be treated as bad images and you should click on them.

- Active learning for labeling [Wang'12]
 - Dataset: 1090 meshes, 2-5 parts per mesh, watertight manifold
- Manual annotation [Chen'09]
 - Dataset: 380 meshes, 19 parts per mesh, watertight manifold

Our Approach

Verify algorithmic predictions

Our Approach

Verify algorithmic predictions

Which models to label & which labels to verify?

several shapes

several shapes

label propagation

$T = t_{\text{annotation}}(\mathcal{A}) + t_{\text{verification}}(\mathcal{V}, \{q\})$

$T = t_{\text{annotation}}(\mathcal{A}) + t_{\text{verification}}(\mathcal{V}, \{q\})$

 $\tau_{\rm annotation} \approx 30 s/{\rm label}$

$T = t_{\text{annotation}}(\mathcal{A}) + t_{\text{verification}}(\mathcal{V}, \{q\})$

 $\tau_{\rm annotation} \approx 30 s/{\rm label}$

 $\tau_{\rm identification} \approx 0.3 s / {\rm label}$ $\tau_{\rm click} \approx 1.1 s / {\rm label}$

 $N_{\rm good}$

T

 $N_{\rm good}$

T

$\{q\}$ is not known before selecting ${\cal A}$ and ${\cal V}$

 $N_{\rm good}$

T

 $\{q\}$ is not known before selecting \mathcal{A} and \mathcal{V} Estimate probability and use expectation

 $N_{\rm good}$

T

 $\{q\}$ is not known before selecting \mathcal{A} and \mathcal{V} Estimate probability and use expectation

$$\operatorname*{argmin}_{\mathcal{A},\mathcal{V}} rac{\mathbb{E}[N_{ extsf{good}}]}{\mathbb{E}[T]}$$

Select Annotation Set: Beam Search

Select Verification Set: Greedy Search

Results

Results

Dataset

- 30,000 shapes
- 90,000 parts

Time Saving

Comparison on manifold shapes

- Chen'09 (manual) : about x12 more expensive
- Wang'12 (active) : about x2 more expensive
Time Saving

Comparison on manifold shapes

- Chen'09 (manual) : about x12 more expensive
- Wang'12 (active) : about x2 more expensive

Summary

Large collections of 3D models are available (and more are coming!)

- 3D modeling repositories
- 3D printing datasets
- Kinect scans
- Laser scans of cities,
- Online shopping catalogues
- Medical imaging data
- Protein databases

Summary

Large collections of 3D models are available (and more are coming!)

Part-based models are powerful, but need data

Summary

Large collections of 3D models are available (and more are coming!)

Part-based models are powerful, but need data

Getting verified results might save you timeif you verify automatic labels

Future Work

Beyond geometry

- Understand <u>function</u>
- Consider physical <u>materials</u> that make up objects
- Model <u>mechanics</u> and articulations

Future Work

Beyond geometry

- ➡ Understand <u>function</u>
- Consider physical <u>materials</u> that make up objects
- Model mechanics and articulations

Future Work

Better structural models

• Geometry processing layers in deep neural networks

