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Why Polygonal Meshes?

Concise (sparse) representation
Factorized into materials and geometry

Concisely store spatially-variant materials (if parameterized)
Lots of available data

Supported by most existing workflows, pipelines, tools




Why Neural Networks? (R -

Encode complex priors
- Priors derived from human understanding
= Priors on how to optimize things better
Fully differentiable pipelines to prototype

- Variables to optimize

Objective functions

- Representations

Universal toolbox to share with others




Neural Deformation

- Deform the source to match the target while preserving the details




Neural Deformation

= Naive approach:
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Source Target Groueix et al. CGF 2019



Why Geometry Processing?

Encode simple priors and constraints
Mature mathematical foundations
Operators defined on irregular domains
Often offer simple reusable tools




Powerful Combination

Neural Networks

Geometry Processing

Meshes



Geometry Processing Helping Machine Learning

Neural Networks
Geometry Processing

Meshes



Neural Deformation

= Nalve approach:

2

: 3 3
fH . Zsource X Ztarget X R* — R

Source Target Groueix et al. CGF 2019



Neural Deformation

- (Cage-based deformation

f9 . Zsource X Ztarget —7

Cinit X Cdeformed

Predict cage parameters with a neural network
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Cage-free Gradient Domain Deformation

= Hard to learn cages for complex shapes
= (Cage-based deformation is not mesh-specific - it just maps the volume

= Reminder: learning a map directly is prone to noise — hard to preserve details

: 3
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Predict a matrix



Cage-free Gradient Domain Deformation

= Hard to learn cages for complex shapes
= (Cage-based deformation is not mesh-specific - it just maps the volume

= Reminder: learning a map directly is prone to noise — hard to preserve details
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Cage-free Gradient Domain Deformation

= Hard to learn cages for complex shapes
= (Cage-based deformation is not mesh-specific - it just maps the volume
= Reminder: learning a map directly is prone to noise — hard to preserve details

f9 . Zsource X Ztarget X JR? — Rg QSXB

Predict a matrix

Use points

on the surface l’ﬂ-

(triangle centroids,

Intrinsic features) % 3 X 2

Project to Jacobian




Neural Jacobian Fields Pipeline

Predict Restrict Poisson

Learn parameters differentiable, no parameters differentiable, no parameters



Neural Jacobian Fields Pipeline

shape code

Per-triangle features (centroid + WKS)

Precomputed
Projection

Restricted to
tangent space

Poisson solver
Using Laplacian

l New vertex
positions
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Training Neural Jacobian Fields
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Application: Deformation Transfer

Only trained on humans, no extra input was needed for Big Buck Bunny
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Deformation with Text Guidance

Higher-level guidance for mesh deformation

Source “Turtle”



Deformation with Text Guidance

Higher-level guidance for mesh deformation
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Deformation with Text Guidance

Optimize Jacobians to minimize CLIP-similarity loss
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Deformation with Text Guidance

Optimize Jacobians to minimize CLIP-similarity loss
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Deformation with Text Guidance

Optimize Jacobians to minimize CLIP-similarity loss
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Deformation with Text Guidance

Optimize Jacobians to minimize CLIP-similarity loss
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Deformation with Text Guidance

Convert vases to cactuses
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Deformation with Text Guidance

Deforming faces
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Neural Deformation Takeaways

Use classical Geometry Processing modules as layers in NN, e.g:
- Cage-based deformation
- Deformation Jacobians

= Poisson solve



Neural Deformation Takeaways

Use classical Geometry Processing modules as layers in NN, e.g:
- Cage-based deformation
- Deformation Jacobians

= Poisson solve
Neural Networks can:
Optimize quickly by solving similar problems on training data
Implicitly learn relations between related shapes during training

Pre-trained visual networks (CLIP, Diffusion Models) offer a strong prior on the natural objects



Neural Deformation Takeaways

Use classical Geometry Processing modules as layers in NN, e.g:
- Cage-based deformation
Deformation Jacobians

Poisson solve

Neural Networks can:
Optimize quickly by solving similar problems on training data
Implicitly learn relations between related shapes during training
Pre-trained visual networks (CLIP, Diffusion Models) offer a strong prior on the natural objects

Questions for the Future Work
What are the other interesting ways to parameterize shape variations?
What new techniques and loss functions can we develop to interject pre-trained visual priors?

Can we train 3D neural networks using a mix of 2D and 3D data? A mix of strong and weak supervision?



Machine Learning Helping Geometry Processing

Neural Networks
Geometry Processing

Meshes



Deformation for Mesh Parameterization

Why parameterize?
- Concisely store signals (e.g, materials) on surfaces
- Essential for most existing pipelines

What is a good parameterization?

Small distortion (squares in 2D look like squares in 3D)

Few discontinuities

| 85.
E;=4.0
Input

Bad Parameterization Better Parameterization




Deformation for Mesh Parameterization

Why parameterize with ML?
= Lots of local optima - classical optimization methods are slow and prone to being stuck
= Learn to mimic artists — hide distortion and seams in nhon-salient regions
How to parameterize with ML?
Neural Jacobian Fields to map 3D to 2D

Train with strong supervision using classical geometry optimization (SLIM)




Deformation for Mesh Parameterization

135,95 D




Segmentation for Parameterization

Given a selected point, find maximal segment that can be parameterized with little distortion




Segmentation for Parameterization

Given a selected point, find maximal segment that can be parameterized with little distortion




Segmentation for Parameterization
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Segmentation for Parameterization
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Segmentation for Parameterization
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Train-able Segmentation Network
(MeshCNN)

Differentiable Parameterization Layer
(WLSCM)



Segmentation for Parameterization
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Neural Parameterization Takeaways

Use classical Geometry Processing modules as layers in NN, e.g:
Deformation Jacobians + Poisson solve
Least-Squares Conformal Maps

Neural Networks can:
Optimize quickly by solving similar problems on training data

Implicitly learn relations between related shapes during training

Questions for the Future Work
Can pre-trained visual priors help improve parameterization?

How do we represent discontinuities for global parameterization?



OptCuts: Joint Optimization of Surface Cuts and Parameterization

Submission ID: 243



Machine Learning Helping Geometry Processing

Neural Networks
Geometry Processing

Meshes



Neural Progressive Meshes

[dea: Transmit 3D data progressively in a coarse-to-fine fashion

-r

LOD #F aces
0.000 18

Hoppe 1996



Neural Progressive Meshes

Learn a latent space of progressive features that encode geometric details

Ground truth



Neural Progressive Meshes

Learn a latent space of progressive features that encode geometric details

Decimate
—_—

Ground truth



Neural Progressive Meshes

Learn a latent space of progressive features that encode geometric details

Learned Subd1v1s1on

Decimate
—_—

59 14

Ground truth




Neural Progressive Meshes

Learn a latent space of progressive features that encode geometric details

Learned Subdivision

e S S

9.42

Ground truth Coarse mesh and Progressive features =
per-face features



Neural Progressive Meshes

Mesh M3

Remeshing
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Neural Progressive Meshes
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Neural Progressive Meshes
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Neural Progressive Meshes

Mesh M3

Remeshing

f mesh f2
Input mesh M

Encoder: SubdivNet, Subdivion-based Mesh Convolutional Networks, Hu et al. 2022

Decoder: Neural Subdivision, Liu et al. 2020



Neural Subdivision

- Decimate high-res mesh to create training data
= Learn local up-sampling filters

Decimate Subdivide




Neural Subdivision: Maintaining Bijective Mapping

Decimate Subdivide




Neural Subdivision: Maintaining Bijective Mapping

= Record barycentric coordinates during subdivision




Neural Subdivision: Maintaining Bijective Mapping

= Record barycentric coordinates during subdivision
= Match via parameterization during decimation




Neural Subdivision

Subdivide




Neural Subdivision

- Triangle Split (mid-edge)

Subdivide




Neural Subdivision

- Triangle Split (mid-edge)

Subdivide




Neural Subdivision

- Triangle Split (mid-edge)
= Set vertex positions via neural network

Subdivide




Neural Subdivision: Architecture

- Half-flap: directed edges and two adjacent triangles
- Fixed Dimensions

- Canonical Ordering



Neural Subdivision: Architecture

- Half-flap: directed edges and two adjacent triangles
- Represent (differential) geometry in flap’s local coordinate frame



Neural Subdivision: Pipeline
= Initialize per-vertex features
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Neural Subdivision: Pipeline

= Initialize per-vertex features

- Iteratively update features and geometry at old & new vertices
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Neural Subdivision: SubdivNet for analysis

= A follow-up work by Hu et al. 2022 showed that Subdivision can also be used for analysis
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Neural Progressive Meshes
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Neural Progressive Meshes
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Neural Progressive Meshes Takeaways

Use classical Geometry Processing modules as layers in NN, e.g:
- Subdivision

= Decimation

Neural Networks can:

Implicitly learn relations between shapes during training

Questions for the Future Work
How to leverage pre-trained visual networks to get prior on local geometric details?

Can we use subdivision for Neural Detailization?



Example of a Neural Detailization Method: Décor-GAN
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Future Work

Leverage additional priors in Neural Geometry Modeling and Analysis
- Large language models
- Large language and image co-embedding models

- Large generative models for images

Leverage task-specific geometry processing tools in designing architectures
- Differentiable layers
- Task-specific loss functions and regularization terms
- Rigorous representations

Support real workflows used by artists and designers
HCI will be at the core of any innovation

Our tools should not compete with people
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