Data-driven

Geometry Processing

Vladimir (Vova) Kim
Adobe Research

Modeling 3D Assets

Modeling Garments

Direct 3D Edit

Physics-driven Pattern Adjustment for Direct 3D Garment Editing. Aric Bartle, Alla Sheffer, Vladimir G. Kim, Danny Kaufman, Nicholas Vining, Floraine Berthouzoz SIGGRAPH 2016

Modeling Body Parts

Modeling Body Parts

Customized Software to Optimize Circumferential Pharyngoesophageal Free Flap Reconstruction. Oleksandr Butskiy, Vladimir G. Kim, Brent Chang, Donald Anderson, and Eitan Prisman. Laryngoscope, 2017

Modeling is Difficult

Why Data-Driven?

Find desired model in existing dataset

Exploring Collections of 3D Models using Fuzzy Correspondences. V. Kim, W. Li, N. Mitra, Š. Chaudhuri, S. DiVerdi, T. Funkhouser, SIGG'RAPH 2012

Why Data-Driven?

Create new model from existing parts

Why Data-Driven?

Understand context and variations

ShapeSynth: Parameterizing Model Collections for Coupled Shape Exploration and Synthesis. M. Averkiou, V. Kim, Y. Zheng, and N. Mitra, Eurographics 2014

What is the right "Data"

3D shapes
Categories
Parts
Part Labels

Machine Learning Pipeline

Training

Get Data

Label Data

Train Model

- - - - - - - - - - - - - - - - - - -

Testing

- Label input

Apply Model

- Sample from model -

Example: Shape Completion

Use trained model to complete a partial scan

Data-Driven Structural Priors for Shape Completion. Minhyuk Sung, Vladimir G. Kim, Roland Angst, and Leonidas Guibas SIGGRAPH Asia 2015

Example: Shape Completion

Use trained model to complete a partial scan

Data-Driven Structural Priors for Shape Completion. Minhyuk Sung, Vladimir G. Kim, Roland Angst, and Leonidas Guibas SIGGRAPH Asia 2015

Example: Shape Completion

Use trained model to complete a partial scan

Labeled Input
Conditional Sample
Data-Driven Structural Priors for Shape Completion. Minhyuk Sung, Vladimir G. Kim, Roland Angst, and Leonidas Guibas SIGGRAPH Asia 2015

Machine Learning Pipeline

Training

Get Data

Label Data

Train Mode

Testing

Label input

Apply Model
Sample from mode

Part Labeling

Somebody provided data for you

Part Labeling

Somebody provided data for you

Human labeling

- Experts (aka "graduate students")
- Crowd workers

Part Labeling

Somebody provided data for you

Human labeling

- Experts (aka "graduate students")
- Crowd workers

ML algorithms

Part Labeling

Somebody provided data for you

Human labeling

- Experts (aka "graduate students")
- Crowd workers

ML algorithms

Some combination of above

Training Data

Where do we get segmented shapes?

- Active learning for labeling [Wang'12]
- Dataset: 1090 meshes, 2-5 parts per mesh, watertight manifold

Training Data

Where do we get segmented shapes?

- Active learning for labeling [Wang'12]
- Dataset: 1090 meshes, 2-5 parts per mesh, watertight manifold

by a human
does not directly optimize efficiency (active learning objective: train the best classifier)

Training Data

Where do we get segmented shapes?

- Active learning for labeling [Wang'12]
- Dataset: 1090 meshes, 2-5 parts per mesh, watertight manifold
- Manual annotation [Chen'09]
- Dataset: 380 meshes, 19 parts per mesh, watertight manifold

Training Data

Where do we get segmented shapes?

- Active learning for labeling [W_
- Dataset: 1090 meshes, 2-5 parts
- Manual annotation [Chen’09]
- Dataset: 380 meshes, 19 parts pe

Training Data

Where do we get segmented shapes?

- Active learning for labeling [Wang'12]
- Dataset: 1090 meshes, 2-5 parts per mesh, watertight manifold
- Manual annotation [Chen'09]
- Dataset: 380 meshes, 19 parts per mesh, watertight manifold

Verify all

Training Data

Where do we get segmented shapes?

- Active learning for labeling [Wang'12]
- Dataset: 1090 mesh
- Manual annotation
- Dataset: 380 meshe

Verify all

 results!

Training Data

Where do we get segmented shapes?

- Active learning for labeling [Wang'12]
- Dataset: 1090 meshes, 2-5 parts per mesh, watertight manifold
- Manual annotation [Chen'09]
- Dataset: 380 meshes, 19 parts per mesh, watertight manifold

Our Approach

Verify algorithmic predictions

Label Propagate

Verify

A Scalable Active Framework for Region Annotation in 3D Shape Collections Li Yi, Vladimir G. Kim, Duygu Ceylan, I-Chao Shen, Mengyan Yan, Hao Su, Cewu Lu, Qixing Huang, Alla Sheffer, and Leonidas Guibas SIGGRAPH Asia 2016

Our Approach

Verify algorithmic predictions

Which models to label \& which labels to verify?

Utility Function

several shapes

Utility Function

several shapes
annotation set \mathcal{A}

Utility Function

label propagation
annotation set \mathcal{A}

Utility Function

annotation set \mathcal{A}

Utility Function

annotation set \mathcal{A}

Utility Function

Utility Function

$T=t_{\text {annotation }}(\mathcal{A})+t_{\text {verification }}(\mathcal{V},\{q\})$

Utility Function

$T=t_{\text {annotation }}(\mathcal{A})+t_{\text {verification }}(\mathcal{V},\{q\})$

$\tau_{\text {annotation }} \approx 30 s /$ label

Utility Function

$T=t_{\text {annotation }}(\mathcal{A})+t_{\text {verification }}(\mathcal{V},\{q\})$

$\tau_{\text {annotation }} \approx 30 s /$ label

$\tau_{\text {identification }} \approx 0.3 s /$ label
$\tau_{\text {click }} \approx 1.1 s /$ label

Utility Function

$N_{\text {good }}$
T

Utility Function

$N_{\text {good }}$

T

$\{q\}$ is not known before selecting \mathcal{A} and \mathcal{V}

Utility Function

$N_{\text {good }}$
T
$\{q\}$ is not known before selecting \mathcal{A} and \mathcal{V}
Estimate probability and use expectation

Utility Function

$N_{\text {good }}$

T

$\{q\}$ is not known before selecting \mathcal{A} and \mathcal{V}
Estimate probability and use expectation

$$
\frac{\mathbb{E}\left[N_{\text {good }}\right]}{\mathbb{E}[T]}
$$

Utility Function

$N_{\text {good }}$

T

$\{q\}$ is not known before selecting \mathcal{A} and \mathcal{V}
Estimate probability and use expectation

$$
\frac{\mathbb{E}\left[N_{\text {good }}\right]}{\mathbb{E}[T]}
$$

Utility Function

$$
\underset{\mathcal{A}, \mathcal{V}}{\operatorname{argmin}} \frac{\mathbb{E}\left[N_{\text {good }}\right]}{\mathbb{E}[T]}
$$

Utility Function

$$
\underset{\mathcal{A}, \mathcal{V}}{\operatorname{argmin}} \frac{\mathbb{E}\left[N_{\text {good }}\right]}{\mathbb{E}[T]}
$$

Select Annotation Set: Beam Search

Select Verification Set: Greedy Search

Results

Dataset

- 30,000 shapes
-90,000 parts
car (7496)

Results

Dataset

- 30,000 shapes
- 90,000 parts

motorbikes

Time Saving

Comparison on manifold shapes

- Chen'09 (manual) : about x12 more expensive
- Wang'12 (active) : about x2 more expensive

Time Saving

Comparison on manifold shapes

- Chen'09 (manual) : about x12 more expensive
-Wang'12 (active) : about x2 more expensive
Comparison on data "in the wild"

Impact of Data

Training

Get Data

Testing

Impact of Data

[1] PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation. Hao Su, Charles Qi, Kaichun Mo, Leonidas Guibas. CVPR 2017
[2] SyncSpecCNN: Synchronized Spectral CNN for 3D Shape Segmentation. Li Yi, Hao Su, Xingwen Guo, Leonidas Guibas. CVPR 2017
[3] 3D Shape Segmentation with Projective Convolutional Networks. Evangelos Kalogerakis, Melinos Averkiou, Subhransu Maji and Siddhartha Chaudhuri. CVPR 2017

Are we done with labeling?

Smaller than analogues image datasets $\approx 30,000$ vs $\approx 300,000$ segmentations

Geometry varies in resolution (we only capture

Are we done with labeling?

Smaller than analogues image datasets $\approx 30,000$ vs $\approx 300,000$ segmentations

Geometry varies in resolution (we only capture

Efficiency

Part Labeling

Somebody provided data for you

Human labeling

- Experts (aka "graduate students")
- Crowd workers

ML algorithms

Some combination of above

Somebody provided data for you

v 图 2008+Bugatti+Veyron+16
v : < skp118>
: <base_b>
:: <body_a>
: <brakelig10>
: < brakelig12>
: < brakelig13>
: <bumper_f05>
: <bumper_f18>
: <bumper_f21>
:: <bumper_r26>
: \lldoor_lef10>
: \lldoor_rig14>
: <engine_a>
:: <engine_b>
: <exhaust_08>
: <exhaust_10>
: <fender_f01>
: <fender_f05>
: <hood_c01>
: <sidemirr01>
: \llsidemirrO2>
: <sidemirrO3>
: <sidemirr04>
:: <sidemirr07>
: <sidemirror>
: <skirt_le22>
: <skirt_ri22>
: <trunk_a>
-1 surindan f 0 ?

Machine Learning Pipeline

Training

Get Data

Label Data

Label input
Sample from model

Challenge

Input scene graphs are messy and inconsistent

Scene Graphs

Input data is messy and inconsistent

Our Approach

Training (robust to inconsistencies)

Get Data

Train Model (Part-Based Analysis, Mesh
Segmentaiton)

Testing

Apply Model

(Mesh
Segmentation)

Our Approach

Training (robust to inconsistencies)

Train Model
 (Part-Based Analysis, Mesh Segmentaiton)

Learning Hierarchical Shape Segmentation and Labeling from Online Repositories. Li Yi, Leonidas Guibas, Aaron Hertzmann, Vladimir G. Kim, Hao Su, and Ersin Yumer SIGGRAPH 2017

Objective Function

$$
E(\theta, p, c, M)=\lambda_{c} E_{c}+\lambda_{s} E_{s}+\lambda_{d} E_{d}+\lambda_{m} E_{m}-H
$$

Objective Function

$E(\theta, p, c, M)=\lambda_{c} E_{c}+\lambda_{s} E_{s}+\lambda_{d} E_{d}+\lambda_{m} E_{m}-H$
Embedding of every node in a scene graph

Objective Function

$$
E(\theta, p, c, M)=\lambda_{c} E_{c}+\lambda_{s} E_{s}+\lambda_{d} E_{d}+\lambda_{m} E_{m}-H
$$

Clustering: labels

Objective Function

$$
E(\theta, \underline{p, c}, M)=\lambda_{c} E_{c}+\lambda_{s} E_{s}+\lambda_{d} E_{d}+\lambda_{m} E_{m}-H
$$

Clustering: labels, centroids

Objective Function

$E(\theta, p, c, M)=\lambda_{c} E_{c}+\lambda_{s} E_{s}+\lambda_{d} E_{d}+\lambda_{m} E_{m}-H$

Objective Function

$$
\begin{gathered}
E(\theta, p, c, M)=\lambda_{c} E_{c}+\lambda_{s} E_{s}+\lambda_{d} E_{d}+\lambda_{m} E_{m}-H \\
E_{c}=\sum_{\text {parts centroids }} \sum_{\text {part,centroid } \| f(\text { part })-\text { centroid } \|}
\end{gathered}
$$

Objective Function

Objective Function

$$
\begin{aligned}
& E(\theta, p, c, M)=\lambda_{c} E_{c}+\lambda_{s} E_{s}+\lambda_{d} E_{d}+\lambda_{m} E_{m}-H \\
& E_{s}=\sum_{\text {part } 1 \text { part 2 }} \sum_{i} \| f(\text { part 1) }-f(\text { part 2)\| iff almost identical } \\
& \text { or tags are the same }
\end{aligned}
$$

Objective Function

$$
\begin{aligned}
& E(\theta, p, c, M)=\lambda_{c} E_{c}+\lambda_{s} E_{s}+\lambda_{d} E_{d}+\lambda_{m} E_{m}-H \\
& E_{s}=\sum_{\text {part }} \sum_{\text {part 2 }} \frac{\| f(\text { part 1)-f(part 2)\| iff almost identical }}{} \text { or tags are the same }
\end{aligned}
$$

Objective Function

$$
\begin{aligned}
& E(\theta, p, c, M)=\lambda_{c} E_{c}+\lambda_{s} E_{s}+\lambda_{d} E_{d}+\lambda_{m} E_{m}-H \\
& E_{d}=\sum_{\text {part 1 part 2 }} \max (0, \sigma-\| f(\text { part 1)-f(part 2)\|} \\
& \text { iff on the same shape } \\
& \text { but tags are different }
\end{aligned}
$$

Objective Function

Objective Function

$$
E(\theta, p, c, M)=\lambda_{c} E_{c}+\lambda_{s} E_{s}+\lambda_{d} E_{d}+\lambda_{m} E_{m}-H
$$

Parent-child relationships \& regularization

EM optimization:
E step: optimize for p.
M step: optimize for θ, c, M

Part-based Analysis Results

Hierarchical Mesh Segmentation

What if part was not in a separate node?

- NN to predict per-face labels (use part-base analysis tags)
- Preserve parent-child relationships
- MRF to get smooth boundaries
- Use connected components if available

Results

Results

Evaluation

Clustering (Normalized Mutual Information ≤ 1)

- Chance $=0.034$
- Features $=0.348$
- Ours $=0.573$

Part Tagging (accuracy ≤ 1)

- Chance $=0.139$
- Features $=0.823$
- Ours $=0.910$

Crowd vs Ambient Data

Crowd vs Ambient Data

Crowd vs Ambient Data

Not all ambient data is equally useful

Use Case

Fe

Project Felix

Summary

Data is as important as algorithms

Make data collection easier

- Use all available meta-data
- Crowd-source as necessary
- Automatically propagate and then manually verify labels

Future Work

Training

Get Data

Label Data

Train Model

T -4

Deep Learning for Geometry

Geometry processing as neural network layers

Deep Learning for Geometry

Geometry processing as neural network layers

Convolutional Neural Networks on Surfaces via Seamless Toric Covers. Haggai Maron, Meirav Galun, Noam Aigerman, Miri Trope, Nadav Dym, Ersin Yumer, Vladimir G. Kim, and Yaron Lipman. SIGGRAPH 2017

Deep Learning for Geometry

Geometry processing as neural network layers

- Make input more regular:

Parameterization

(translation-invariant, seamless)
unstructure geometry $\left\langle x_{1}, y_{1}, z_{1}\right\rangle$

Tutte

GIM

Seamless

Ours

Convolutional iveural ive works on surraces via seanmess ionic Lovers. naggai iviaron, Meirav Galun, Noam Aigerman, Miri Trope, Nadav Dym, Ersin Yumer, Vladimir G. Kim, and

Deep Learning for Geometry

Geometry processing as neural network layers

- Make input more regular: Parameterization
- Make input more consistent:

Correspondence

- Learn how to parameterize and
optimize for consistency
Parametric Layer
Regular input

Convolutional Neural Networks on Surfaces via Seamless Toric Covers. Haggai Maron, Meirav Galun, Noam Aigerman, Miri Trope, Nadav Dym, Ersin Yumer, Vladimir G. Kim, and Yaron Lipman. SIGGRAPH 2017

Deep Learning for Geometry

Geometry processing as neural network layers

- Generative Models Geometric Modeling
- Loss Function

Shape Metric Spaces

Regular input

NN

Re-synthesis
Rendering

Deep Learning for Geometry

Geometry processing as neural network layers

Acknowledgements

Two main papers:

Li Yi

Applications:

Future Work:

Other contributors (alphabetical)

Noam Aigerman
Roland Angst
Floraine Berthouzoz
Duygu Ceylan
Stephen DiVerdi
Nadav Dym
Thomas Funkhouser
Leonidas Guibas

Meirav Galun
Aaron Hertzmann
Qixing Huang
Danny Kaufman
Yaron Lipman
Wilmot Li
Cewu Lu
Niloy J. Mitra

Hao Su
Alla Sheffer
I-Chao Shen
Miri Trope
Nicholas Vining
Mengyan Yan

Ersin Yumer

Acknowledgements

Two main papers:

Applications:

Future Work:

Other contributors (alphabetical) Interns @ Adobe

Noam Aigerman
Roland Angst
Floraine Berthouzoz
Duygu Ceylan
Stephen DiVerdi
Nadav Dym
Thomas Funkhouser
Leonidas Guibas

Meirav Galun
Aaron Hertzmann
Qixing Huang
Danny Kaufman
Yaron Lipman
Wilmot Li
Cewu Lu
Niloy J. Mitra

Hao Su
Alla Sheffer
I-Chao Shen
Miri Trope
Nicholas Vining
Mengyan Yan

Ersin Yumer
Researchers @ Adobe

