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Discover repeating patterns 
and represent them 

with a concise model
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Training 
⋯

A collection of 
3D models with 

part annotations 

Probabilistic shape model 
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Part-based Template

Template is learned from segmented objects

Pairwise part relationsEach part is a local coordinate system
Represent all other parts in this coordinate system
Probabilistic distribution (e.g., Gaussian) 
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Structure Inference
Fitting template for structure inference 
• Input 
• Initialization 
•Part labels and orientations 
•Point segmentation 
➡ Pose optimization 
•Additional part candidates

E = Epnt + Edist + Epart

Opt: Gradient Descent



Structure Inference
Fitting template for structure inference 
• Input 
• Initialization 
•Part labels and orientations 
•Point segmentation 
•Pose optimization 
➡ Additional part candidates

E = Epnt + Edist + Epart

Opt: greedy sampling



Structure Inference
Fitting template for structure inference 
• Input 
• Initialization 
•Part labels and orientations 
•Point segmentation 
•Pose optimization 
•Additional part candidates

Final Result: 
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Hierarchical Templates

Use probabilistic grammars for hierarchies
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Comparisons
                                        Accuracy      Completeness 

Shape Completion 
Ours                                    85%                   78% 
[Podolak’06] (symmetry)      99%                  69% 
[Shen’12] (closest parts)       62%                  60% 

Scene Completion 
Ours                                      62%                 82% 
[Gupta’15] (closest object)    57%                  52%                          



Exploration & Synthesis
Using part-based templates for synthesis 



Applications
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not every model is verified 
by a human

requires an expert
does not directly optimize efficiency

(active learning objective: train the best classifier)



Training Data

Efficiency

Accuracy

Wang et al 12

Where do we get segmented shapes?  
•Active learning for labeling [Wang’12] 

- Dataset: 1090 meshes, 2-5 parts per mesh, watertight manifold 

•Manual annotation [Chen’09] 
- Dataset: 380 meshes, 19 parts per mesh, watertight manifold

Manual Annotation



Training Data

Efficiency

Accuracy

Wang et al 12

Where do we get segmented shapes?  
•Active learning for labeling [Wang’12] 

- Dataset: 1090 meshes, 2-5 parts per mesh, watertight manifold 

•Manual annotation [Chen’09] 
- Dataset: 380 meshes, 19 parts per mesh, watertight manifol

Manual Annotation



Training Data

Efficiency

Accuracy

Wang et al 12

Where do we get segmented shapes?  
•Active learning for labeling [Wang’12] 

- Dataset: 1090 meshes, 2-5 parts per mesh, watertight manifold 

•Manual annotation [Chen’09] 
- Dataset: 380 meshes, 19 parts per mesh, watertight manifold

Manual Annotation

Verify all 
results!



Training Data

Efficiency

Accuracy

Wang et al 12

Where do we get segmented shapes?  
•Active learning for labeling [Wang’12] 

- Dataset: 1090 meshes, 2-5 parts per mesh, watertight manifold 

•Manual annotation [Chen’09] 
- Dataset: 380 meshes, 19 parts per mesh, watertight manifold

Manual Annotation

Verify all 
results!



Training Data

Efficiency

Accuracy

Wang et al 12

Where do we get segmented shapes?  
•Active learning for labeling [Wang’12] 

- Dataset: 1090 meshes, 2-5 parts per mesh, watertight manifold 

•Manual annotation [Chen’09] 
- Dataset: 380 meshes, 19 parts per mesh, watertight manifold

Manual Annotation

Algorithm Prediction



Our Approach
Verify algorithmic predictions



Our Approach
Verify algorithmic predictions

Which models to label & which labels to verify?
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Utility Function

is not known before selecting     and 

Estimate probability and use expectation

Algorithm behavior
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Utility Function

Select Annotation Set: Beam Search

Select Verification Set: Greedy Search



Results
Dataset 
•30,000 shapes 
•90,000 parts
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Results
Dataset 
•30,000 shapes 
•90,000 parts
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Comparison on manifold shapes 
•Chen’09 (manual) : about x12 more expensive 
•Wang’12 (active) : about x2 more expensive 

Comparison on data “in the wild”
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Summary
Large collections of 3D models are available  
(and more are coming!) 
•3D modeling repositories 
•3D printing datasets 
•Kinect scans 
•Laser scans of cities,  
•Online shopping catalogues 
•Medical imaging data 
•Protein databases 
•… 
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Summary
Large collections of 3D models are available  
(and more are coming!) 

Part-based models are powerful, but need data 

Getting verified results might save you time  
• if you verify automatic labels 
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Future Work

Better structural models 
•Geometry processing layers in deep neural networks

unstructured  
geometry:  

    <x1, y1, z1>, …

NN Re-synthesis Rendering

Global 
Illumination
(optional)

Correspondence 
& Parameterization Geometric 

Modeling

Regular input


