Neural Shape Processing

Adobe Research, Seattle

Motivation

3D modeling of **high-quality** content that is

- Diverse and unique
- Detailed

Artist-generated Model
[Iron Throne by Tornado Studio]

Motivation

3D modeling of **high-quality** content that is

Diverse and unique – interpolation of training data

Detailed -- coarse

Challenges with Neural Generation:

Poursaeed et al., ECCV 2020

Artist-generated Model
[Iron Throne by Tornado Studio]

Neural Shape Processing

Modify existing shapes instead of generating from scratch

Shape Retrieval

Most prior techniques focus on finding geometrically-similar shape

Deformation-Aware Shape Retrieval

Retrieve shape that can be deformed to the query

Target

Most similar retrieval

Deformation-aware retrieval

Deformation-Aware Shape Retrieval

Retrieve shape that can be deformed to the query

Structure-aware Neural Deformation

Parameterize deformations based on part structure

Joint Retrieval and Deformation Training

Joint Retrieval and Deformation Training

Joint Retrieval and Deformation Training

Deform top K sources to the target each part has a learn-able code

Example Retrieval and Deformation from Scans

Example Retrieval and Deformation from Scans

Example Retrieval and Deformation from an Image

Example Retrieval and Deformation from an Image

Connected components instead of true segments

Neural Shape Processing

Modify existing shapes instead of generating from scratch

Retrieval

Deformation

Detailization

Goal: Detail-Preserving Shape Deformation

Deform the source to match the target while preserving the details

Target Shape

Deformed Source Mesh

Limitations of Direct Neural Deformation

Target

Source

$$f_{\theta}: z_{\text{source}} \times z_{\text{target}} \times \mathbb{R}^3 \to \mathbb{R}^3$$

Groueix et al. CGF 2019

Neural Cage-based Deformation

Step 1: Learn to predict cage parameters

$$f_{\theta}: z_{\text{source}} \times z_{\text{target}} \to \mathcal{C}_{\text{init}} \times \mathcal{C}_{\text{deformed}}$$

Predict cage parameters with a neural network

Neural Cage-based Deformation

Step 1: Learn to predict cage parameters

$$f_{\theta}: z_{\text{source}} \times z_{\text{target}} \to \mathcal{C}_{\text{init}} \times \mathcal{C}_{\text{deformed}}$$

• Step 2: Use classical cage-based deformation technique

 $CBD(\mathcal{C}_{\mathrm{init}}, \mathcal{C}_{\mathrm{deformed}}) : \mathbb{R}^3 \to \mathbb{R}^3$

Deform the source mesh via a differentiable cage-based deformation layer

Init Cage

Deformed Cage

Our Output

Application: Stock Amplification

Create shape variations by picking random source/target pairs

Application: Deformation Transfer

Transfer a pose from a target to the source mesh

Application: Deformation Transfer

Transfer a pose from a target to the source mesh

Novel Targets

- Hard to learn cages for complex shapes
- Cage-based deformation is not mesh-specific it just maps the volume

- Hard to learn cages for complex shapes
- Cage-based deformation is not mesh-specific it just maps the volume
- Reminder: learning a map directly is prone to noise hard to preserve details

$$f_{\theta}: z_{\text{source}} \times z_{\text{target}} \times \mathbb{R}^3 \to \mathbb{R}^3$$

- Hard to learn cages for complex shapes
- Cage-based deformation is not mesh-specific it just maps the volume
- Reminder: learning a map directly is prone to noise hard to preserve details

$$f_{\theta}: z_{\text{source}} \times z_{\text{target}} \times \mathbb{R}^3 \to \mathbb{R}^3 \xrightarrow{\text{Predict a matrix}} 3 \times 3$$

- Hard to learn cages for complex shapes
- Cage-based deformation is not mesh-specific it just maps the volume
- Reminder: learning a map directly is prone to noise hard to preserve details

$$f_{ heta}: z_{ ext{source}} imes z_{ ext{target}} imes \mathbb{R}^3 o \mathbb{R}^3 imes \mathbb{R}^{3 imes 3}$$

$$\begin{array}{c} \downarrow \pi \\ \downarrow \pi \\ \mathbb{R}^{3 imes 2} \end{array}$$
Project to Jacobian

- Hard to learn cages for complex shapes
- Cage-based deformation is not mesh-specific it just maps the volume
- Reminder: learning a map directly is prone to noise hard to preserve details

Neural Jacobian Fields Pipeline

Training Neural Jacobian Fields

Application: Cageless Deformation Transfer

Only trained on humans, no extra input was needed for Big Buck Bunny

Partial Registration

Network Output

Morphing

Network Output

Source Mesh

Target Shape

Application: Learn to AutoUV

Supervised on SLIM parameterizations

Application: Learn Collision-based Deformation

Using setup of Romero et al. 2021

Neural Shape Processing

Retrieval

Modify existing shapes instead of generating from scratch

Detailization

Deformation

Goal: Detail Transfer

Our Approach

- Decimate high-res mesh with target details to create training data
- Learn local up-sampling filters

Maintaining Bijective Mapping

Maintaining Bijective Mapping

Record barycentric coordinates during subdivision

Maintaining Bijective Mapping

- Record barycentric coordinates during subdivision
- Match via parameterization during decimation

Triangle Split (mid-edge)

Triangle Split (mid-edge)

- Triangle Split (mid-edge)
- Set vertex positions via neural network

Architecture

- Half-flap: directed edges and two adjacent triangles
 - Fixed Dimensions
 - Canonical Ordering

Architecture

- Half-flap: directed edges and two adjacent triangles
- Represent (differential) geometry in flap's local coordinate frame

Pipeline

Initialize per-vertex features

Pipeline

Initialize per-vertex features

Iteratively update features and geometry at old & new vertices

Results: Neural Detail Transfer

Results: Neural Detail Upsampling

Neural subdivision trained on a single example

Training Example

Results: Neural Detail Upsampling

Neural subdivision trained on a single example

Training Example

Detail Transfer and Synthesis

Hallucinating details with complex topology

Input Target Style

Detail Transfer and Synthesis

Hallucinating details with complex topology

Input Target Style

Output

Results: Vases

Results: Chairs

Results: Tables

Results: Airplanes

Results: Motorcycles

cc70b9c8d4faf79e5a468146abbb198 cca975f4a6a4d9e9614871b18a2b1957 ccc4b5366a6dc7c4cffab2c8f8bf5951 ccc93857d3f5c9950504d983def56c ccd5e24c9b96febd5208aab875b932bc ccea874d869ff9a579368d1198f406e7 ccf29f02bfc1ba51a9ebe4a5a40bc728 ccfc857f35c138ede785b88cc9024b2a

Key Takeaways

Retrieval and Deformation should be trained jointly

- Neural Deformation
 - MLP for entire map is too flexible (shape gets distorted)
 - Neural Cage-based deformation is too constrained (OK in some cases)
 - Neural Jacobian Fields (flexible and low-distortion)
- Neural Detailization
 - Neural Subdivision: effective for meshes, but input has to have the right topology
 - DÉCOR-GAN: voxel grids are good for learning details, classical image-based ideas are directly applicable

Future Work

- Geometry learning for production-quality assets
 - Diverse representation: different level of details and tessellation quality
 - Diverse content: few-shot learning
 - Model appearance: geometry, materials, and environment
- Neural Shape Processing: re-use and re-purpose the existing assets

Made with Adobe Stager

Collaborators

Project Leads

- Mikaela Uy, Stanford, Adobe Intern (Joint Learning of 3D Shape Retrieval and Deformation, CVPR 2021)
- Thibault Groueix, ParisTech, Adobe (Unsupervised cycle-consistent deformation for shape matching, SGP 2019)
- Yifan Wang, ETH Zurich, Adobe Intern (Neural Cages for Detail-Preserving 3D Deformations, CVPR 2020, oral)
- Noam Aigerman, Adobe (Neural Jacobian Fields: Learning Intrinsic Mappings of Arbitrary Meshes, SIGGRAPH 2022)
- Hsueh-Ti Liu, U. Toronto, Adobe Intern (Neural Subdivision, SIGGRAPH 2020)
- Zhiqin Chen, SFU, Adobe Intern (Décor-GAN, CVPR 2021, oral)

Collaborators

- Siddhartha Chaudhuri, Matt Fisher, Bryan Russell, Alec Jacobson, Minhyuk Sung Adobe Research
- Leonidas Guibas Stanford University
- Olga Sorkine ETH Zurich
- Mathieu Aubry Ecole des Ponts ParisTech
- Richard Zhang Simon Fraser University