Neural Shape Processing

Vladimir (Vova) Kim
Adobe Research, Seattle




Motivation

3D modeling of high-quality content that is
- Diverse and unique
- Detailed

Artist-generated Model
[Iron Throne by Tornado Studio]




Motivation

Challenges with Neural Generation:

3D modeling of high-quality content that is

- Diverse and unique - interpolation of training data \

= Detailed -- coarse

Poursaeed et al,, ECCV 2020

Artist-generated Model
[Iron Throne by Tornado Studio]




Neural Shape Processing

Modify existing shapes instead of generating from scratch
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Shape Retrieval

Most prior techniques focus on finding geometrically-similar shape
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Deformation-Aware Shape Retrieval

Retrieve shape that can be deformed to the query
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Deformation-Aware Shape Retrieval

Retrieve shape that can be deformed to the query

Target Most similar retrieval Deformation-aware retrieval Deformed



Structure-aware Neural Deformation

Parameterize deformations based on part structure

(54 parameters, (42 parameters, (42 parameters, (36 parameters,
24 constraints) 18 constraints) 24 constraints) 27 constraints)
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Joint Retrieval and Deformation Training
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Joint Retrieval and Deformation Training

Soft Retrieval Py

Deformation-

= Aware =

Retrieval

4

Heterogeneous Database

I 1 F
2 1 | .
f all 4

R

Target

Scored based on distance



Joint Retrieval and Deformation Training
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Directly Optimized (Autodecoded)

Deform top K sources to the target
each part has a learn-able code
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Example Retrieval and Deformation from Scans
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Example Retrieval and Deformation from Scans

Input Retrieved Deformed Input Retrieved Deformed



Example Retrieval and Deformation from an Image
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Example Retrieval and Deformation from an Image
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Comparisons

Deformation-aware Retrieval
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Comparisons

Deformation-aware Retrieval Pre-sample lots of shapes
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Comparisons

Deformation-aware Retrieval Pre-sample lots of shapes ~ Joint Retrieval and Deformation
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Comparisons

Deformation-aware Retrieval Pre-sample lots of shapes ~ Joint Retrieval and Deformation
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Connected components instead of true segments
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Neural Shape Processing

Modify existing shapes instead of generating from scratch

Deformation



Goal: Detail-Preserving Shape Deformation

Deform the source to match the target while preserving the details

Source Mesh Target Shape Deformed Source Mesh



Limitations of Direct Neural Deformation

A

Source
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Target

Groueix et al. CGF 2019

Details are not preserved:

- too many degrees of freedom

- regularization energy fights
reconstruction



Neural Cage-based Deformation

= Step 1: Learn to predict cage parameters

f@ . Zsource X Ztarget —7 Cinit X Cdeformed

Predict cage parameters with a neural network

Source Init Cage Deformed Cage Our Output



Neural Cage-based Deformation
= Step 1: Learn to predict cage parameters

fﬁ . Zsource X Ztarget —7 Cinit X Cdeformed

= Step 2: Use classical cage-based deformation technique

Deform the source mesh via a differentiable cage-based deformation layer
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Application: Stock Amplification

Create shape variations by picking random source/target pairs

Targets

Source



Application: Deformation Transfer

Transfer a pose from a target to the source mesh

Novel Targets

Novel Source




Application: Deformation Transfer

Transfer a pose from a target to the source mesh

Novel Targets

Novel Source




Cage-free Gradient Domain Deformation

= Hard to learn cages for complex shapes
= (Cage-based deformation is not mesh-specific - it just maps the volume



Cage-free Gradient Domain Deformation

= Hard to learn cages for complex shapes
= (Cage-based deformation is not mesh-specific - it just maps the volume
= Reminder: learning a map directly is prone to noise — hard to preserve details
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Cage-free Gradient Domain Deformation

= Hard to learn cages for complex shapes
= (Cage-based deformation is not mesh-specific - it just maps the volume

= Reminder: learning a map directly is prone to noise — hard to preserve details
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Cage-free Gradient Domain Deformation

= Hard to learn cages for complex shapes
= (Cage-based deformation is not mesh-specific - it just maps the volume

= Reminder: learning a map directly is prone to noise — hard to preserve details
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Project to Jacobian



Cage-free Gradient Domain Deformation

= Hard to learn cages for complex shapes
= (Cage-based deformation is not mesh-specific - it just maps the volume
= Reminder: learning a map directly is prone to noise — hard to preserve details

f9 . Zsource X Ztarget X JR? — Rg QSXB

Predict a matrix

Use points

on the surface l’ﬂ-

(triangle centroids,

Intrinsic features) % 3 X 2

Project to Jacobian




Neural Jacobian Fields Pipeline

Predict Restrict Poisson

Learn parameters differentiable, no parameters differentiable, no parameters



Neural Jacobian Fields Pipeline

shape code

Per-triangle features (centroid + WKS)

Precomputed
Projection

Restricted to
tangent space

Poisson solver
Using Laplacian

l New vertex
positions
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Training Neural Jacobian Fields

Prediction
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Neural Mapping —
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Application: Cageless Deformation Transfer

Only trained on humans, no extra input was needed for Big Buck Bunny

Source



Partial Registration
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Morphing

Network
Output
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Mesh

Target
Shape




Application: Learn to AutoUV

Supervised on SLIM parameterizations

135.1,,95.B 421,36 D




Application: Learn Collision-based Deformation

Using setup of Romero et al. 2021
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Neural Shape Processing

Modify existing shapes instead of generating from scratch

Retrieval Deformation Detailization



Goal: Detail Transfer

Input Target Details Output



Our Approach

- Decimate high-res mesh with target details to create training data
= Learn local up-sampling filters

Decimate Subdivide




Maintaining Bijective Mapping

Decimate Subdivide




Maintaining Bijective Mapping

= Record barycentric coordinates during subdivision




Maintaining Bijective Mapping

- Record barycentric coordinates during subdivision
- Match via parameterization during decimation




Neural Subdivision

Subdivide




Neural Subdivision

- Triangle Split (mid-edge)

Subdivide




Neural Subdivision

- Triangle Split (mid-edge)

Subdivide




Neural Subdivision

- Triangle Split (mid-edge)
= Set vertex positions via neural network

Subdivide




Architecture

- Half-flap: directed edges and two adjacent triangles
- Fixed Dimensions

- Canonical Ordering



Architecture

- Half-flap: directed edges and two adjacent triangles
- Represent (differential) geometry in flap’s local coordinate frame



Pipeline
= Initialize per-vertex features
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Pipeline

= Initialize per-vertex features
= Iteratively update features and geometry at old & new vertices

—
VERTEX step ; ; !% EDGE step
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Results: Neural Detail Transfer




Results: Neural Detail Upsampling

= Neural subdivision trained on a single example

Training
Example

Coarse Input Subdivided Output



Results: Neural Detail Upsampling

= Neural subdivision trained on a single example

Training
Example

Coarse Input Subdivided Outp |



Detail Transfer and Synthesis

- Hallucinating details with complex topology

Input Target Style



Detail Transfer and Synthesis

- Hallucinating details with complex topology

Input Target Style Output



DECOR-GAN Neural Network

Detailed shape s (2563) Generator mask M.6 (2563) Discriminator mask M.P (1283)

Coarse shape s ,(643)
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DECOR-GAN Neural Network
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DECOR-GAN Neural Network

Detailed shape s (2563) Generator mask M.6 (2563) Discriminator mask M.P (1283)
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DECOR-GAN Neural Network

Detailed shape s (2563) Generator mask M.6 (2563) Discriminator mask M.P (1283)

Coarse shape s (643

(256%)
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DECOR-GAN Neural Network

Detailed shape s (2563) Generator mask M.6 (2563) Discriminator mask M.P (1283)

(1283)

—» Ly (real)

Latent code z, Discriminator trained on patches

with true and generated details

Generator mask M6 (2563) Discriminator mask M P (1283)




DECOR-GAN Neural Network

Detailed shape s (2563) Generator mask M.6 (2563) Discriminator mask M.P (1283)

Coarse shape s ,(643)
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Vases

Results
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CONTENT



Results: Chairs




Results: Tables
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Results: Airplanes
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Motorcycles

Results
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Key Takeaways

= Retrieval and Deformation should be trained jointly

= Neural Deformation
- MLP for entire map is too flexible (shape gets distorted)
- Neural Cage-based deformation is too constrained (OK in some cases)

- Neural Jacobian Fields (flexible and low-distortion)

= Neural Detailization
- Neural Subdivision: effective for meshes, but input has to have the right topology
- DECOR-GAN: voxel grids are good for learning details, classical image-based ideas are directly applicable



Future Work

= Geometry learning for production-quality assets
- Diverse representation: different level of details and tessellation quality
- Diverse content: few-shot learning

= Model appearance: geometry, materials, and environment

- Neural Shape Processing: re-use and re-purpose the existing assets

Made with Adobe Stager



Collaborators

= Project Leads
Mikaela Uy, Stanford, Adobe Intern (Joint Learning of 3D Shape Retrieval and Deformation, CVPR 2021)
Thibault Groueix, ParisTech, Adobe (Unsupervised cycle-consistent deformation for shape matching, SGP 2019)
Yifan Wang, ETH Zurich, Adobe Intern (Neural Cages for Detail-Preserving 3D Deformations, CVPR 2020, oral)
Noam Aigerman, Adobe (Neural Jacobian Fields: Learning Intrinsic Mappings of Arbitrary Meshes, SIGGRAPH 2022)
Hsueh-Ti Liu, U. Toronto, Adobe Intern (Neural Subdivision, SIGGRAPH 2020)
Zhigin Chen, SFU, Adobe Intern (Décor-GAN, CVPR 2021, oral)

= Collaborators
Siddhartha Chaudhuri, Matt Fisher, Bryan Russell, Alec Jacobson, Minhyuk Sung- Adobe Research
Leonidas Guibas - Stanford University
Olga Sorkine — ETH Zurich
Mathieu Aubry — Ecole des Ponts ParisTech

Richard Zhang - Simon Fraser University



