Neural Deformation, Parameterization and Compression of Polygonal Meshes

Vladimir (Vova) Kim Adobe Research, Seattle

Motivation

Content Creation

Adobe Substance Painter

Adobe Stager

Motivation

Content Creation

Why Polygonal Meshes?

Concise (sparse) representation

Factorized into materials and geometry

Concisely store spatially-variant materials (if parameterized)

Lots of available data

Supported by most existing workflows, pipelines, tools

Why Neural Networks?

Encode complex priors

- Priors derived from human understanding
- Priors on how to optimize things better

Fully differentiable pipelines to prototype

- Variables to optimize
- Objective functions
- Representations

Universal toolbox to share with others

Neural Deformation

Deform the source to match the target while preserving the details

Neural Deformation

Naïve approach:

$$f_{\theta}: z_{\text{source}} \times z_{\text{target}} \times \mathbb{R}^3 \to \mathbb{R}^3$$

Why Geometry Processing?

Encode simple priors and constraints

Mature mathematical foundations

Operators defined on irregular domains

Often offer simple reusable tools

Powerful Combination

Neural Networks

Meshes

Geometry Processing Helping Machine Learning

Neural Deformation

Naïve approach:

$$f_{\theta}: z_{\text{source}} \times z_{\text{target}} \times \mathbb{R}^3 \to \mathbb{R}^3$$

Neural Deformation

Cage-based deformation

$$f_{\theta}: z_{\text{source}} \times z_{\text{target}} \to \mathcal{C}_{\text{init}} \times \mathcal{C}_{\text{deformed}}$$

Predict cage parameters with a neural network

 $\boxed{\text{MVC}} \to \mathbb{R}^3 \to \mathbb{R}^3$

Use Cage-Based Deformation to define the map

Init Cage

Deformed Cage

Cage-free Gradient Domain Deformation

- Hard to learn cages for complex shapes
- Cage-based deformation is not mesh-specific it just maps the volume
- Reminder: learning a map directly is prone to noise hard to preserve details

$$f_{\theta}: z_{\text{source}} \times z_{\text{target}} \times \mathbb{R}^3 \to \mathbb{R}^3 \xrightarrow{\text{Predict a matrix}} 3 \times 3$$

Cage-free Gradient Domain Deformation

- Hard to learn cages for complex shapes
- Cage-based deformation is not mesh-specific it just maps the volume
- Reminder: learning a map directly is prone to noise hard to preserve details

$$f_{ heta}: z_{ ext{source}} imes z_{ ext{target}} imes \mathbb{R}^3 o \mathbb{R}^3 imes \mathbb{R}^{3 imes 3}$$

$$\begin{array}{c} \downarrow \pi \\ \downarrow \pi \\ \mathbb{R}^{3 imes 2} \end{array}$$
Project to Jacobian

Cage-free Gradient Domain Deformation

- Hard to learn cages for complex shapes
- Cage-based deformation is not mesh-specific it just maps the volume
- Reminder: learning a map directly is prone to noise hard to preserve details

Neural Jacobian Fields Pipeline

Training Neural Jacobian Fields

Application: Deformation Transfer

Only trained on humans, no extra input was needed for Big Buck Bunny

Partial Registration

Network Output

Morphing

Network Output

Source Mesh

Target Shape

Higher-level guidance for mesh deformation

Higher-level guidance for mesh deformation

Convert vases to cactuses

Deforming faces

Neural Deformation Takeaways

Use classical Geometry Processing modules as layers in NN, e.g.:

- Cage-based deformation
- Deformation Jacobians
- Poisson solve

Neural Deformation Takeaways

Use classical Geometry Processing modules as layers in NN, e.g.:

- Cage-based deformation
- Deformation Jacobians
- Poisson solve

Neural Networks can:

- Optimize quickly by solving similar problems on training data
- Implicitly learn relations between related shapes during training
- Pre-trained visual networks (CLIP, Diffusion Models) offer a strong prior on the natural objects

Neural Deformation Takeaways

Use classical Geometry Processing modules as layers in NN, e.g.:

- Cage-based deformation
- Deformation Jacobians
- Poisson solve

Neural Networks can:

- Optimize quickly by solving similar problems on training data
- Implicitly learn relations between related shapes during training
- Pre-trained visual networks (CLIP, Diffusion Models) offer a strong prior on the natural objects

Questions for the Future Work

- What are the other interesting ways to parameterize shape variations?
- What new techniques and loss functions can we develop to interject pre-trained visual priors?
- Can we train 3D neural networks using a mix of 2D and 3D data? A mix of strong and weak supervision?

Machine Learning Helping Geometry Processing

Deformation for Mesh Parameterization

Why parameterize?

- Concisely store signals (e.g., materials) on surfaces
- Essential for most existing pipelines

What is a good parameterization?

Small distortion (squares in 2D look like squares in 3D)

Bad Parameterization

Deformation for Mesh Parameterization

Why parameterize with ML?

- Lots of local optima classical optimization methods are slow and prone to being stuck
- Learn to mimic artists hide distortion and seams in non-salient regions

How to parameterize with ML?

- Neural Jacobian Fields to map 3D to 2D
- Train with strong supervision using classical geometry optimization (SLIM)

Deformation for Mesh Parameterization

Given a selected point, find maximal segment that can be parameterized with little distortion

Given a selected point, find maximal segment that can be parameterized with little distortion

Train-able Segmentation Network (MeshCNN)

Train-able Segmentation Network (MeshCNN)

Differentiable Parameterization Layer (wLSCM)

Train-able Segmentation Network (MeshCNN)

Differentiable Parameterization Layer (wLSCM)

Neural Parameterization Takeaways

Use classical Geometry Processing modules as layers in NN, e.g.:

- Deformation Jacobians + Poisson solve
- Least-Squares Conformal Maps

Neural Networks can:

- Optimize quickly by solving similar problems on training data
- Implicitly learn relations between related shapes during training

Questions for the Future Work

- Can pre-trained visual priors help improve parameterization?
- How do we represent discontinuities for global parameterization?

OptCuts: Joint Optimization of Surface Cuts and Parameterization

Submission ID: 243

Machine Learning Helping Geometry Processing

Idea: Transmit 3D data progressively in a coarse-to-fine fashion

Ground truth

Ground truth

- Decimate high-res mesh to create training data
- Learn local up-sampling filters

Neural Subdivision: Maintaining Bijective Mapping

Neural Subdivision: Maintaining Bijective Mapping

Record barycentric coordinates during subdivision

Neural Subdivision: Maintaining Bijective Mapping

- Record barycentric coordinates during subdivision
- Match via parameterization during decimation

Triangle Split (mid-edge)

Triangle Split (mid-edge)

- Triangle Split (mid-edge)
- Set vertex positions via neural network

Neural Subdivision: Architecture

- Half-flap: directed edges and two adjacent triangles
 - Fixed Dimensions
 - Canonical Ordering

Neural Subdivision: Architecture

- Half-flap: directed edges and two adjacent triangles
- Represent (differential) geometry in flap's local coordinate frame

Neural Subdivision: Pipeline

Initialize per-vertex features

Neural Subdivision: Pipeline

Initialize per-vertex features

Iteratively update features and geometry at old & new vertices

Neural Subdivision: SubdivNet for analysis

• A follow-up work by Hu et al. 2022 showed that Subdivision can also be used for analysis

Neural Progressive Meshes Takeaways

Use classical Geometry Processing modules as layers in NN, e.g.:

- Subdivision
- Decimation

Neural Networks can:

Implicitly learn relations between shapes during training

Questions for the Future Work

- How to leverage pre-trained visual networks to get prior on local geometric details?
- Can we use subdivision for Neural Detailization?

Example of a Neural Detailization Method: Décor-GAN

cc70b9c8d4faf79e5a468146abbb198 cca975f4a6a4d9e9614871b18a2b1957 ccc4b5366a6dc7c4cffab2c8f8bf5951 cccc93857d3f5c9950504d983def56c ccd5e24c9b96febd5208aab875b932bc ccea874d869ff9a579368d1198f406e7 ccf29f02bfc1ba51a9ebe4a5a40bc728 ccfc857f35c138ede785b88cc9024b2a

Future Work

Leverage additional priors in Neural Geometry Modeling and Analysis

- Large language models
- Large language and image co-embedding models
- Large generative models for images

Leverage task-specific geometry processing tools in designing architectures

- Differentiable layers
- Task-specific loss functions and regularization terms
- Rigorous representations

Support real workflows used by artists and designers

- HCI will be at the core of any innovation
- Our tools should not compete with people

Collaborators

Project Leads

- Yifan Wang, ETH Zurich (Neural Cages for Detail-Preserving 3D Deformations, CVPR 2020 oral)
- Noam Aigerman, Adobe (Neural Jacobian Fields: Learning Intrinsic Mappings of Arbitrary Meshes, SIGGRAPH 2022)
- William Gao, U. of Chicago (TextDeformer: Geometry Manipulation using Text Guidance, SIGGRAPH 2023)
- Richard Liu, U. of Chicago (DA Wand: Distortion-Aware Selection using Neural Mesh Parameterization, CVPR 2023)
- Yun-Chun Chen, U. of Toronto (Neural Progressive Meshes, SIGGRAPH 2023)
- Hsueh-Ti (Derek) Liu, U. f Toronto (Neural Subdivision, SIGGRAPH 2020)
- Zhiqin Chen, Simon Fraser University (DECOR-GAN: 3D Shape Detailization by Conditional Refinement, CVPR 2021 oral)

Collaborators

- Siddhartha Chaudhuri, Thibault Groueix, Jun Saito, Alec Jacobson Adobe Research
- Rana Hanocka U. of Chicago
- Olga Sorkine ETH Zurich
- Richard Zhang Simon Fraser University
- Kunal Gupta UCSD