Neural Deformation, Parameterization and
Compression of Polygonal Meshes

Vladimir (Vova) Kim
Adobe Research, Seattle

Motivation

Content Creation

Placement

Decal v

Adobe Substance Painter Adobe Stager

Motivation

Content Creation

Adobe Substance Modeler Adobe Illustrator 3D

Why Polygonal Meshes?

Concise (sparse) representation
Factorized into materials and geometry

Concisely store spatially-variant materials (if parameterized)
Lots of available data

Supported by most existing workflows, pipelines, tools

Why Neural Networks? (R -

Encode complex priors
- Priors derived from human understanding
= Priors on how to optimize things better
Fully differentiable pipelines to prototype

- Variables to optimize

Objective functions

- Representations

Universal toolbox to share with others

Neural Deformation

- Deform the source to match the target while preserving the details

Neural Deformation

= Naive approach:

: 3 3
f9 . Zsource X Ztarget X R — R

Source Target Groueix et al. CGF 2019

Why Geometry Processing?

Encode simple priors and constraints
Mature mathematical foundations
Operators defined on irregular domains
Often offer simple reusable tools

Powerful Combination

Neural Networks

Geometry Processing

Meshes

Geometry Processing Helping Machine Learning

Neural Networks
Geometry Processing

Meshes

Neural Deformation

= Nalve approach:

2

: 3 3
fH . Zsource X Ztarget X R* — R

Source Target Groueix et al. CGF 2019

Neural Deformation

- (Cage-based deformation

f9 . Zsource X Ztarget —7

Cinit X Cdeformed

Predict cage parameters with a neural network

|

Init Cage

Deformed Cage

— [me |- R3 %RS

Use Cage-Based Deformation

to define the map

Cage-free Gradient Domain Deformation

= Hard to learn cages for complex shapes
= (Cage-based deformation is not mesh-specific - it just maps the volume

= Reminder: learning a map directly is prone to noise — hard to preserve details

: 3
f@ . Zsource X Rtarget X R — Rg

QSXS

Predict a matrix

Cage-free Gradient Domain Deformation

= Hard to learn cages for complex shapes
= (Cage-based deformation is not mesh-specific - it just maps the volume

= Reminder: learning a map directly is prone to noise — hard to preserve details

: 3
f@ . Zsource X Rtarget X R — Rg

%SXS

Predi[t/;-‘Tatrix
%3 X 2

Project to Jacobian

Cage-free Gradient Domain Deformation

= Hard to learn cages for complex shapes
= (Cage-based deformation is not mesh-specific - it just maps the volume
= Reminder: learning a map directly is prone to noise — hard to preserve details

f9 . Zsource X Ztarget X JR? — Rg QSXB

Predict a matrix

Use points

on the surface l’ﬂ-

(triangle centroids,

Intrinsic features) % 3 X 2

Project to Jacobian

Neural Jacobian Fields Pipeline

Predict Restrict Poisson

Learn parameters differentiable, no parameters differentiable, no parameters

Neural Jacobian Fields Pipeline

shape code

Per-triangle features (centroid + WKS)

Precomputed
Projection

Restricted to
tangent space

Poisson solver
Using Laplacian

l New vertex
positions

L; 7/
—p (D

Training Neural Jacobian Fields

Prediction

T
Neural Mapping —
()

— o

Shape &
triangle codes

v
S W bl i
Training Sample \ Loss \
Target shape (GT) Prediction (after Poisson)

Source shape

Application: Deformation Transfer

Only trained on humans, no extra input was needed for Big Buck Bunny

\xA2/
Y1kY

Source

Target
Shapes

Partial Registration

ot I 3 A ?‘
N4 A A

Morphing

Network
Output

Source
Mesh

Target
Shape

Deformation with Text Guidance

Higher-level guidance for mesh deformation

Source “Turtle”

Deformation with Text Guidance

Higher-level guidance for mesh deformation

"

“Giraffe"

Source “Turtle”

“Alligator”

Deformation with Text Guidance

Optimize Jacobians to minimize CLIP-similarity loss

4 N

‘_

_Base Mesh i

= &

IIA
shark” | —

\Text prompt Y.

Input

Deformation with Text Guidance

Optimize Jacobians to minimize CLIP-similarity loss
4 N f?’ N é \

e % Poisson |

Deformed
_Base Mesh \Ji : Jacobians _ Mesh
Optimize Output

HA
shark” | —

\Text prompt)

Input

Deformation with Text Guidance

Optimize Jacobians to minimize CLIP-similarity loss
a N f?’ B 4 A

. | Poisson Differentiable |
X W Solve Renderer

Deformed
_Base Mesh / \Ji : Jacobians _ Mesh /

Optimize Output

—_—

i
“p ;"/ &
7
shark” Semanticloss | #"
\Text prompt) \
) I
Input '
Renderings

Deformation with Text Guidance

Optimize Jacobians to minimize CLIP-similarity loss
a N f?’ B 4 A

. | Poisson Differentiable |
X W Solve Renderer

Deformed
_Base Mesh / \Ji : Jacobians _ Mesh /
Optimize Output

=

& & ;
“p ;"/ & ‘ N
P4 N
shark” Semanticloss -~ | #" View-
Text prompt) SN . Consistency Loss
Input ' “
Renderings Corresponding

_ patches /

Deformation with Text Guidance

Convert vases to cactuses

s LWy ¢
&t

Deformation with Text Guidance

Deforming faces

t@ ~

“horse” “camel”

'l l (" 3
"balalla" man!oln “double bass”
j
'SDM¢

“army boot"

Neural Deformation Takeaways

Use classical Geometry Processing modules as layers in NN, e.g:
- Cage-based deformation
- Deformation Jacobians

= Poisson solve

Neural Deformation Takeaways

Use classical Geometry Processing modules as layers in NN, e.g:
- Cage-based deformation
- Deformation Jacobians

= Poisson solve
Neural Networks can:
Optimize quickly by solving similar problems on training data
Implicitly learn relations between related shapes during training

Pre-trained visual networks (CLIP, Diffusion Models) offer a strong prior on the natural objects

Neural Deformation Takeaways

Use classical Geometry Processing modules as layers in NN, e.g:
- Cage-based deformation
Deformation Jacobians

Poisson solve

Neural Networks can:
Optimize quickly by solving similar problems on training data
Implicitly learn relations between related shapes during training
Pre-trained visual networks (CLIP, Diffusion Models) offer a strong prior on the natural objects

Questions for the Future Work
What are the other interesting ways to parameterize shape variations?
What new techniques and loss functions can we develop to interject pre-trained visual priors?

Can we train 3D neural networks using a mix of 2D and 3D data? A mix of strong and weak supervision?

Machine Learning Helping Geometry Processing

Neural Networks
Geometry Processing

Meshes

Deformation for Mesh Parameterization

Why parameterize?
- Concisely store signals (e.g, materials) on surfaces
- Essential for most existing pipelines

What is a good parameterization?

Small distortion (squares in 2D look like squares in 3D)

Few discontinuities

| 85.
E;=4.0
Input

Bad Parameterization Better Parameterization

Deformation for Mesh Parameterization

Why parameterize with ML?
= Lots of local optima - classical optimization methods are slow and prone to being stuck
= Learn to mimic artists — hide distortion and seams in nhon-salient regions
How to parameterize with ML?
Neural Jacobian Fields to map 3D to 2D

Train with strong supervision using classical geometry optimization (SLIM)

Deformation for Mesh Parameterization

135,95 D

Segmentation for Parameterization

Given a selected point, find maximal segment that can be parameterized with little distortion

Segmentation for Parameterization

Given a selected point, find maximal segment that can be parameterized with little distortion

Segmentation for Parameterization

b

!

s |
I

I

i

/

< Selection_,

Segmentation for Parameterization

Ay
'

< _Selection ,

Train-able Segmentation Network
(MeshCNN)

Segmentation for Parameterization

Selection ,

~-----

Train-able Segmentation Network
(MeshCNN)

Differentiable Parameterization Layer
(WLSCM)

Segmentation for Parameterization

N

r..!'.‘&‘

o |

Mesh

Selection

’

Distortion Self-Supervision

/
I
I
I
I

Train-able Segmentation Network
(MeshCNN)

(WLSCM)

Lth.reshold

Differentiable Parameterization Layer

V¥ Polyscope

Reset View Screenshot ¥ Controls
» View

» Appearance

» Debug

20.1 ms/frame (49.7 FPS)

V¥ Structures

V¥ Surface Mesh (1)
¥ mesh
+ Enabled Options

#verts: 1491 #faces: 2978

Color Smooth «# Edges

Edge Color 1.000 Width

Polyscope

V¥ Command Ul

Interactive Segmentation Module
Current anchor list: []

faces in selection: O
Clear anchors

Patch growing
" floodfill
& graphcuts

Show UV
Export UV

Exit

V Selection

Surface Mesh: mesh

Halfedge #4790

Polyscope

V¥ Polyscope V¥ Command Ul

Interactive Segmentation Module

Reset View Screenshot ¥ Controls
» View
» Appearance

» Debug

42.4 ms/frame (23.6 FPS)

Current anchor list: []

faces in selection: O

Clear anchors

Patch growing

V¥ Structures floodfill

graphcuts

» Curve Network (0)

V¥ Surface Mesh (1) Show UV

¥ mesh Export UV
Enabled Options

#verts: 27108 #faces: 10825

Exit

Color Smooth Edges

Edge Color 1.000 Width

Polyscope

Interactive Segmentation Module

Current anchor list: []
faces in selection: O
Clear anchors

Patch growing

» Appearance

B e 7 floodfill

22.4 ms/frame (44.7 FPS)

+ graphcuts
Show UV

V¥ Structures

V¥ Surface Mesh (1)

&’ Enabled Options

#verts: 2055 #faces: 4106

Smooth & Edges

Edge Color ~ 1.000 Width

Color

7
25
i
SN
4&5;«»

il
AR
_,__%%mﬁw?w
.,.Asnv 4

\\

) ﬁnv%ld»
i,
VOB

4
o
D
»wwmm“ P-4

A

ion for Parameterization

Segmentat

Neural Parameterization Takeaways

Use classical Geometry Processing modules as layers in NN, e.g:
Deformation Jacobians + Poisson solve
Least-Squares Conformal Maps

Neural Networks can:
Optimize quickly by solving similar problems on training data

Implicitly learn relations between related shapes during training

Questions for the Future Work
Can pre-trained visual priors help improve parameterization?

How do we represent discontinuities for global parameterization?

OptCuts: Joint Optimization of Surface Cuts and Parameterization

Submission ID: 243

Machine Learning Helping Geometry Processing

Neural Networks
Geometry Processing

Meshes

Neural Progressive Meshes

[dea: Transmit 3D data progressively in a coarse-to-fine fashion

-r

LOD #F aces
0.000 18

Hoppe 1996

Neural Progressive Meshes

Learn a latent space of progressive features that encode geometric details

Ground truth

Neural Progressive Meshes

Learn a latent space of progressive features that encode geometric details

Decimate
—_—

Ground truth

Neural Progressive Meshes

Learn a latent space of progressive features that encode geometric details

Learned Subd1v1s1on

Decimate
—_—

59 14

Ground truth

Neural Progressive Meshes

Learn a latent space of progressive features that encode geometric details

Learned Subdivision

e S S

9.42

Ground truth Coarse mesh and Progressive features =
per-face features

Neural Progressive Meshes

Mesh M3

Remeshing

3 >
f mesh
Input mesh M

Neural Progressive Meshes

Mesh M3 Mesh M2 ’ Mesh M1

Remeshing

3
f mesh ™ fz
Input mesh M \

2 1
fmesh—:- f1 fmesh—:- fO
| I
| 1

Neural Progressive Meshes

Mesh M3 Mesh M2
Remeshing
frﬁesh — >

f; rrgl.esh—> f2 >
Input mesh M |
B i

>

Mesh M1
!fl —
fl

Mesh M°

Neural Progressive Meshes

Mesh M3

Remeshing

f mesh f2
Input mesh M

Encoder: SubdivNet, Subdivion-based Mesh Convolutional Networks, Hu et al. 2022

Decoder: Neural Subdivision, Liu et al. 2020

Neural Subdivision

- Decimate high-res mesh to create training data
= Learn local up-sampling filters

Decimate Subdivide

Neural Subdivision: Maintaining Bijective Mapping

Decimate Subdivide

Neural Subdivision: Maintaining Bijective Mapping

= Record barycentric coordinates during subdivision

Neural Subdivision: Maintaining Bijective Mapping

= Record barycentric coordinates during subdivision
= Match via parameterization during decimation

Neural Subdivision

Subdivide

Neural Subdivision

- Triangle Split (mid-edge)

Subdivide

Neural Subdivision

- Triangle Split (mid-edge)

Subdivide

Neural Subdivision

- Triangle Split (mid-edge)
= Set vertex positions via neural network

Subdivide

Neural Subdivision: Architecture

- Half-flap: directed edges and two adjacent triangles
- Fixed Dimensions

- Canonical Ordering

Neural Subdivision: Architecture

- Half-flap: directed edges and two adjacent triangles
- Represent (differential) geometry in flap’s local coordinate frame

Neural Subdivision: Pipeline
= Initialize per-vertex features

—

INITIALIZATION step

average pool
(@)

Neural Subdivision: Pipeline

= Initialize per-vertex features

- Iteratively update features and geometry at old & new vertices
-\ /“_\

VERTEX step EDGE step

bR

«p
A
@)

r
O

average pool/

average pool
O

o~ O
Qﬁ S5 (
. \\‘ .

r/r‘» r

K

w
o)

T single subdivision iteration

Neural Subdivision: SubdivNet for analysis

= A follow-up work by Hu et al. 2022 showed that Subdivision can also be used for analysis

EE—

o T,
S Er s sssssssEE. .-
N o womom P

! r“ global

remesh ‘el =) convs & @piroaon onvsc > L
. pooling v pooling

=
o
-
o
>
[<P]
Pt
5
2]
(7]
—_—

Neural Progressive Meshes

CR e (5107 | i 64.73 / 14.87 / 10.33° 17.78 / 11.48 / 6.94° 10.31/5.37 / 5.31°

Ground truth Ours w/o features Ours + 40 features Ours + 400 features

Neural Progressive Meshes

L2 |

CR/ dpm (x107%) / dyormal 39.83 / 15.59 / 11.54° 7.18 / 7.70 / 7.66° 3.17 / 4.89 / 8.15°

Ground truth Ours w/o features Ours + 40 features Ours + 400 features

Neural Progressive Meshes Takeaways

Use classical Geometry Processing modules as layers in NN, e.g:
- Subdivision

= Decimation

Neural Networks can:

Implicitly learn relations between shapes during training

Questions for the Future Work
How to leverage pre-trained visual networks to get prior on local geometric details?

Can we use subdivision for Neural Detailization?

Example of a Neural Detailization Method: Décor-GAN

Sf~Vat=Tal

Explorer

cc70b2c8d4faf79e5a468146abbb198
cca275f4a604d8e9614871b18a2b1957
cccdbb366a6dc7c4cffab2¢8f8bT5951
ccecB3857d3f5¢2950504d983defS6¢
ccdde24¢c9b96febd52080ab875b932be
ccea874dB869ff0a579368d1198f406e7
ccf29f02bfc1baS1a089ebe4a5a40bc728
ccfcB857f35c138ede785b88cca024b2a

(x=379.v=8561 ~ R:204 G:232 B: 255

Future Work

Leverage additional priors in Neural Geometry Modeling and Analysis
- Large language models
- Large language and image co-embedding models

- Large generative models for images

Leverage task-specific geometry processing tools in designing architectures
- Differentiable layers
- Task-specific loss functions and regularization terms
- Rigorous representations

Support real workflows used by artists and designers
HCI will be at the core of any innovation

Our tools should not compete with people

Collaborators

= Project Leads

Yifan Wang, ETH Zurich (Neural Cages for Detail-Preserving 3D Deformations, CVPR 2020 oral)

Noam Aigerman, Adobe (Neural Jacobian Fields: Learning Intrinsic Mappings of Arbitrary Meshes, SIGGRAPH 2022)
William Gao, U. of Chicago (TextDeformer: Geometry Manipulation using Text Guidance, SIGGRAPH 2023)

Richard Liu, U. of Chicago (DA Wand: Distortion-Aware Selection using Neural Mesh Parameterization, CVPR 2023)
Yun-Chun Chen, U. of Toronto (Neural Progressive Meshes, SIGGRAPH 2023)

Hsueh-Ti (Derek) Liu, U. f Toronto (Neural Subdivision, SIGGRAPH 2020)

Zhigin Chen, Simon Fraser University (DECOR-GAN: 3D Shape Detailization by Conditional Refinement, CVPR 2021 oral)

= Collaborators

Siddhartha Chaudhuri, Thibault Groueix, Jun Saito, Alec Jacobson- Adobe Research
Rana Hanocka - U. of Chicago

Olga Sorkine — ETH Zurich

Richard Zhang - Simon Fraser University

Kunal Gupta - UCSD

